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Abstract

The paper obtains the general form of the cross-covariance function of vector frac-
tional Brownian motion with correlated components having different self-similarity in-
dices.

Keywords: operator self-similar process, vector fractional Brownian motion, cross-

covariance function.

1 Introduction

A p−variate stochastic process X = {X(t) = (X1(t), · · · ,Xp(t)), t ∈ R} is said operator
self-similar (os-s) if there exists a p × p matrix H (called the exponent of X) such that for
any λ > 0,

X(λt) =fdd λHX(t), (1.1)

where =fdd means equality of finite-dimensional distributions, and the p × p matrix λH

is defined by the power series λH = eH log λ =
∑∞

k=0H
k(log λ)k/k!. Os-s processes were

studied in Laha and Rohatgi (1981), Hudson and Mason (1982), Maejima and Hudson
(1984), Sato (1991) and other papers. A Gaussian os-s process with stationary increments
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is called operator fractional Brownian motion (ofBm). For p = 1 the class of ofBm coincides
with fundamental class of fractional Brownian motions (fBm) (see e.g. Samorodnitsky and
Taqqu (1994)). Recall that a fBm with exponent H ∈ (0, 1) can be alternatively defined
as a stochastically continuous Gaussian process X = {X(t), t ∈ R} with zero mean and
covariance

EX(s)X(t) =
σ2

2
(|s|2H + |t|2H − |t − s|2H), t, s ∈ R, (1.2)

where σ2 = EX2(1). The form of covariance of general ofBm seems to be unknown and
may be quite complicated. The structure of ofBm and stochastic integral representations
were studied in Didier and Pipiras (2008).

A particular case of os-s processes corresponds to diagonal matrix H = diag(H1, · · · ,Hp).
In this case, relation (1.1) becomes

(X1(λt), · · · ,Xp(λt)) =fdd (λH1X1(t), · · · , λHpXp(t)). (1.3)

Below, a p−variate process X satisfying (1.3) for any λ > 0 will be called vector self-similar
(vs-s) and a stochastically continuous Gaussian vs-s process with stationary increments (si)
will be called a vector fractional Brownian motion (vfBm).

Vs-s processes (in particularly, vfBm) seem to be most useful for applications and sta-
tistical analysis of multiple time series. They arise as limits of normalized partial sums of
multivariate long memory processes with discrete time, see Marinucci and Robinson (2000),
Davidson and de Jong (2000), Chung (2002), Davidson and Hashimadze (2008), Robinson
(2008), Lavancier et al. (2009). In particularly, vs-s processes appear in the OLS estima-
tion in multiple linear regression model (Chung, 2002), the multiple local Whittle estimation
(Robinson, 2008) and the two-sample testing for comparison of long memory parameters
(Lavancier et al., 2009).

Note from (1.3) that each component Xi = {Xi(t), t ∈ R}, i = 1, · · · , p of vs-s process is
a (scalar) self-similar process, the fact which is not true for general os-s processes.

The present paper obtains the general form of the (cross-)covariance function of vs-s si
process X with finite variance and exponent H = diag(H1, · · · ,Hp), 0 < Hi < 1. According
to Theorem 2.1 below, under some regularity condition, for any i, j = 1, · · · , p, i 6= j with
Hi +Hj 6= 1, there exist cij , cji ∈ R such that for any s, t ∈ R

cov(Xi(s),Xj(t)) =
σiσj

2
{
cij(s)|s|Hi+Hj + cji(t)|t|Hi+Hj − cji(t − s)|t − s|Hi+Hj

}
, (1.4)

where σ2
i := var(Xi(1)) and

cij(t) :=
{
cij , t > 0,
cji, t < 0.

(1.5)

A similar expression (involving additional logarithmic terms) for the covariance cov(Xi(s),
Xj(t)) is obtained in the case Hi + Hj = 1. We prove Theorem 2.1 by deriving from vs-
s si property a functional equation for the cross-covariance of the type studied in Aczél
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(1966) and Aczél and Hosszú (1965) and using the result of the last paper (Theorem 2.2
below) about the uniqueness of this equation. Section 3 discusses the existence of vfBm
with covariance as in (1.4). We start with a double sided stochastic integral representation
similar to Didier and Pipiras (2008):

X(t) =
∫

R

{(
(t − x)H−.5

+ − (−x)H−.5
+

)
A+ +

(
(t − x)H−.5

− − (−x)H−.5
−

)
A−

}
W (dx),

(1.6)
where H − .5 := diag(H1 − .5, · · · ,Hp − .5), x+ := max(x, 0), x− := max(−x, 0), A+, A−
are real p × p matrices and W (dx) = (W1(dx), · · · ,Wp(dx)) is a Gaussian white noise with
zero mean, independent components and covariance EWi(dx)Wj(dx) = δijdx. According
to Proposition 3.1, if 0 < Hi < 1,Hi +Hj 6= 1, i, j = 1, · · · , p then the cross-covariance of
X in (1.6) has the form as in (1.4) with

cij = 2c̃ijφij/σiσj, φij := B(Hi + .5,Hj + .5)/ sin((Hi +Hj)π), (1.7)

where the matrix C̃ = (c̃ij) is given by

C̃ := cos(Hπ)A+A
∗
+ +A−A

∗
− cos(Hπ) (1.8)

− sin(Hπ)A+A
∗
− cos(Hπ) − cos(Hπ)A+A

∗
− sin(Hπ).

Here and below, A∗ denotes the transposed matrix, sin(Hπ) := diag(sin(H1π), · · · , sin(Hpπ)),
cos(Hπ) := diag(cos(H1π), · · · , cos(Hpπ)).

2 The form of the covariance function of vs-s process

Recall that a random process X = {X(t), t ∈ R} has stationary increments (si) if {X(t+T )
−X(T ), t ∈ R} =fdd {X(t) − X(0), t ∈ R} for any T ∈ R.

Theorem 2.1 Let X = {X(t), t ∈ R} be a 2nd order process with values in Rp. Assume
that X has stationary increments, zero mean, X(0) = 0, and that X is vector self-similar
with exponent H = diag(H1, · · · ,Hp), 0 < Hi < 1 (i = 1, · · · , p).

Moreover, assume also that for any i, j = 1, · · · , p, the function t 7→ EXi(t)Xj(1) is
continuously differentiable on (0, 1) ∪ (1,∞). Let σ2

i > 0 denote the variance of Xi(1), i =
1, · · · , p.
(i) If i = j, then for any (s, t) ∈ R2, we have

EXi(s)Xi(t) =
σ2

i

2
{

|s|2Hi + |t|2Hi − |t − s|2Hi
}
. (2.1)

(ii) If i 6= j and Hi + Hj 6= 1, then there exists cij , cji ∈ R such that for any (s, t) ∈ R2,
(1.4) holds.

3
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(iii) If i 6= j and Hi +Hj = 1, then there exists dij , fij ∈ R such that for any (s, t) ∈ R2,
we have

EXi(s)Xj(t) =
σiσj

2
{dij(|s| + |t| − |s − t|) + fij(t log |t| − s log |s| − (t − s) log |t − s|)} .

(2.2)
(iv) The matrix R = (Rij)i,j=1,· · ·,p is positive definite, where

Rij :=





1, i = j,
cij + cji, i 6= j, Hi +Hj 6= 1,
dij , i 6= j, Hi +Hj = 1.

Proof. (i) Follows from the well-known characterization of covariance of (scalar-valued)
self-similar stationary increment process.

(ii)-(iii) From part (i), it follows that E(Xi(t) −Xi(s))2 = σ2
i |t− s|2Hi and hence {Xi(t), t ∈

R} is stochastically continuous on the real line, for any i = 1, · · · , p. Whence, it follows
that EXi(s)Xj(t) is jointly continuous on R2 and vanishes for t = 0 or s = 0, for any
i, j = 1, · · · , p.

Denote r(s, t) := EXi(s)Xj(t), H := 1
2 (Hi +Hj). Let R+ := {u : u > 0}, R− := {u : u <

0}. From vs-s and si properties we obtain

r(λs, λt) = λ2Hr(s, t), (2.3)

r(s, t) = r(s+ T, t+ T ) − r(s+ T, T ) − r(T, t+ T ) + r(T, T ) (2.4)

for any reals s, t, T and any λ > 0. Substituting s = t = u, λ = 1/|u| into (2.3) one obtains

r(u, u) = 2κ± |u|2H , u ∈ R±, 2κ± := r(±1,±1). (2.5)

Substituting s = t = −1, T = 1 into (2.4) and using r(0, 0) = r(1, 0) = r(0, 1) = 0 yields
r(−1,−1) = r(1, 1). Next, substituting T = u, s = t = v − u into (2.4) and using (2.5) with
κ := κ+ = κ− one obtains

r(u, v) + r(v, u) = r(v, v) + r(u, u) − r(v − u, v − u)

= 2κ(|v|2H + |u|2H − |u − v|2H) (u, v ∈ R). (2.6)

Next, let
g±(t) := r(±1, t) (t ∈ R).

Then (2.3) implies

r(s, t) = |s|2Hg±(±t/s) (s ∈ R±, t ∈ R). (2.7)

Equation (2.4) with s = 1 and (2.7) yield, for all t ∈ R

g+(t) = (T + 1)2Hg+

(
T + t

T + 1

)
− T 2Hg+

(
T + t

T

)

− (T + 1)2Hg+

(
T

T + 1

)
+ T 2Hg+(1) (T > 0), (2.8)

4
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and for all t ∈ R, equation (2.4) with s = −1 and (2.7) yield

g−(t) = (T − 1)2Hg+

(
T + t

T − 1

)
− T 2Hg+

(
T + t

T

)

− (T − 1)2Hg+

(
T

T − 1

)
+ T 2Hg+(1) (T > 1). (2.9)

We claim that the general solution of functional equations (2.8)-(2.9) has the form:

• When H 6= 1/2,

g+(t) =





c′ + c′ |t|2H − c′ |1 − t|2H , t < 0,
c′ + c|t|2H − c′ |1 − t|2H , 0 < t < 1,
c′ + c|t|2H − c|1 − t|2H , t > 1,

, (2.10)

g−(t) =





c+ c′ |t|2H − c′ |t+ 1|2H , t < −1,
c+ c′ |t|2H − c|t+ 1|2H , −1 < t < 0,
c+ c|t|2H − c|t+ 1|2H , t > 0;

(2.11)

• When H = 1/2,

g+(t) =
{
f (t log |t| − (t − 1) log |t − 1|) , t < 0,
d (1 ∧ t) + f (t log |t| − (t − 1) log |t − 1|) , t > 0,

, (2.12)

g−(t) =
{
d (1 ∧ |t|) + f (t log |t| − (t+ 1) log |t+ 1|) , t < 0,
f (t log |t| − (t+ 1) log |t+ 1|) , t > 0,

(2.13)

with some c, c′, d, f ∈ R.
It follows from (2.10)-(2.13) and (2.7) that the covariance r(s, t) = EXi(s)Xj(t) for

(s, t) ∈ R2 has the form as in (1.4), (2.2), with cij = 2c/σiσj, cji = 2c′/σiσj in the case
2H = Hi +Hj 6= 1, and dij = 2d/σiσj , fij = 2f/σiσj in the case 2H = Hi +Hj = 1.

To show the above claim, note, by direct verification, that (2.10)-(2.13) solve equations
(2.8)-(2.9). Therefore it suffices to show that (2.10)-(2.13) is a unique solution of (2.8)-(2.9).

Let t > 1. Differentiating (2.8) with respect to t leads to

g′
+(t) = (T + 1)2H−1g′

+

( T + t

T + 1

)
− T 2H−1g′

+

(T + t

T

)
. (2.14)

Let x := t, y := (T + t)/T . Then (x, y) ∈ (1,∞)2 and the mapping (t, T ) 7→ (x, y) :
(1,∞) × (0,∞) → (1,∞)2 is a bijection. Equation (2.14) can be rewritten as

g′
+(F (x, y)) =

( y − 1
x+ y − 1

)2H−1
g′
+(x) +

( x

x+ y − 1

)2H−1
g′
+(y), (2.15)

where
F (x, y) :=

xy

x+ y − 1
. (2.16)

Equation (2.15) belongs to the class of functional equations treated in Aczél (1966) and
Aczél and Hosszú (1965). For reader’s convenience, we present the result from Aczél (1966)
which will be used below.

5
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Theorem 2.2 (Aczél and Hosszú (1965)) There exists at most one continuous function f

satisfying the functional equation

f(F (x, y)) = L(f(x), f(y), x, y) (2.17)

for all x, y ∈ 〈A,B〉 and the initial conditions

f(a1) = b1, f(a2) = b2 (a1, a2 ∈ 〈A,B〉, a1 6= a2)

if F is continuous in 〈A,B〉 × 〈A,B〉, L(u, v, x, y) is strictly monotonic in u or v and F is
intern (i.e., F (x, y) ∈ (x, y) for all x 6= y ∈ 〈A,B〉), where 〈A,B〉 is a closed, half-closed,
open, finite or infinite interval.

Unfortunately, equation (2.15) does not satisfy the conditions of Theorem 2.2 (with f =
g+ and 〈A,B〉 = (1,∞)), since F in (2.16) is not intern. Following Aczél and Hosszú (1965),
we first apply some transformations of (2.15) so that Theorem 2.2 can be used.

Note, taking T = t/(t − 1) in (2.14) one obtains

g′
+(t) = K(t)g′

+

( t2

2t − 1

)
, (2.18)

where

K(t) :=
(2t − 1)2H−1

t2H−1 + (t − 1)2H−1
. (2.19)

Let F̃ (x) := F (x, x) = x2

2x−1 . Then F̃ is strictly increasing from (1,∞) onto (1,∞). Let

G(x, y) := F̃−1(F (x, y)) =
xy +

√
x(x − 1)y(y − 1)
x+ y − 1

, (2.20)

with F̃−1(y) = y +
√
y(y − 1). Note F (x, y) > 1, G(x, y) > 1 for (x, y) ∈ (1,∞)2. From

(2.18) with t = G(x, y) one obtains

g′
+(G(x, y)) = g′

+(F (x, y))K(G(x, y)). (2.21)

Combining (2.15) and (2.21) one gets

g′
+(G(x, y)) = L(g′

+(x), g′
+(y), x, y), (2.22)

where

L(u, v, x, y) :=
(( y − 1

x+ y − 1

)2H−1
u+

( x

x+ y − 1

)2H−1
v

)
K(G(x, y)). (2.23)

The fact that G in (2.20) is intern follows from its definition and monotonicity in x and y,
implying

x = G(x, x) ≤ G(x, y) ≤ G(y, y) = y

6
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for any x ≤ y, x, y ∈ (1,∞). Since L is monotonic in u or v, so Theorem 2.2 applies to
functional equation (2.22) and therefore this equation has a unique continuous solution g′

+

on the interval (1,∞), given boundary conditions g′
+(ai) = bi (i = 1, 2), 1 < a2 < a1 < ∞.

Form of g+ on [1,+∞) :

• Assume H 6= 1/2. Let a1 := 2, b1 := cH(22H − 2). In view of (2.18), the other
boundary condition can be defined by a2 = a2

1/(2a1 − 1) = 4/3, b2 := g′
+(2)/K(2) and

so equations (2.22) and (2.14) have a unique solution for single boundary condition
g′
+(2) = cH(22H − 2). (See also Aczél and Hosszú (1965, p.51).) Since g′

+(t) =
2Hc(t2H−1 − (t − 1)2H−1) is a solution of (2.14) with this boundary condition, it
follows that this solution is unique. Hence it also follows that

g+(t) = c′ + ct2H − c(t − 1)2H t ∈ [1,∞), (2.24)

for some c′ ∈ R.

• When H = 1/2. A particular solution of (2.14) when t > 1 is log(t) − log(t − 1). For
the same reason as above, the general solution of (2.14) is thus d′(log(t) − log(t − 1))
where d′ ∈ R. It follows that

g+(t) = d+ d′(t log t − (t − 1) log(t − 1)) t ∈ [1,∞), (2.25)

for some d, d′ ∈ R.

Form of g+ on (0, 1) :
Putting t = 1 in (2.8) results in

(T + 1)2Hg+

( T

T + 1

)
+ T 2Hg+

(T + 1
T

)
= g+(1)[(T + 1)2H + T 2H − 1].

Whence, for s := T/(T + 1) ∈ (0, 1) and using (2.24) one obtains

g+(s) = −s2Hg+(1/s) + g+(1)[1 + s2H − (1 − s)2H ].

(2.26)

This gives, for s ∈ (0, 1),

• when H 6= 1/2, g+(s) = c′ + cs2H − c′(1 − s)2H ,

• when H = 1/2, g+(s) = ds+ d′(s log s − (s − 1) log(s − 1)).

Therefore, relations (2.10) and (2.12) have been proved when t > 0.

Form of g+ on (− ∞, 0) : This case follows from (2.8) taking T = −t.

7
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Form of g− : The relations (2.11) and (2.13) are deduced from (2.10) and (2.12) thanks
to relation (2.9).

(iv) Follows from the fact that R is the covariance matrix of random vector (X1(1)/σ1,

· · · ,Xp(1)/σp).
Theorem 2.1 is proved.

3 Stochastic integral representation of vfBm

In this section we derive the covariance function of vfBm X = {X(t), t ∈ R} given by
double-sided stochastic integral representation in (1.6). Denote

α++
ij :=

p∑

k=1

a+
ika

+
jk, α− −

ij :=
p∑

k=1

a−
ika

−
jk, α+−

ij :=
p∑

k=1

a+
ika

−
jk, α−+

ij :=
p∑

k=1

a−
ika

+
jk,

where A+ =
(
a+

ij

)
, A− =

(
a−

ij

)
are the p × p matrices in (1.6). Clearly,

A+A
∗
+ =

(
α++

ij

)
, A−A

∗
− =

(
α− −

ij

)
, A+A

∗
− =

(
α+−

ij

)
, A−A

∗
+ =

(
α−+

ij

)
.

Note, each of the processes Xi = {Xi(t), t ∈ R} in (1.6) is a well-defined fractional Brownian
motion with index Hi ∈ (0, 1); see e.g. Samorodnitsky and Taqqu (1994).

Proposition 3.1 The covariance of the process defined in (1.6) satisfies the following prop-
erties

(i) For any i = 1, · · · , p the variance of Xi(1) is

σ2
i =

B(Hi + .5,Hi + .5)
sin(Hiπ)

{
α++

ii + α− −
ii − 2 sin(Hiπ)α+−

ii

}
. (3.1)

(ii) If Hi +Hj 6= 1 then for any s, t ∈ R, the cross-covariance EXi(s)Xj(t) of the process
in (1.6) is given by (1.4), with

σiσj

2
cij :=

B(Hi + .5,Hj + .5)
sin((Hi +Hj)π)

×
{
α++

ij cos(Hiπ) + α− −
ij cos(Hjπ) − α+−

ij sin((Hi +Hj)π)
}
. (3.2)

(iii) If Hi +Hj = 1 then for any s, t ∈ R, the cross-covariance EXi(s)Xj(t) of the process
in (1.6) is given by (2.2), with

σiσjdij := B(Hi + .5,Hj + .5)

×
{

sin(Hiπ) + sin(Hjπ)
2

(α++
ij + α− −

ij ) − α+−
ij − α−+

ij

}
, (3.3)

σiσjfij := (Hj − Hi)(α++
ij − α− −

ij ). (3.4)

8
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Remark 3.2 Let Hi +Hj 6= 1, i, j = 1, · · · , p and let c̃ij , φij be defined as in (1.7).
¿From Proposition 3.1 (3.1), (3.2) it follows that the matrix C̃ = (c̃ij) satisfies (1.8). In

this context, a natural question arises to find easily verifiable conditions on the matrices C̃
and H such that there exist matrices A+, A− satisfying the quadratic matrix equation in
(1.8). In other words, for which C̃ and H there exists a vfBm X with cross-covariance as
in (1.4)?

While the last question does not seem easy, it becomes much simpler if we restrict the
class of vfBm’s X in (1.6) to causal representations with A− = 0. In this case, equation
(1.8) becomes

C̃ = cos(H)A+A
∗
+.

Clearly, the last factorization is possible if and only if the matrix cos(H)−1C̃ is symmetric
and positive definite.

Proof. For all s, let

I+
ik(s) :=

∫

R

(
(s − x)Hi−.5

+ − (−x)Hi −.5
+

)
Wk(dx),

I−
ik(s) :=

∫

R

(
(s − x)Hi−.5

− − (−x)Hi −.5
−

)
Wk(dx).

Using the above notation, Xi(s) =
∑p

k=1

(
a+

ikI
+
ik(s) + a−

ikI
−
ik(s)

)
and

EXi(s)Xj(t) = α++
ij EI+

i1(s)I
+
j1(t) + α+−

ij EI+
i1(s)I

−
j1(t) (3.5)

+ α−+
ij EI−

i1(s)I
+
j1(t) + α− −

ij EI−
i1(s)I

−
j1(t).

Let Hi +Hj 6= 1. From Stoev and Taqqu (2006, Th. 4.1), taking there a+ = 1, a− = 0,
H(s) = Hi and H(t) = Hj, we obtain

EI+
i1(s)I

+
j1(t) = ψH

[
cos

(
(Hj − Hi)

π

2
− (Hi +Hj)π

2
sign(s)

)
|s|Hi+Hj

+ cos
(
(Hj − Hi)

π

2
+

(Hi +Hj)π
2

sign(t)
)

|t|Hi+Hj

− cos
(
(Hj − Hi)

π

2
− (Hi +Hj)π

2
sign(s − t)

)
|s − t|Hi+Hj

]
,

where

ψH :=
Γ(Hi + .5)Γ(Hj + .5)Γ(2 − Hi − Hj)

π(Hi +Hj)(1 − Hi − Hj)
=

B(Hi + .5,Hj + .5)
sin((Hi +Hj)π)

.

Therefore,

EI+
i1(s)I

+
j1(t) =

B(Hi + .5,Hj + .5)
sin((Hi +Hj)π)

[
bij(s)|s|Hi+Hj + bji(t)|t|Hi+Hj − bij(s − t)|s − t|Hi+Hj

]
,

9
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where

bij(s) =
{

cos(Hiπ), if s > 0
cos(Hjπ), if s < 0.

Similarly, taking a+ = 0, a− = 1, H(s) = Hi and H(t) = Hj in Stoev and Taqqu (2006,
Th. 4.1), we obtain

EI−
i1(s)I

−
j1(t) =

B(Hi + .5,Hj + .5)
sin((Hi +Hj)π)

[
bji(s)|s|Hi+Hj + bij(t)|t|Hi+Hj − bji(s − t)|s − t|Hi+Hj

]
.

Finally,

EI+
i1(s)I

−
j1(t) =

(
1{s>t}

∫ s

t
(s − x)Hi−.5(x − t)Hj −.5dx − 1{s>0}

∫ s

0
(s − x)Hi−.5xHj −.5dx

−1{t<0}

∫ 0

t
(−x)Hi−.5(x − t)Hj −.5dx

)

= B(Hi + .5,Hj + .5)
(
(s − t)Hi+Hj

+ − s
Hi+Hj

+ − t
Hi+Hj

−
)

(3.6)

and

EI−
i1(s)I

+
j1(t) = B(Hi + .5,Hj + .5)

(
(t − s)Hi+Hj

+ − t
Hi+Hj

+ − s
Hi+Hj

−
)
. (3.7)

Substituting these formulas into (3.5) we obtain (3.2) and (3.1).

Next, let Hi +Hj = 1. We get similarly from Theorem 4.1 of Stoev and Taqqu (2006)

EI+
i1(s)I

+
j1(t) =

1
π
B(Hi + .5,Hj + .5)

[
π

2
sin(Hiπ)(|s| + |t| − |s − t|)

− cos(Hiπ)(s log |s| − t log |t| − (s − t) log |s − t|)
]

and

EI−
i1(s)I

−
j1(t) =

1
π
B(Hi + .5,Hj + .5)

[
π

2
sin(Hiπ)(|s| + |t| − |s − t|)

+ cos(Hiπ)(s log |s| − t log |t| − (s − t) log |s − t|)
]
.

Expressions (3.6) and (3.7) remain true when Hi +Hj = 1 and they can be rewritten as

EI+
i1(s)I

−
j1(t) = EI−

i1(s)I
+
j1(t) = − 1

2
B(Hi + .5,Hj + .5)(|s| + |t| − |s − t|).

Therefore, using (3.5), we obtain (3.3) and (3.4). Proposition 3.1 is proved.
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