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An optimal stopping time problem with a Poisson process, discount function and random starting time is considered. Generalizations to a problem with random horizon and to a multi-person stopping game with priorities are presented.

Introduction

An agent, who is waiting for some permit to run the business, is interested in some projects. He will obtain the permit at some random time M. Until M, he observes the market and learns which project should be accepted. The projects appear according to a Poisson process and have assigned values Y 1 , Y 2 , . . ., which are i.i.d. random variables. At each time only one project is presented. The agent is allowed to accept only one project at the time of its appearance and he is interested in accepting the most profitable one. The profit from the accepted project with value Y n at time τ n is g(Y n r(τ n )) if τ n ≥ M, and 0 otherwise, where r(•) and g(•) express the change of the value of the projects in time and the agent's subjective value of projects, respectively.

The results of the paper extend those obtained in the paper by [START_REF] Elfving | A persistency problem connected with a point process[END_REF] and Ferenstein andKrasnosielska (2009a, 2009b). [START_REF] Elfving | A persistency problem connected with a point process[END_REF] considered

ACCEPTED MANUSCRIPT

the problem of selling a commodity where offers Y 1 , Y 2 , . . . appear according to a Poisson process. The offers Y i are i.i.d. random variables independent of the jump times τ 1 , τ 2 , . . . of the Poisson process. The owner obtains a reward Y n r(τ n ) if he accepts the offer Y n at time τ n , where r(•) is a discount function. [START_REF] Siegmund | Some problems in the theory of optimal stopping[END_REF] removed several additional assumptions from Elfving solution. Ferenstein and Krasnosielska (2009a) generalized the Elfving problem to the case of a multi-person stopping game with priorities. A model with random horizon based on the Elfving problem was considered in Ferenstein and Krasnosielska (2009b). [START_REF] Stadje | An optimal k-stopping problem for the Poisson process[END_REF] generalized the Elfving problem to a multi stopping time problem. [START_REF] Kühne | Approximation of optimal stopping problems[END_REF] obtained the approximations for the stopping of i.i.d. sequences in the domain of max-stable laws. [START_REF] Cowan | An optimal selection problem associated with the Poisson process[END_REF] considered a continuous-time version of the secretary problem in which the offers appear at jump times of the Poisson process up to fixed time T . [START_REF] Bruss | On an optimal selection problem of Cowan and Zabczyk[END_REF] extended the model of [START_REF] Cowan | An optimal selection problem associated with the Poisson process[END_REF] to the case of a compound Poisson process. [START_REF] Szajowski | A game version of the Cowan-Zabczyk-Bruss' problem[END_REF] generalized the problem considered by [START_REF] Bruss | On an optimal selection problem of Cowan and Zabczyk[END_REF] to the case of a two-person game with random priority. A full-information best choice problem with random starting point was considered by [START_REF] Porosiński | Full-information best choice problem with random starting point[END_REF]. The starting point (an observation which cannot be chosen) is a positive random variable independent of observations which are i.i.d. random variables. The observations appear according to a renewal process. A decision maker obtains some imperfect information about the random starting point. The aim of the decision maker is to choose the largest observation. [START_REF] Sakaguchi | Best choice problems for randomly arriving offers during a random lifetime[END_REF] analyzed the full information secretary problem with Poisson stream of offers arriving in a time interval of random length. [START_REF] Samuel-Cahn | Optimal stopping with random horizon with application to the full-information best-choice problem with random freeze[END_REF] considered an optimal stopping time problem with independent random horizon M and a known number of offers. The problem has been translated to a problem with discounting. Multi-person games with offers having uniform distribution and appearing according to a Poisson process were considered in [START_REF] Dixon | Equilibrium points for three games based on the Poisson process[END_REF]. A two-person game with random priority and two Poisson streams of offers was considered in [START_REF] Sakaguchi | Best-choice problems with random priority on a two-Poisson stream[END_REF]. In this game player i has higher priority at the times when the observations are from stream i. General models of multi-person discretetime games with priorities were analyzed in [START_REF] Enns | On a multi-person time-sequential game with priorities[END_REF]. A multi-person stopping game with a known and finite number of observations was considered in [START_REF] Ramsey | N person stopping games with players given priority randomly[END_REF]. A game with a large number of offers and players was analyzed in [START_REF] Ramsey | A large population job search game with discrete time[END_REF].

In the paper the notations and the solution of the Elfving problem follow those of Chow et al. (1971, pp. 113-118).

Let (Ω, F , P) be a probability space on which all random variables are considered. Let Y 1 , Y 2 , . . . be independent, non-negative random variables with continuous distribution function F , 0 < τ 1 < τ 2 < • • • be the jump times of a homogeneous Poisson process with intensity 1, Y 0 = 0, τ 0 = 0. Let M be a nonnegative random variable with known distribution function F M . We assume that the sequences {Y n } and {τ n } are independent and they are independent of M. Let us introduce various σ-fields of events dependent on available observations: 

F n = σ(Y 1 , . . . , Y n , τ 1 , . . . , τ n ), F * n = σ(F n , I(M ≤ τ 0 ), . . . , I(M ≤ τ n )), n = 1, 2, . . ., F 0 = {∅, Ω}, F * 0 = σ(F 0 , I(M ≤ τ 0 )),
X * n = g(Y n r(τ n ))I(M ≤ τ n ), (1) 
X * ∞ = lim sup n→∞ X * n and r : R + 0 → R + 0 and g : R + 0 → R + 0 are Borel functions. We assume that r is bounded, continuous from the right, g is increasing, continuous, g(0) = 0, and there exist functions g 1 and g 2 such that |g(yr(x 1 ))-

g(yr(x 2 ))| ≤ |g 1 (y)g 2 (x 1 , x 2 )| for x 1 , x 2 ≥ 0 and y ∈ supp Y 1 , E|g 1 (Y 1 )| < ∞, g 1 (0) = 0, ∞ 0 |g 2 (x 1 + t, x 2 + t)|dt < c|x 1 -x 2 |
for some constant c ≥ 0. Moreover, we assume that there exist constants m and U such that U > m ≥ 0, F M (U) > 0, r(s) = 0 for s ∈ [0, m) ∪ [U, ∞) and r(s) > 0 for s ∈ [m, U). If m > 0, then U < ∞, and if m = 0, then U ≤ ∞. Let g -1 denote the inverse function for g. Let S be the set of all points of discontinuity of the functions r(•) and F M (•) and all points of non-differentability of the function

F M (•). Assume that S ∩ (m, U) = {s 1 , . . . , s k }, k < ∞, s 1 < • • • < s k , s 0 = m, s k+1 = U and ∞ 0 h(x)dx < ∞, where h(x) = E(g(Y 1 r(x))). Denote F (y) = 1 -F (y).
Note that the conditions concerning the functions r and g are satisfied if r is increasing at most on a finite number of intervals and either g ), and 0 elsewhere. Remark 2.1 From Equation (1), the fact that g(•) is nonnegative and the def-

(x) = ax p , p > 0, a > 0, E(Y p 1 ) < ∞, ∞ 0 (r(x)) p dx < ∞ or E(Y 1 ) < ∞ and g(x) is a Lipschitz function. For example g(x) = ln(x+1), x ≥ 0, r(x) = x for x ∈ [0, 8), r(x) = 1 for x ∈ [8, U
inition of h(•) we get E( ∞ n=1 X * n ) ≤ E( ∞ n=1 g(Y n r(τ n ))) = ∞ n=1 E(h(τ n )) < ∞ and consequently X * ∞ = lim n→∞ X * n = 0 and E(sup(X * n )) < ∞.
Note that m may be interpreted as the time up to which we plan to observe the market and learn, max{M, m} as the time up to which we will actually learn, r as the discount function if it is non-increasing and r(0) = 1, g as the utility function.
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To solve the above problem we need to find a solution of a generalization of the Elfving problem without random starting time.

The generalization of the Elfving problem

Let the above assumptions be satisfied and let our goal be to find sup t∈T EX t (u), where

X n (u) = g(Y n r(u + τ n )), u ≥ 0. We have E(sup n X n (u)) < ∞ and X ∞ (u) = 0. Note that {Z n,u } ∞ n=0 , Z n,u = (Y n , u+τ n ), is a homogeneous Markov chain with respect to {F n } ∞ n=0 , and X n (u) is the function of Z n,u only. More- over, since Y i are i.i.d. random variables, E(ess sup t∈T n+1 E(X t (u) | F n+1 ) | F n ) is a function of u + τ n only, say V (u + τ n ). Moreover, the Markov time σ(u) = inf{n ≥ 0 : X n (u) ≥ V (u + τ n )} is optimal in T , where inf ∅ = +∞. Since X 0 (u) = 0, it follows that σ(u) = inf{n ≥ 1 : X n (u) ≥ V (u + τ n )} and sup t∈T E(X t (u)) = E max{X 0 (u), V (u + τ 0 )} = V (u). From the inequality sup t∈T |E(X t (u 1 )) -E(X t (u 2 ))| ≥ | sup t∈T E(X t (u 1 )) -sup t∈T E(X t (u 2 ))
| and the properties of the functions g and r we deduce that V (•) is continuous (for more details see Appendix A). Set

y(s) = g -1 (V (s)) r(s) for s ∈ [m, U) (2) 
and y(s) = 0 elsewhere. Define f u (v) = P (τ σ(u) > v). Note that f u (•) is continuous. Moreover, the assumptions on r(•), g(•) and the form of σ(u) Chow et al. (1971, pp. 114-115)). Note that f u (v) is differentiable with respect to v in each of the intervals (s i -u, s i+1 -u), i = j + 1, . . . , k, where u ∈ (s jm, s j+1m), j = 0, . . . , k.

ensure that f u (m) = 1. Hence, f u (v) = exp(-u+v u+m F (y(v ′ ))dv ′ ) for m ≤ v < U -u and 0 ≤ u ≤ U -m (see
The optimal mean reward V (u) may be expressed as follows:

V (u) = E(X σ(u) (u)) = E(E(g(Y σ(u) r(u + τ σ(u) )) | τ σ(u) , σ(u))). Note that for τ σ(u) ∈ [m, U -u) and u ∈ [0, U -m) the conditional distri- bution of g(Y σ(u) r(u + τ σ(u) )) given τ σ(u) , σ(u) is the same as the conditional distribution of g(Y σ(u) r(u + τ σ(u) )) given {Y ≥ y(u + τ σ(u)
)}, where Y, τ σ(u) are independent and Y has the distribution function F . Hence, using the formula for f u (v) we obtain for u ∈ (s jm, s j+1m), j = 0, . . . , k,

V (u) = U u+m ∞ y(v) g(xr(v))dF (x) exp - v u+m F (y(v ′ ))dv ′ dv.
(3)
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Equation ( 3) is differentiable with respect to u in each of the intervals (s jm, s j+1m), j = 0, . . . , k, hence for u ∈ (s jm, s j+1m) we have

d du V (u) = F (y(m + u))V (u) - ∞ y(m+u) g(xr(m + u))dF (x). ( 4 
)
Remark 2.2 Equation (4) can be solved by recursion. Note that V (u) = 0 for u ∈ [Um, ∞). Hence, using the boundary condition V (Um) = 0 and the fact that V (u) is continuous, we obtain V (u) for u ∈ (U -2m, Um). In the same way, we can compute

V (u) for u ∈ (max{U -nm, 0}, U -nm + m), n = 3, 4, . . . . Hence, from continuity of V (u), we obtain V (u) for u ∈ [0, ∞).
The proof of the theorem below is based on Chow et al. (1971, pp. 115-118).

Theorem 2.1 (i) A continuous function Ṽ (•) satisfies (3) if and only if Ṽ (•) satisfies (4) and Ṽ (u) → 0 as u → U -m. (ii) If a continuous function Ṽ (•) satisfies (3) on [0, U -m) and Ṽ (•) = 0 elsewhere, then Ṽ (•) = V (•) and σ(u) = inf{n ≥ 1 : X n (u) ≥ Ṽ (u + τ n )}.
Proof. (i) The fact that Ṽ (•) satisfying (3) has to satisfy (4) has been shown above. Moreover, note that the right-hand side of ( 3) is non-negative, exp(-

v u+m F (ỹ(v ′ ))dv ′ ) ≤ 1 and 0 ≤ ∞ ỹ(v) g(xr(v))dF (x) ≤ E(g(Y 1 r(v))) = h(v)
, where ỹ(s) = g -1 ( Ṽ (s))/r(s) for s ∈ [m, U) and ỹ(s) = 0 elsewhere. Hence Ṽ (u) → 0 as u → Um. Now, suppose that a continuous function Ṽ (•) satisfies (4) and Ṽ (u 5) in each of the intervals (s jm, s j+1m), j = 0, . . . , k, we obtain

) → 0 as u → U -m. For u ∈ [0, U -m), define V 1 (•) by V 1 (u) = U u+m ∞ ỹ(v) g(xr(v))dF (x) exp - v u+m F (ỹ(v ′ ))dv ′ dv (5) and V 1 (u) = 0 for u ≥ U -m. Note that V 1 (u) is continuous for u ≥ 0 and V 1 (u) = Ṽ (u) = 0 for u ≥ U -m. We wish to show that V 1 (u) = Ṽ (u) for u ∈ [0, U -m]. Note that V 1 (u) → 0 as u → U -m. Moreover, differentiating ( 
d du V 1 (u) = F (ỹ(m + u))V 1 (u) - ∞ ỹ(m+u) g(xr(m + u))dF (x). ( 6 
) Assume that V 1 (u 0 ) = Ṽ (u 0 ) at some point u 0 ∈ (s k -m, U -m). Let u 1 be the first point after u 0 such that u 1 ∈ (s k -m, U -m) and V 1 (u 1 ) = Ṽ (u 1
). If such a u 1 does not exist we set u 1 = Um. From ( 6) and the assumption that Ṽ (•) satisfies ( 4) we obtain

d(V 1 (u)-Ṽ (u))/du = F (ỹ(m+u))(V 1 (u)-Ṽ (u)). Hence,
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for u ∈ (u 0 , u 1 ) we have ln

|V 1 (u) -Ṽ (u)| = ln |V 1 (u 0 ) -Ṽ (u 0 )| + u u 0 F (ỹ(m + u ′ ))du ′ .
For u → u 1 the left-hand side of the above equation goes to -∞ while the right-hand side is finite. This contradiction showes that

V 1 (u) = Ṽ (u) for u ∈ (s k -m, U -m). From the continuity of the functions V 1 (u) and Ṽ (u) we obtain V 1 (u) = Ṽ (u) for u ∈ [s k -m, U -m]. Now by recursion we conclude that V 1 (u) = Ṽ (u) for u ≥ 0.
(ii) Let u ≥ 0 be fixed. Suppose that there exists a continuous function Ṽ (u+z) such that for u + z ∈ (s jm, s j+1m), z ≥ 0, j = 0, . . . , k,

Ṽ (u + z) = U u+z+m ∞ ỹ(v) g(xr(v))dF (x) exp - v u+z+m F (ỹ(v ′ ))dv ′ dv, (7) 
where ỹ(s) = g -1 ( Ṽ (s))/r(s) for s ∈ [m, U) and ỹ(s) = 0 elsewhere, and

Ṽ (u + z) = 0 for u + z ≥ U. Define σ1 (u + z) = inf{n ≥ 1 : Y n ≥ ỹ(u + z + τ n )}.
Considerations similar to those above show that E(X σ1 (u+z) (u + z)) is equal to the right-hand side of ( 7). Let

H v = σ(N(v ′ ), v ′ ≤ v, Y 1 , . . . , Y N (v) ), where N(v), v ≥ 0, is a homogeneous Poisson process with intensity 1. Then H τn = F n for n ≥ 1, where H τn = {A ∈ F : A ∩ {τ n ≤ v} ∈ H v for all v ≥ 0}.
From the properties of the exponential distribution we see that the conditional joint distribution of (Y

N (v)+1 , τ N (v)+1 ), (Y N (v)+2 , τ N (v)+2 ), . . . given H v is the same as the unconditional joint distribution of (Y 1 , v + τ 1 ), (Y 2 , v + τ 2 ), . . . . Hence, P (X σ(u+z) (u + z) ≤ t, σ(u + z) > N(v) | H v ) = I(σ(u + z) > N(v))P (X σ(u+z+v) (u + z + v) ≤ t).
Therefore, for all u

+ z ∈ [0, U -m), v ∈ [0, U -u -z), z ≥ 0, we have I(σ(u + z) > N(v)) Ṽ (u + z + v) = I(σ(u + z) > N(v))E(X σ(u+z) (u + z) | H v ). Hence, Ṽ (u + z) = E(X σ(u+z) (u + z)) = E(E(X 1 (u + z)I(X 1 (u + z) ≥ Ṽ (u + z + τ 1 )) +X σ(u+z) (u + z)I(X 1 (u + z) < Ṽ (u + z + τ 1 )) | F 1 )) = E(max{X 1 (u + z), Ṽ (u + z + τ 1 )}). Define Γ(y, u + z) = max{g(yr(u + z)), Ṽ (u + z)} for y ∈ [0, ∞), u + z ∈ [0, U -m), z ≥ 0. Then E( Γ(Y 1 , u + z + τ 1 )) = Ṽ (u + z).
Hence, using the facts that the sequences {Y n } and {τ n } are independent and Y i are i.i.d. random variables, we see that

E( Γ(Y n+1 , u + τ n+1 ) | F n ) = Ṽ (u + τ n ). Defining ACCEPTED MANUSCRIPT γn (u) = Γ(Y n , u + τ n ) for n ≥ 1, we get E(γ n+1 (u) | F n ) = Ṽ (u + τ n ). Hence, γn (u) = max{X n (u), E(γ n+1 (u) | F n )}. (8) Let T n = {t ∈ T : t ≥ n}, γ n (u) = ess sup t∈Tn E(X t (u) | F n ) for n ≥ 1, T N n = {t ∈ T n : t ≤ N}, γ N n (u) = ess sup t∈T N n E(X t (u) | F n ) for n = 1, . . . , N, γ ′ n (u) = lim N →∞ γ N n (u) for n ≥ 1. From (8), we have γn (u) ≥ X n (u) and γ∞ (u) = 0, because lim n→∞ Ṽ (u + τ n ) = 0 and X ∞ (u) = 0. Define W (u) = ∞ n=1 X n (u). Then from Remark 2.1 we have E(W (u)) < ∞. Since γn (u) ≤ X n (u) + E( ∞ k=n+1 X k (u) | F n ) for n ≥ 1, we have γn (u) ≤ E(W (u)|F n ).
Therefore, the assumptions of Lemma 4.9 from Chow et al. (1971, p. 79)) are satisfied and γn (u) ≤ γ n (u). Moreover, from Theorem 4.6 of Chow et al. (1971, p. 76) 

(u) = γ n (u) for n ≥ 1. Hence, γn (u) = γ n (u) and Ṽ (u + τ n ) = V (u + τ n ). Moreover, V (u) = max{X 0 (u), E(γ 1 (u) | F 0 )} = E(γ 1 (u)) = E(γ 1 (u)) = Ṽ (u) for u ≥ 0.

Solution of the optimal stopping time problem with random starting time

Note that if I(M ≤ τ n ) = 1, then I(M ≤ τ n+1 ) = 1. Moreover, if I(M ≤ τ n ) = 0, then I(M ≤ τ k ) = 0 for k = n -1, . . . , 0. Hence, {Z * n , F * n } ∞ n=0 , where Z * n = (Y n , τ n , I(M ≤ τ n ))
, is a homogeneous Markov chain and X * n is a function of Z * n only. Therefore, using the fact that the Y i are i.i.d. random variables we deduce that E(ess ) and as a consequence

sup t * ∈T * n+1 E(X * t * | F * n+1 ) | F * n ) is a function of τ n and I(M ≤ τ n ) only, say V * (τ n , I(M ≤ τ n )). Moreover, since X * 0 = 0, the Markov time σ * = inf{n ≥ 1 : X * n ≥ V * (τ n , I(M ≤ τ n ))} is optimal in T * , where inf ∅ = +∞. Note that V * (τ i , I(M ≤ τ i )) > 0 for τ i < U. (9) Hence, {I(M > v) = 1} ∩ {X i ≥ V * (τ i , I(M ≤ τ i ))} ∩ {τ i ≤ v} = ∅ for v ∈ [0, U). Therefore, P (M > v, τ σ * ≤ v) = 0 for v ∈ [0, U). Hence, P (M > v) = P (M > v, τ σ * > v) for v ∈ [0, U
P (τ σ * > v) = P (M > v) + P (τ σ * > v, M ≤ v).
Moreover, note that

P (τ σ * > v) is continuous for v ≥ 0. Define f * (v) = P (τ σ * > v, M ≤ v) for 0 ≤ v < U.
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Note that f * (v) is continuous in each of the intervals (s i , s i+1 ), i = 0, . . . , k. Let v ∈ (s i , s i+1 ) and h > 0 be such that (vh, v + h) ⊆ (s i , s i+1 ). Note that

f * (v + h) = P (τ σ * > v + h, M ≤ v) + P (τ σ * > v + h, M ∈ (v, v + h]).
It is easy to see that

exp(-h)(F M (v + h) -F M (v)) ≤ P (τ σ * > v + h, M ∈ (v, v + h]) ≤ F M (v + h) -F M (v).
To compute

P (τ σ * > v + h, M ≤ v), note that I(M ≤ τ k )V * (τ k , I(M ≤ τ k )) = I(M ≤ τ k )V (τ k ), k = 1, 2, . . . . ( 10 
)
To prove Equation ( 10), we first use the approximation by finite horizon problem (finite number of events in stream (τ n )) and Theorem 3.2 of Chow et al. (1971, pp. 50 and 68) and the properties of I(M ≤ τ k ). Next, we use Theorem 4.3 of Chow et al. (1971, pp. 50 and 68) (for more details see Appendix B). Now, note that from (9) for τ n < U we have

X * n ≥ V * (τ n , I(M ≤ τ n )) iff I(M ≤ τ n ) = 1 and g(Y n r(τ n )) ≥ V * (τ n , I(M ≤ τ n )). Moreover, X * n < V * (τ n , I(M ≤ τ n )) iff I(M ≤ τ n ) = 0 or I(M ≤ τ n ) = 1 and g(Y n r(τ n )) < V * (τ n , I(M ≤ τ n )). Note that if N(v + h) -N(v) = 1, then τ N (v)+1 ∈ (v, v + h].
Hence, using ( 10) and ( 2) we get

exp(-h)f * (v) + h exp(-h)F ( inf x∈(v,v+h] y(x))f * (v) + o(h) ≤ P (τ σ * > v + h, M ≤ v) ≤ exp(-h)f * (v) + h exp(-h)F ( sup x∈(v,v+h] y(x))f * (v) + o(h).

Using the fact that exp(

-h) = 1 -h + o(h) and f * (v) ∈ [0, 1] we obtain lim h→0 + f * (v + h) -f * (v) h = lim h→0 + F M (v + h) -F M (v) h -f * (v) F (y(v)). Moreover, taking f * (v) = f * (v -h + h) we obtain lim h→0 + f * (v-h)-f * (v) -h = lim h→0 + F M (v-h)-F M (v) -h -f * (v) F (y(v)). Since F M (v) is differentiable in each of the intervals (s i , s i+1 ), i = 0, . . . , k, we have lim h→0 F M (v+h)-F M (v) h = F ′ M (v). Therefore, df * (v) dv = F ′ M (v) -f * (v) F (y(v)). (11) 
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Moreover, for each interval (s i , s i+1 ), i = 0, . . . , k, there exists exactly one solution of (11) with boundary condition f * (s i ) = b i , i = 0, ..., k, respectively. Hence, writing

E v t = exp(-v t F (y(x))dx) we have f * (v) = v s i F ′ M (t)E v t dt + b i E v s i . Note that b 0 = f * (m) = P (M ≤ m).
The remaining conditions f * (s i ) = b i , i = 1, . . . , k, are obtained recursively from the continuity of the function

P (τ σ * > v). Let FM (t) = 1 -F M (t). Define w = max{n ≥ 0 : s n ≤ v}. Hence, for v ∈ (m, U) P (τ σ * > v) = FM (v) + v m F ′ M (t)E v t dt + F M (m)E v m + w j=1 P (M = s j )E v s j .
Note that the above function is differentiable in each of the intervals (s i , s i+1 ), i = 0, . . . , k. Since P (M ≤ τ σ * ) = 1, we have sup

t * ∈T * E(X * t * ) = E(X * σ * ) = E(E(g(Y σ * r(τ σ * )) | τ σ * , σ * )).
Moreover, from ( 9) and ( 10), we find that for

τ σ * ∈ [m, U) the conditional distribution of g(Y σ * r(τ σ * )) given τ σ * , σ * is the same as the conditional distri- bution of g(Y r(τ σ * )) given {Y ≥ y(τ σ * )}
, where Y, τ σ * are independent, Y has the distribution function F and y(u) is defined by (2). Hence sup

t * ∈T * E(X * t * ) = U m ∞ y(v) g(xr(v))dF (x) • v m F ′ M (t)E v t dt + F M (m)E v m + w j=1 P (M = s j )E v s j dv. (12) 
Remark 2.3 In case r(m) = 0, the function y(s) is defined by (2) on (m, U) instead of [m, U), but this does not affect the solutions of the problems under consideration. Moreover, we can consider the case m > 0 and U infinite or the problems in which the set S ∩ (m, U) is countable and does not have accumulation points in (m, U) but in this case an effective solution also does not exist.

Proposition 2.1 Suppose that the assumptions of Section 2 are satisfied.

Then

sup t∈T E(X t (0)F M (τ t )) ≤ sup t * ∈T * E(X * t * ) ≤ sup t∈T E(X t (0)).
Proof. Since T ⊂ T * and X * n ≤ X n (0), it follows that sup t∈T E(X * t ) ≤ sup t * ∈T * E(X * t * ) ≤ sup t * ∈T * E(X t * (0)). Moreover, X * n is not measurable with respect to F n , hence for t ∈ T we have E(X * t ) = E(X t (0)F M (τ t )). Since X n (0) is a function of Z n,0 only, sup t * ∈T * E(X t * (0)) = sup t∈T E(X t (0)).
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Let us note that if P (M ≤ m) = 1, then in Proposition 2.1 we have equalities instead of inequalities. In Example 1, we will show that in general the inequalities may be strict.

Stopping time problem with random starting time and random horizon

Suppose that a random variable T , which can be interpreted as a random horizon, has known distribution function F T and is independent of M, Y 's and τ 's. Denote FT (s) = 1 -F T (s). Let T be the set of Markov times adapted to { Fn } ∞ n=0 , where Fn = σ(F * n , I(T > τ 0 ), . . . ,

I(T > τ n )), Tn = { t ∈ T : t ≥ n}, n = 0, 1, . . . . Note that E(sup X * n I(T > τ n )) < ∞.
The theorem below is a generalization of the theorems presented by [START_REF] Samuel-Cahn | Optimal stopping with random horizon with application to the full-information best-choice problem with random freeze[END_REF] and Ferenstein and Krasnosielska (2009b). The idea of the transformation of an optimal stopping time problem with random horizon to an optimal stopping time problem with a modified structure of rewards is based on the paper of [START_REF] Samuel-Cahn | Optimal stopping with random horizon with application to the full-information best-choice problem with random freeze[END_REF].

Theorem 2.2 Let Y 1 , Y 2 , ... be i.i.d. nonnegative random variables independent of the jump times τ 1 , τ 2 , ... of a Poisson process, Y 0 = 0, τ 0 = 0. Let M and T be independent positive random variables independent of the sequences of Y 's and τ 's, with distribution functions F M and F T , respectively. Let g : R + 0 → R + 0 and r : R + 0 → R + 0 be Borel functions,

X * n = g(Y n r(τ n ))I(M ≤ τ n ), E(sup n X * n ) < ∞ and X * ∞ = lim sup n→∞ X * n . Then, for any k ∈ N ∪ {0}, sup t∈ Tk E(X * t I(T > τ t)) = sup t * ∈T * k E(X * t * FT (τ t * )). Proof. Set ξ n = I(M ≤ τ n ), ζ n = I(T > τ n ), Ẑn = (Y n , τ n , ξ n , ζ n ), n = 0, 1, . . . . Note that if ζ n = 1, then ζ k = 1 for k = n -1, . . . , 0. Moreover, if ζ n = 0, then ζ n+1 = 0. Hence, we see that { Ẑn , Fn } ∞ n=0 is a homogeneous Markov chain with the state space E = supp Y 1 × R + 0 × {0, 1} × {0, 1}. Therefore, E(ess sup t∈ Tn+1 E(X * t ζ t | Fn+1 ) | Fn ) is a function of τ n , ξ n and ζ n , say V * (τ n , ξ n , ζ n ). Hence, the Markov time σ * k = inf{n ≥ k : X * n ζ n ≥ V * (τ n , ξ n , ζ n )} is optimal in Tk . Define ϕ(y, s, w, v) = g(yr(s))wv and B = {(y, s, w, v) ∈ E : ϕ(y, s, w, v) ≥ V * (s, w, v)}. Hence σ * k = inf{n ≥ k : (Y n , τ n , ξ n , ζ n ) ∈ B}. Define: B = E \ B, C = {(y, s, w) : (y, s, w, 1) ∈ B}, C = {(y, s, w) : (y, s, w, 1) ∈ B} and R = {(y, s, w, 1) ∈ E}. Note that B ∩ R = C × {1} and B ∩ R = C × {1}. Using the fact that I(ζ n = 1) = I(ζ n = 1) • . . . • I(ζ 0 = 1), we obtain X * σ * k = X * σ * k , where σ * k = inf{n ≥ k : (Y n , τ n , ξ n ) ∈ C} and σ * k ∈ T * k . Since I(T > τ n ) is not measurable with respect to F * n , we have E(X * t * I(T > τ t * )) = E(X * t * FT (τ t * )) for t * ∈ T * .
From the above theorem, we see that to find sup t∈ T E(X * t I(T > τ t)) it is enough to find sup t * ∈T * E(X * t * FT (τ t * )). Without loss of generality we can assume that inf{s : F T (s) = 1} ≥ U and all points of discontinuity of F T (•)
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belong to S. Moreover, we assume that there exist functions ĝ1 and ĝ2 such that |g(yr(x 1 )) FT (x 1 )-g(yr(

x 2 )) FT (x 2 )| ≤ |ĝ 1 (y)ĝ 2 (x 1 , x 2 )| for x 1 , x 2 ≥ 0 and y ∈ supp Y 1 , E|ĝ 1 (Y 1 )| < ∞, ĝ1 (0) = 0 and ∞ 0 |ĝ 2 (x 1 + t, x 2 + t)|dt < ĉ|x 1 -x 2 |
for some constant ĉ ≥ 0. Note that the above conditions are satisfied if E(Y 1 ) < ∞ and g(x) = x and r(x) is non-increasing and continuous for x ≥ 0. Denote Êv t = exp(-v t F (ŷ(x))dx), where ŷ(s) = g -1 ( V (s)/ FT (s))/r(s) for s ∈ (m, U) and ŷ(s) = 0 elsewhere, and V (u) is continuous on [0, ∞) and for u ∈ (s jm, s j+1m), j = 0, ..., k, satisfies P (M = s j ) Êv s j dv.

Game with known starting time and known horizon

In this section we generalize the problem considered in Subsection 2.1 to a multi-person game considered in Ferenstein and Krasnosielska (2009a). In this case m can be interpreted as the time up to which the players have to wait for a permit to run their businesses. In this section we need additionally the following assumptions U < ∞, r(x + y) ≤ r(x)r(y) for x, y ≥ m, g(xy) ≤ g(x)g(y). These assumptions are needed to show that relevant stopping times are finite (see [START_REF] Stadje | An optimal k-stopping problem for the Poisson process[END_REF]). Note that these assumptions are satisfied if g(s) = s p , p > 0, and r(s) = exp(-s). Moreover, assume that there are j > 1 ordered players who sequentially observe offers Y n at times τ n , n = 1, 2, . . . . Players' indices correspond to their ordering, called priorities, so that 1 refers to the player with the highest priority and j to the player with the lowest one.

Each player who has just decided to make a selection at τ n gets the reward X n (0) if and only if he has not obtained any reward before and there is no player with higher priority who has also decided to take the current reward. As soon as the player gets the reward, he quits the game. The remaining players select rewards in the same manner, their priorities remain as previously.

Let V j,l (u) be the optimal mean reward for the game with reward sequence {g(Y n r(u + τ n ))}, u ≥ 0, for player l in the j-person game, where l is the

  (m + u))dF (x) with lim u→U V (u) = 0. Note that V (u) = sup t∈T E(X t (u) FT (u)). Moreover, sup t * ∈T * E(X * t * FT (τ t * )) =

  where I(A) is the indicator function of the event A. Let T and T * be the sets of Markov times adapted to {F n } ∞ n=0 and {F * n } ∞ n=0 , respectively. Write R + 0 = R + ∪ {0}. Our aim is to find sup t * ∈T * EX * t

* , where

  , we conclude that {γ ′ n (u), F n } ∞ n=1 is the minimal supermartingale dominating {X n (u), F n } ∞n=1 and from Theorem 4.4 ofChow et al. (1971, p. 69)), we have γ ′ n
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player's priority, l = 1, . . . , j, j = 1, 2, . . . . Note that V 1,1 (u) = V (u) for u ≥ 0. As in Ferenstein and Krasnosielska (2009a) we find V j,l (u). Denote y l (s) = g -1 (V l,l (s))/r(s) for s ∈ [m, U) and 0 elsewhere, l = 1, . . . , j. Theorem 3.1 (i) V j,l (•) is continuous on [0, ∞) for l = 1, . . . , j.

(ii) V j,l (u) = V l,l (u), for l = 1, . . . , j -1, u ≥ 0. (iii) For u ∈ (s im, s i+1m), i = 0, . . . , k, j > 1, we have d du V j,j (u) = F (y j (u + m))V j,j (u) -V j-1,j-1 (u + m) F (y j-1 (u + m))

-

The above differential equation can be solved numerically with the condition Vj,j (u) → 0 as u → U -m in accordance with the rule presented in Remark 2.2.

Taking u = 0 we obtain the optimal mean rewards for all players in the game with rewards of the form X n (0).

Examples

Let g(s) = s for s ≥ 0 and {Y i } be a sequence of i.i.d. random variables with exponential distribution with mean 1. Then F (y) = exp(-y).

Example 4.1 Let r(u) = 1 for u ∈ [0, 1/2), r(u) = 2/3 for u ∈ [1/2, 2) and r(u) = 0 elsewhere, P (M = 0) = 1/2, P (M = 1) = 1/2. Then m = 0 and U = 2 and lim u→2 y(u) = lim u→2 (V (u)/r(u)) = 0 and Equation ( 12) is equivalent to dy(u)/du =exp(-y(u)) in each of the intervals (0, 1/2), (1/2, 2). Hence, for u ∈ (1/2, 2) and u ∈ (0, 1/2) we obtain y(u) = ln(1+c i -u), c i ∈ R, i = 1, 2, respectively. Using condition y(2) = 0 we get c 1 = 2 and y(u

and using (4), we find that sup t∈T E(X t (0)F M (τ t )) ≈ 0.5856. Hence, in Proposition 2.1 the inequalities cannot be replaced by equalities.

Example 4.2 Let P (M = 0) = 1, P (T = 3) = 1 and r(s) = 1 for s ∈ [1, 3) and r(s) = 0 elsewhere. Hence, m = 1, U = 3 and (4) becomes

for u ∈ (0, 1). Solving this equation numerically with the boundary condition

Note that |V (u)| < ∞ for all u ≥ 0. Now, we will show that for all u 1 ≥ 0 and u 2 ≥ 0 we have:

Note that σ(u 1 ) and σ(u 2 ) are the optimal stopping times for sequences X n (u 1 ) and X n (u 2 ), respectively, that is sup t∈T E(X t (u i )) = E(X σ(u i ) (u i )) for i ∈ {1, 2}. Moreover, without loss of generality, we can assume that
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where the last inequality we obtain from Equation (A2) and definition of supremum. Hence, we conclude that Equation (A1) is satisfied for all nonnegative u 1 and u 2 . Now, we will prove that V (u) is continuous for u ≥ 0. Let u 1 ≥ 0 and u 2 ≥ 0, then

Hence, V (•) satisfies the Lipschitz condition, and consequently it is continuous.

Appendix B. Derivation of Equation ( 10)

Using the property of I(M ≤ τ k ) and Theorem 3.2 from Chow, Robbins and Siegmund, 1971, p. 50, we have And hence, using the fact that γ n is F n -measurable and independent of M, we have for n ≥ k

To complete the proof it is enough to take n = k.