

EMERGENCE OF A NEW GENETIC LINEAGE OF NEWCASTLE DISEASE VIRUS IN WEST AND CENTRAL AFRICA - IMPLICATIONS FOR DIAGNOSIS AND CONTROL

G. Cattoli, A. Fusaro, I. Monne, S. Molia, A. Le Menach, B. Maregeya, A. Nchare, I. Bangana, A. Garba Maina, Koffi J.-N. N'Goran, et al.

▶ To cite this version:

G. Cattoli, A. Fusaro, I. Monne, S. Molia, A. Le Menach, et al.. EMERGENCE OF A NEW GENETIC LINEAGE OF NEWCASTLE DISEASE VIRUS IN WEST AND CENTRAL AFRICA - IMPLICATIONS FOR DIAGNOSIS AND CONTROL. Veterinary Microbiology, 2010, 142 (3-4), pp.168. 10.1016/j.vetmic.2009.09.063. hal-00587277

HAL Id: hal-00587277

https://hal.science/hal-00587277

Submitted on 20 Apr 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: EMERGENCE OF A NEW GENETIC LINEAGE OF NEWCASTLE DISEASE VIRUS IN WEST AND CENTRAL AFRICA – IMPLICATIONS FOR DIAGNOSIS AND CONTROL

Authors: G. Cattoli, A. Fusaro, I. Monne, S. Molia, A. Le Menach, B. Maregeya, A. Nchare, I. Bangana, A. Garba Maina, Koffi J.-N. N'Goran, H. Thiam, O.E.M.A. Bezeid, A. Salviato, R. Nisi, C. Terregino, I. Capua

PII: S0378-1135(09)00499-4

DOI: doi:10.1016/j.vetmic.2009.09.063

Reference: VETMIC 4623

To appear in: *VETMIC*

Received date: 22-4-2009 Revised date: 24-8-2009 Accepted date: 16-9-2009

Please cite this article as: Cattoli, G., Fusaro, A., Monne, I., Molia, S., Le Menach, A., Maregeya, B., Nchare, A., Bangana, I., Maina, A.G., N'Goran, K.J.-N., Thiam, H., Bezeid, O.E.M.A., Salviato, A., Nisi, R., Terregino, C., Capua, I., EMERGENCE OF A NEW GENETIC LINEAGE OF NEWCASTLE DISEASE VIRUS IN WEST AND CENTRAL AFRICA – IMPLICATIONS FOR DIAGNOSIS AND CONTROL, *Veterinary Microbiology* (2008), doi:10.1016/j.vetmic.2009.09.063

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- 1 EMERGENCE OF A NEW GENETIC LINEAGE OF NEWCASTLE DISEASE VIRUS IN
- 2 WEST AND CENTRAL AFRICA IMPLICATIONS FOR DIAGNOSIS AND CONTROL

3

- 4 Cattoli G^{1*}, Fusaro A¹, Monne I¹, Molia S², Le Menach A³, Maregeya B⁴, Nchare A⁵, Bangana I⁶,
- 5 Garba Maina A⁷, N'Goran Koffi J-N⁸, Thiam H⁹, Bezeid O E M A¹⁰, Salviato A¹, Nisi R¹, Terregino
- 6 C¹, Capua I¹

7

- 8 Affiliations
- 9 1 OIE/FAO Reference Laboratory for avian influenza and Newcastle disease, Istituto
- 10 Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (PD), Italy.
- 11 2. CIRAD, UPR AGIRs, BP1813, Bamako, Mali.
- 12 3. Food and Agriculture Organisation (FAO), AGAH Division, Viale delle Terme di Caracalla,
- 13 Rome, Italy.
- 4. Food and Agriculture Organisation (FAO) Burundi, Avenue du Peuple Murundi, Bujumbura-
- 15 Burundi.
- 5. Ministère de l'Elevage, des Pêches et des Industries/DSV, BP 2228 Yaoundé, Cameroun.
- 17 6. Direction de la Santé Animale / Ministère des Ressources Animales, B.P 12091 Niamey, Niger.
- 18 7. ECTAD Unit, Food and Agriculture Organisation (FAO), United Nations House, Central Area
- 19 District, Abuja, Nigeria.
- 20 8. Label Ivoire Elevage (LIVEL), 06 BP 117 Abidjan 06, Côte d'Ivoire.
- 9. Consultant, 01 BP 2266 Ouagadougou 01, Burkina Faso.
- 22 10. Centre National d'Elevage et de Recherche Vétérinaires (CNERV), BP 167, Nouakchott, Islamic
- 23 Republic of Mauritania

- 25 *Corresponding author:
- 26 Giovanni Cattoli

- 27 OIE/FAO Reference Laboratory for avian influenza and Newcastle disease,
- 28 Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10,
- 29 35020 Legnaro (PD), Italy. Tel +39 0498084389 Fax +39 0498084360
- 30 gcattoli@izsvenezie.it

Abstract

Newcastle disease (ND) is an OIE listed disease caused by virulent avian paramyxovirus type 1
(APMV-1) strains, which affect many species of birds and may cause severe economic losses in the
poultry sector. The disease has been officially and unofficially reported in many African countries
and still remains the main poultry disease in commercial and rural chickens of Africa.
Unfortunately, virological and epidemiological information concerning ND strains circulating in the
Western and Central regions of Africa is extremely scarce. In the present study, sequence analysis,
pathotyping and detailed genetic characterization of virulent ND strains detected in rural poultry in
West and Central Africa revealed the circulation of a new genetic lineage, distinguishable from the
lineages described in the Eastern and Southern parts of the continent. Several mismatches were
observed in the segment of the matrix gene targeted by the primers and probe designed for the
molecular detection of APMV-1, which were responsible for the false negative results in the
diagnostic test conducted. Furthermore, deduced amino acid sequences of the two major antigens
eliciting a protective immune response (F and HN glycoprotein) revealed protein similarities < 90%
if compared to some common vaccine strains. Distinct mutations located in the neutralizing
epitopes were revealed, indicating the need for detailed assessment of the efficacy of the current
vaccines and vaccination practices in Africa. The present investigation provides important
information on the epidemiology, diagnosis and control of NDV in Africa and highlights the
importance of supporting surveillance in developing countries for transboundary animal diseases.

51 Key words: Newcastle Disease, poultry, Africa, genetic characterization

Intr		

53	Newcastle disease (ND) is a viral disease affecting many species of birds and causing severe
54	economic losses in the poultry sector. The aetiological agent is a single stranded, non-segmented,
55	negative-sense RNA virus belonging to the order Mononegavirales, family Paramyxoviridae,
56	subfamily Paramyxovirinae, genus Avulavirus (Lamb et al., 2005). This genus contains the 9
57	serogroups of avian paramyxoviruses (APMV-1 to -9) described so far. According to their virulence
58	in poultry, APMV-1 isolates can be classified as lentogenic, mesogenic or velogenic (i.e. of low,
59	moderate or high virulence for poultry, respectively). In the present paper the term ND virus (NDV)
50	refers to the virulent APMV-1 strains that cause ND.
51	The virulence of an APMV-1 isolate can be determined in the laboratory by an in vivo test
52	performed by the experimental inoculation of SPF day-old chicks with the isolate (intracerebral
53	pathogenicity index, ICPI) or it can be predicted molecularly by the analysis of the amino acid
54	sequence at the cleavage site of the fusion glycoprotein (F protein) (Alexander, 2009). Both these
65	methods are officially recognized for APMV-1 pathotyping by the World Organisation for Animal
56	Health – OIE - (OIE, 2008). The ICPI is considered the most sensitive "in vivo" test (Terregino &
67	Capua, 2009) and an index value of 0.7 or greater classifies the isolate as virulent (i.e. velogenic or
58	mesogenic) thus, confirming a diagnosis of ND in the infected hosts. Alternatively, the virulence of
59	ND strains can be assessed by the determination of the presence or not of multiple basic amino
70	acids (e.g. lysine – K; or arginine – R) located at the C-terminus of the F1 protein and phenylalanine
71	(F) at the N-terminus of the F2 protein, which correspond to the cleavage site of the precursor F0
72	glycoprotein (positions 112 to 117) (OIE, 2008).
73	In addition to the gene encoding the structural glycoprotein F, the APMV-1 genome of about 15 kb
74	is composed of 5 other genes encoding 5 structural proteins (nucleoprotein, NP; matrix protein, M;
75	phosphoprotein, P; RNA polymerase, L and haemagglutin-neuraminidase, HN). Two additional
76	proteins are encoded by the RNA editing of the P protein, namely proteins V and W. The
77	cleavability of protein F is certainly the main determinant for viral virulence, but other proteins such

/8	as HN and V are also believed to influence pathogenicity (Huang et al., 2004; de Leeuw et al.,
79	2005; Mebatsion et al., 2001).
80	As for many other RNA viruses, genetic variability of APMV-1 is significant. Recent analyses have
81	revealed the existence of two main distinct genetic clades, termed class I and II (Czeglédi et al.,
82	2 2006). Class I includes almost exclusively low virulence strains recovered from live bird markets in
83	US or wild waterfowl worldwide. Class II is comprised of the vast majority of viruses of high and
84	low virulence isolated from poultry and wild birds (Czeglédi et al., 2006; Kim et al., 2007).
85	Restriction enzyme and partial sequence analysis of the gene encoding for the F protein (F gene)
86	classified class II APMV-1 isolates in eight main distinct groups (I to VIII) with several sublineages
87	within them (Herczeg et al., 1999). In another study, based on the partial F gene sequence of a large
88	number of APMV-1 collected worldwide (Aldous et al., 2003), the viruses were grouped in 6
89	distinct genetic lineages (1 to 6) with several sublineages within them. The majority of the NDV
90	isolates responsible of the recent outbreaks in Europe, Asia and Southern Africa are placed in
91	lineages 3, 4 and 5 (Alexander et al., 1999; Herczeg et al., 1999; Herczeg et al., 2001; Cattoli et al.,
92	2 2001; Aldous et al 2003; Abolnik et al., 2004). As an OIE listed disease the notification of ND
93	outbreaks by the OIE member countries is mandatory. APMV-1 is distributed worldwide and ND
94	outbreaks have been notified regularly in all continents since the first description of the disease in
95	1926 (Alexander, 2009). In Africa, outbreaks in poultry caused by NDV have been described in the
96	Eastern and Southern part of the continent (Herczeg et al., 1999; Otim et al., 2004; Abolnick et al.
97	2004). The disease has been officially and unofficially reported in other parts of Africa and
98	according to the United Nations-Food and Agricultural Organization (UN-FAO), ND still remains
99	the main poultry disease in commercial and rural chickens of West Africa (Bebay, 2006).
100	Unfortunately, virological and epidemiological information concerning ND strains circulating in the
101	Western and Central regions of Africa is extremely scarce and while historically ND has been
102	reported to be widespread (Lancaster & Alexander, 1975) in recent years there has been only a
103	single report (Snoeck et al., 2009). In that investigation, NDVs were detected by PCR in non-

104	commercial farms in Niger, Nigeria and Burkina Faso but viral isolates were not obtained. For this
105	reason, characterization of the detected ND was restricted to the sequence analysis of partial F gene
106	sequences. The authors suggested that NDVs responsible for the outbreaks in the three countries
107	were phylogenetically distinguishable from NDVs circulating in Eastern and Southern Africa and
108	were tentatively grouped in new sublineages within lineage 5, namely 5e, 5f and 5h (Snoeck et al.,
109	2009).
110	In the present investigation we perform a full molecular characterization of ND viruses causing ND
111	outbreaks in poultry in 7 Western and Central African countries. We also discuss the diagnostic
112	implications of the genetic variability detected.
113	Materials and methods
114	Samples included in this study
115	Virological investigations using real time RT-PCR (rRT-PCR) for APMV-1 and virus isolation (VI)
116	attempts were performed on 50 samples collected from rural chickens in Nigeria, Niger, Ivory
117	Coast, Burkina Faso, Mauritania, Cameroon and Burundi between 2006 and 2008. Samples
118	consisted of internal organs (such as trachea, lungs and intestines) and swabs (cloacal and tracheal)
119	collected during surveillance programs (3,614 samples) or in cases of suspected disease (387
120	samples) and submitted to the OIE/FAO Reference Laboratory for Newcastle disease and Avian
121	Influenza at the Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe) in Italy within the
122	framework of diagnostic activities and international collaboration projects to support developing
123	countries.
124	Laboratory testing
125	For molecular testing, viral RNA was extracted from the samples using the Nucleospin RNA II Kit
126	(Machery-Nagel, Duren, Germany) and the detection of APMV-1 RNA was performed using a
127	rRT-PCR protocol targeting the M gene (Wise et al, 2004). For virus isolation (VI), samples were
128	prepared and inoculated in SPF embryonated chicken eggs according to the international regulations
129	(OIE, 2008). The allantoic fluid of eggs showing embryo mortality was collected and tested for

130	haemagglutinating activity. Haemagglutinating agents were identified by means of
131	haemagglutination inhibition (HI) tests using standard protocols (OIE, 2008). The virulence of the
132	APMV-1 isolates for chickens was assessed by intracerebral pathogenicity index (ICPI) tests in
133	day-old SPF chickens and by genetic sequencing of the fusion protein cleavage site (Terregino &
134	Capua, 2009).
135	Nucleotide sequencing and genetic pathotyping
136	Viral RNA was extracted from the allantoic fluid of APMV-1 positive SPF eggs as described above.
137	For genetic pathotyping a 266-bp hypervariable region of the F gene encompassing the cleavage site
138	(positions 4652 to 4917, with reference to NDV strain La Sota, GenBank accession number
139	AF077761) was RT-PCR targeted (Cattoli & Monne, 2009). Briefly, the APMV-1 F gene segment
140	was amplified with primers NOH-For (5' TACACCTCATCCCAGACAGG 3') and NOH-Rev (5'
141	AGTCGGAGGATGTTGGCAGC 3') using the Qiagen one-step RT-PCR kit (Qiagen, Hilden,
142	Germany). Amplicons were sequenced using the Big Dye Terminator v3.1 cycle sequencing kit
143	(Applied Biosystem, Foster City, CA - USA). The products were cleaned using PERFORMA DTR
144	Ultra 96-Well kit (Edge BioSystems, Gaithersburg, MD - USA) and sequenced in a 16-capillary
145	ABI PRISM 3130xl Genetic Analyzer (Applied Biosystems, Foster City, CA - USA).
146	Phylogenetic analysis
147	To determine the phylogenetic relationships between West and Central Africa viruses and APMV-1
148	viruses previously isolated in Africa and other parts of the world, the sequences of the 266-bp
149	hypervariable region of the F gene were compared to the corresponding region of 332 representative
150	viruses available in GenBank (http://www.ncbi.nlm.nih.gov/), for which the genotype was known.
151	Previous studies have demonstrated that sequences of 250 base pairs give meaningful phylogenetic
152	analyses, comparable with those obtained with much longer sequences (Seal et al., 1995; Lomniczi
153	et al., 1998; Snoeck et al., 2008).
154	The lineage-based nomenclature illustrated in a previous study (Aldous et al., 2003) is adopted
155	throughout this paper.

156	To confirm the robustness of the genetic groupings obtained by the phylogenetic analysis of the
157	partial F gene sequences and to detect mutations potentially associated with antigenic and virulence
158	changes, the complete sequences of the fusion (F), haemagglutinin-neuraminidase (HN) and matrix
159	(M) genes of selected African APMV-1 isolates were obtained. For this purpose, RNAs extracted
160	from infective allantoic fluid were reverse transcribed with the SuperScript III Reverse
161	Transcriptase kit (Invitrogen, Carlsbad, CA - USA) and PCR amplification was performed using
162	gene specific primers (Table S1). Using the full length genome positions from the La Sota vaccine
163	strain complete genome (accession number AF077761), the nucleotide regions sequenced were as
164	follows: the complete coding region for the genes F (positions 4544 to 6205; n = 16 isolates), HN
165	(positions 6412 to 8127; n = 17 isolates), M (positions 3290 to 4384; n = 18 isolates). Sequence
166	alignments were constructed and used to develop phylogenetic trees using Bayesian methods
167	available in the computer program MrBayes version 3.1.2 (Ronquist & Huelsenbeck, 2003).
168	Specifically, we executed a Markov chain Monte Carlo search for one million generations using
169	two runs and four chains (temperature=0.05) and represented the results of the search as a 50%
170	majority rule consensus tree. In each case, the best-fit model of nucleotide substitution was
171	identified using the Akaike information criterion (Posada & Buckley, 2004) as implemented in
172	Modeltest version 3.7 (Posada & Crandall, 2001) (parameter values available from authors on
173	request).
174	Nucleotide diversity was calculated using the Maximum Composite Likelihood method
175	implemented in the MEGA4 software package (Tamura et al., 2007).
176	Nucleotide sequence accession numbers
177	GeneBank accession numbers of the sequences analysed in this study are FJ772445 to FJ772495
178	Results

- 179 Detection of APMV-1 isolates in the samples
- 180 The rRT-PCR protocol detected the presence of APMV-1 RNA in 43 of 50 of the clinical samples
- included in the investigation (Table 1). Forty-one of the samples positive by rRT-PCR were also

182	positive by virus isolation. One sample from Niger and one from Nigeria, both collected in 2008
183	were positive by rRT-PCR but gave a negative result by virus isolation. However, 7/16 of the
184	samples collected in 2006 (3 in Niger and 4 in Mauritania) were negative by the rRT-PCR protocol
185	used but positive by virus isolation in eggs. The M gene rRT-PCR test was carried out on the
186	positive allantoic fluids obtained in the virus isolation tests from these samples in which APMV-1
187	viruses had been confirmed by HA and HI tests, but the rRT-PCR results were also negative. When
188	the rRT-PCR-negative/HI-positive allantoic fluids were tested by the RT-PCR protocol used for
189	molecular pathotyping targeting the F gene positive results were obtained, thus confirming the
190	HA/HI test results and enabling the pathotyping of the isolates.
191	Phylogenetic analysis of partial F gene sequences
192	For genetic sequencing, 28 of the 48 APMV-1 isolates were selected, based on the year of isolation,
193	country of origin and outbreak location. The 266 bp region of the fusion gene of these isolates was
194	sequenced and compared phylogenetically to the corresponding region of 332 representative viruses
195	belonging to the six lineages characterized by Aldous et al., (2003). The resulting phylogenetic tree
196	is presented in figure 1.
197	From the topology of the Bayesian tree, presented in figure 1, it can be seen that the two NDV
198	isolates from Burundi were placed in sublineage 5b, a heterogeneous sublineage which is composed
199	of isolates mainly originating from Europe, Africa, Asia and America (Aldous et al., 2003). The
200	sequences of these viruses revealed the highest similarity at nucleotide (nt) level (97.6%) with an
201	isolate from South Africa ZA/71/BA/94 (accession number AF532751). In contrast, the other
202	viruses analysed clustered together in a distinct group showing a mean nt similarity of 88.7% with
203	the sequences of lineage 5 viruses and, more specifically, 89.4% with sublineage 5b viruses. Since
204	the mean nt diversity observed between this new group and lineage 5 (11.3%) falls within the range
205	of nt diversity $(10.3\% - 43.2\%)$ calculated for the existing 6 lineages, as shown in table 2, we
206	considered this group represented a new lineage, provisionally named lineage 7. At present 33
207	isolates make up lineage 7, all originating from West Africa. Twenty-six isolates were sequenced in

208	the present study and the sequences of seven other viruses were obtained in a previous study
209	(Snoeck et al., 2009). Lineage 7 can be further subdivided into four, statistically supported,
210	sublineages (7a to 7d) with posterior probabilities >91% (figure 2).
211	Sublineage 7a contained 8 isolates, of which 7 were from samples obtained in 2006 in Mauritania
212	and one from a 2008 Ivory Coast sample. The maximum nt divergence within this group was 6.4%.
213	Sublineage 7b was the most heterogeneous sublineage in terms of country of origin of the viruses
214	included in this study. This lineage consisted of 14 viruses originating from four different countries,
215	namely Niger(n=4), Nigeria (n=4), Cameroon (n=2) and Burkina Faso (n=4) obtained from samples
216	collected in 2006 and 2008. The maximum nt divergence within this group was 4.7%.
217	Sublineage 7c consisted exclusively of three isolates from Burkina Faso obtained in 2006, the
218	partial sequences of which were recently published in GenBank (Snoeck et al., 2009). The
219	maximum divergence within this group was 1.5%.
220	The isolates in sublineage 7d were grouped in two further distinguishable clusters: the first (group I)
221	contained five isolates exclusively from Niger, collected in 2006 and 2007 and the second cluster
222	(group II) was composed of three viruses obtained in 2006, two from Niger and one from Nigeria.
223	The maximum divergence within this group was 7.7%.
224	Pathotyping of APMV-1 isolates
225	For the APMV-1 isolates selected, the virulence was determined by molecular sequencing and ICPI
226	tests . The deduced amino acids at the F0 protein protease cleavage site revealed that all 28 of the
227	selected isolates had motifs that are typical of velogenic strains (OIE, 2008). Three possessed the
228	motif $^{112}RRRKR/F^{117}$ and the other 25 had the motif $^{112}RRQKR/F^{117}$. In order to reduce the use of
229	experimental animals, ICPI tests were limited to representative isolates for each country that
230	possessed the different deduced amino acid motifs at the cleavage site of the F protein (Table 3). As
231	shown in table 3, the ICPI values were similar for the two cleavage site motifs and confirmed the
232	virulence of these viruses. The lineage 5b isolate from Burundi produced the highest ICPI value of
233	1.97. Viruses placed in the new lineage 7 gave ICPI values ranging from 1.7 to 1.87.

234	Phylogenetic analyses of complete F, HN and M gene sequences
235	For lineage 7, the topology of the phylogenetic tree created using 266-bp fusion gene fragments was
236	confirmed by analyses of the complete coding regions of the F, M and HN genes of 16, 18 and 17
237	representative viruses, respectively (figure 3). By this analysis it was possible to confirm the results
238	obtained for three of the four sublineages, 7a,7b and 7d. For sublineage 7c containing viruses that
239	were not available for sequencing in the present study, only partial F gene sequences had been
240	deposited in GenBank (Snoeck et al., 2009) and therefore sublineage confirmation was not possible.
241	Sequences of F, HN and M genes show comparable ratios of non-synonymous to synonymous
242	substitutions per site (K_a/K_s =0.086, 0.109 and 0.053 respectively) indicating the absence of positive
243	selection.
244	Complete nucleotide sequences of the HN genes of viruses belonging to lineage 7 showed the
245	highest nucleotide diversity (12%) compared to the complete sequences of F and M genes of the
246	same viruses for which 11.5% and 10% diversity was recorded respectively.
247	However, in the M gene several mismatches were observed in the region targeted by the primers
248	and probe designed for the rRT-PCR detection of APMV-1 (Wise et al; 2004) (Figure 4).
249	Additional rRT-PCR testing (data not shown) allowed us to establish that the presence of at least 3
250	mismatches in the probe was presumably responsible for the false negative results in the diagnostic
251	molecular test.
252	Analysis of amino acid sequences
253	At the F protein cleavage site, sublineages 7a, 7b and 7d-group I possessed four basic amino acids
254	(RRQKR/F), as do most of the viruses belonging to lineage 5. Sublineages 7c and 7d-group II
255	showed five basic amino acids (RRRKR/F). The amino acid arginine at position 114 was codified
256	by two different codons (CGA for sublineage 7c and CGG for sublineage 7d) suggesting that this
257	point mutation occurred independently in the two groups of viruses.
258	Potential N-glycosylation sites at positions 85, 191, 366, 447, 471, 541, characteristic of APMV-1,
259	were conserved in the F glycoprotein of all the NDV isolates belonging to lineage 7. The HN

260	glycoprotein sequence of lineage 7 viruses contained the five potential N-glycosylation sites
261	(residues 119, 341, 433, 481, 508) that are conserved among APMV-1 viruses. One isolate from
262	Nigeria and one from Niger contained an additional site at position 538. However, a previous study
263	has shown that two of these sites (at positions 508 and 538) are not truly glycosylated (McGinnes et
264	al., 1995).
265	Residues within the HN protein, which is essential for receptor binding, neuraminidase (NA) and
266	haemagglutination (HA) activity of APMV-1 viruses, (Seal, 2004) were conserved in all the isolates
267	analysed.
268	For 13 of the 14 viruses for which the complete HN and F sequences were obtained at least one
269	amino acid substitution was detected within the known virus neutralizing epitopes of the HN and F
270	proteins (table 4). Specifically, mutations E347D, Y350H and D569G were detected in three
271	neutralizing epitopes of the HN protein (Iorio, et al., 1991), while amino acid substitutions K78R,
272	D170S and L343P were detected within three epitopes located in the F protein (Yusoff et al., 1989).
273	Comparison of the nt and amino acids sequences available for some common vaccine strains, such
274	as La Sota (Genbank accession number AF077761) and V4 (Genbank accession number
275	AY225110), revealed HN protein similarity ranging between 85.5% and 87.7% with the La Sota
276	strain and between 85.1% and 87.4% with the V4 strain . For the F protein, similarity ranged from
277	86.4% to 88.8% with the La Sota strain and from 86.2% to 88.5% with the V4 strain, while for M
278	protein similarity ranged from 87% to 89.5% with the La Sota strain and from 88.8% to 92.2% with
279	V4 strain.
280	The HN proteins of each of the analysed viruses had a length of 571 amino acids, which is the
281	length most commonly observed for the virulent NDV isolates and possessed a cysteine at position
282	123, which is required for the formation of disulphide-linked HN homodimers. A previous study
283	demonstrated that the amino acid cysteine at this position has an influence on both attachment
284	activity and fusion promotion activity and increased the virulence and the pathogenicity of NDV
285	viruses (Romer-Oberdorfer et al., 2006).

	ion

287	During the period 2005-2008, 38 African countries notified ND outbreaks to the World
288	Organisation for Animal Health (OIE-WAHID interface, Available at:
289	http://www.oie.int/wahis/public.php. Accessed on 2nd February 2009). Nineteen of the 38 countries
290	are in West and Central Africa. APMV-1 is clearly widespread in Africa but very limited
291	information is available on the characteristics of the strains circulating in this continent, with the
292	exception of those seen in South Africa (Herczeg et al, 1999; Aldous et al., 2003; Abolnik et al.,
293	2004) and Uganda (Otim et al., 2004). In West and Central Africa, virological data concerning
294	APMV-1 were almost completely absent. Very recently, Snoeck et al (2009) detected NDVs
295	belonging to lineage 3 and 4 in Nigeria. But other APMV-1 viruses detected in Nigeria, Burkina
296	Faso and Niger were tentatively placed in lineage 5 by genetic analysis of a partial fragment of the
297	gene F. In this study Snoeck et al (2009) suggested these viruses formed novel sublineages, namely
298	5g, 5f and 5h or even new genetic lineages. However, isolates were not obtained and the
299	conclusions were considered preliminary by the authors since data were obtained on partial
300	sequence (354 nt) of the F gene only.
301	In our present study the results of the phylogenetic analyses indicate that the majority of the West
302	and Central African strains belong to a novel lineage, here provisionally named lineage 7, which
303	includes the viruses previously assigned to 5g, 5f and 5h sublineages by Snoeck et al., (2009).
304	These findings are supported by the analysis of the complete sequences of the gene F, M and HN.
305	Furthermore, our study indicate that viruses of this newly described lineage are circulating in a vast
306	area of Africa, and are probably endemic in the region between Cameroon in the Central part of
307	Africa and Mauritania in the extreme west. Of the samples from West and Central African countries
308	that were examined in the present study only those from Burundi failed to yield virus of lineage 7.
309	We detected a high degree of genetic variability within lineage 7, which was similar in magnitude
310	to that described for lineage 5 (Aldous et al., 2003).

The present study also demonstrated the important impact genetic variability of viruses may have
on the diagnosis of this infection, highlighting the limit of the advanced molecular diagnostic tests
on viral disease diagnosis. Kim et al., (2007) recently demonstrated that the broad genetic diversity
between class I, which includes the genotype 6 described earlier (Aldous et al., 2003), and class II
APMV-1 may impair the performances of rapid molecular tests, including those having conserved
genes as target for PCR amplification. The results presented in our study on the sequence analysis
of the matrix gene demonstrated that genetic variability within class II viruses, may be equally
responsible for false negative molecular test results. A broader number of strains are necessary to
assess whether this problem is restricted to lineage 7 viruses or extends to other lineages.
In a comprehensive study Czeglédy et al., (2006) concluded that the origin of the most recent
virulent genotypes was not clear, but it appears that the diversification of the recent epizootic
viruses and lineages, has accelerated in the last few decades and suggested that vaccination could
have played a role in the generation and spread of the most recent virulent viruses. It has been
recently demonstrated (Miller et al., 2007) that genetic diversity in APMV-1 strains influences the
efficacy of vaccination control, not necessarily in terms of clinical protection, but mainly in term of
virus shedding and subsequent spread of the infection. Miller et al., (2007) showed that virus
shedding in chickens experimentally challenged with ND strains correlated with HN and F protein
similarities between the challenge and vaccine strains. HN and F protein similarities less than or
equal to 90%, as those observed in our study, were significantly related to higher virus shedding. In
addition to this, the distinct mutations detected in the African strains analysed in the present study,
located in the neutralizing epitopes of the two major antigens (F and HN glycoprotein) targeted by a
protective immune response (Seal et al., 2000), present the scientific rationale for deeper
investigations on the antigenic properties of these isolates and for detailed assessments of the
efficacy of the current vaccines and vaccination practices in Africa.
To conclude, the present investigation provides important information on the epidemiology,
diagnosis and control of NDV in Africa and highlights the importance of supporting surveillance in

developing countries for transboundary animal diseases. It provides evidence on the need to facilitate data and sequence sharing and to monitor the efficacy of validated diagnostic tests continuously. As demonstrated by the present and previous studies (Xing et al., 2008), neglecting traditional assays such as virus isolation may pose serious risks for the correct diagnosis of contagious diseases. As predicted by Aldous et al. (2003), novel genetic lineages and sublineages are emerging as a consequence of the continuous evolution of APMV-1. However, well defined criteria for lineage or sublineage designation are currently not existing for this virus. This study provide additional genetic data which might be useful for the definition of general criteria for lineage designation, similarly to what has been done for the highly pathogenic avian influenza virus A/H5N1 (WHO/OIE/FAO H5N1 Evolution Working Group, 2008).

Acknowledgments

The Food and Agricultural Organization of the United Nations partially funded this study and facilitated the collection and submission of samples (LoA/PR 37772, Project EPIAAF, Project OSRO/RAF/602). The Italian Ministry of Health (RC IZSVe 26/2007) and the European Commission (EPIZONE) also partially funded this study. The Ministry of Agriculture of the Islamic Republic of Mauritania, Niger, Nigeria, Cote d'Ivoire, Burkina Faso, Burundi, Cameroun, are also gratefully acknowledged. We are grateful to Dr G Koch (CVI-Lelystad, NL) for his technical assistance on NDV sequencing and to Dr DJ Alexander for the critical revision of this manuscript.

`	TD 0	
357	References	

- 358 Abolnik, C., Horner, R. F., Bisschop, S. P., Parker, M. E., Romito, M., Viljoen, G. J.; 2004. A
- 359 phylogenetic study of South African Newcastle disease virus strains isolated between 1990 and
- 360 2002 suggests epidemiological origins in the Far East. Arch Virol. 149(3):603-19.
- Aldous, E. W., Mynn, J. K., Banks, J., Alexander, D. J.; 2003. A molecular epidemiological study
- of avian paramyxovirus type 1 (Newcastle disease virus) isolates by phylogenetic analysis of a
- partial nucleotide sequence of the fusion protein gene. Avian Pathol. 32(3):239-56.
- Alexander, DJ.; 2009. Ecology and epidemiology of Newcastle disease. In: I. Capua & D.J.
- Alexander (Eds.). Avian Influenza and Newcastle Disease, a field and laboratory manual. Springer-
- 366 Verlag, Italy, pp. 19- 26.
- Alexander, D. J., Banks, J., Collins, M. S., Manvell, R. J., Frost, K. M., Speidel, E. C., Aldous, E.
- 368 W.; 1999. Antigenic and genetic characterisation of Newcastle disease viruses isolated from
- outbreaks in domestic fowl and turkeys in Great Britain during 1997. Vet Rec. 9;145(15):417-21.
- Bebay, C. E. 2006. Première évaluation de la structure et de l'importance du secteur avicole
- 371 commercial et familial en Afrique de l'Ouest. Synthèse des rapports nationaux.
- 372 FAO/ECTAD/AGAP (Ed.).
- Cattoli, G., Manvell, R. J., Tisato, E., Banks, J., Capua, I.; 2001. Characterization of Newcastle
- disease viruses isolated in Italy in 2000. Avian Pathol. 30(5):465-9.
- Cattoli G. & Monne I.; 2009. Molecular diagnosis of Newcastle disease virus. In: I. Capua & D.J.
- 376 Alexander (Eds.). Avian Influenza and Newcastle Disease, a field and laboratory manual. Springer-
- 377 Verlag, Italy, pp 127-132.
- Czeglédi, A., Ujvári, D., Somogyi, E., Wehmann, E., Werner, O., Lomniczi, B.; 2006. Third
- genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and
- evolutionary implications. Virus Res. 120(1-2):36-48.
- De Leeuw, O. S., Koch, G., Hartog, L., Ravenshorst, N., Peeters, B. P.; 2005. Virulence of
- Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the

- 383 stem region and globular head of the haemagglutinin-neuraminidase protein. J Gen Virol. 86 (Pt
- 384 6):1759-69.
- 385 Herczeg, J., Pascucci, S., Massi, P., Luini, M., Selli, L., Capua, I., Lomniczi, B.; 2001. A
- 386 longitudinal study of velogenic Newcastle disease virus genotypes isolated in Italy between 1960
- 387 and 2000. Avian Pathol. 30(2):163-8.
- Herczeg, J., Wehmann, E., Bragg, R. R., Travassos Dias, P. M., Hadjiev, G., Werner, O., Lomniczi,
- 389 B; 1999. Two novel genetic groups (VIIb and VIII) responsible for recent Newcastle disease
- outbreaks in Southern Africa, one (VIIb) of which reached Southern Europe. Arch
- 391 Virol.;144(11):2087-99.
- Huang, Z., Panda, A., Elankumaran, S., Govindarajan, D., Rockemann, D. D., Samal, S. K.; 2004.
- 393 The hemagglutinin-neuraminidase protein of Newcastle disease virus determines tropism and
- 394 virulence. J Virol. 78(8):4176-84.
- Iorio, R. M., Syddall, R. J., Sheehan, J. P., Bratt, M. A., Glickman, R. L., Riel, A. M.; 1991.
- Neutralization map of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus:
- domains recognized by monoclonal antibodies that prevent receptor recognition. J
- 398 Virol.;65(9):4999-5006.
- Kim, L. M., King, D. J., Curry, P. E., Suarez, D. L., Swayne, D. E., Stallknecht, D. E., Slemons, R.
- D., Pedersen, J. C., Senne, D. A., Winker, K., Afonso, C. L.; 2007. Phylogenetic diversity among
- 401 low-virulence newcastle disease viruses from waterfowl and shorebirds and comparison of
- 402 genotype distributions to those of poultry-origin isolates. J Virol. 81(22):12641-53.
- Lamb, R., Collins, P. L., Kolakofsky, D., Melero, J. A., Nagai, Y., Oldstone, M. B. A., Pringle C.
- 404 R., Rima, B. K. 2005. The negative sense single stranded RNA viruses, p.607-738. In C. M.
- Fauquet, M. A. Mayo, Maniloff J., Desselberg U and L. A. Ball (Eds), virus taxonomy. Eight report
- of the International Committee on Taxonomy of viruses. Elsevier Academic Press, San Diego, CA.
- 407 Lancaster, J.E., Alexander, D.J. 1975. Newcastle disease: Virus and Spread. Monograph No. 11
- 408 Canada Department of Agriculture: Ottawa. pp 79.

- Lomniczi, B., Wehmann, E., Herczeg, J., Ballagi-Pordány, A., Kaleta, E. F., Werner, O.,
- 410 Meulemans, G., Jorgensen, P. H., Manté, A. P., Gielkens, A. L., Capua, I., Damoser, J.; 1998.
- Newcastle disease outbreaks in recent years in western Europe were caused by an old (VI) and a
- 412 novel genotype (VII). Arch Virol. 143(1):49-64.
- 413 McGinnes L. W., Morrison T. G.;1995. The role of individual oligosaccharide chains in the
- activities of the HN glycoprotein of Newcastle disease virus. Virology. 212(2):398-410.
- 415 Mebatsion, T., Verstegen, S., De Vaan, L. T., Römer-Oberdörfer, A., Schrier, C. C.; 2001. A
- 416 recombinant newcastle disease virus with low-level V protein expression is immunogenic and lacks
- pathogenicity for chicken embryos. J Virol. 75(1):420-8.
- 418 Miller, P. J., King, D. J., Afonso, C. L., Suarez, D. L.; 2007. Antigenic differences among
- Newcastle disease virus strains of different genotypes used in vaccine formulation affect viral
- 420 shedding after a virulent challenge. Vaccine, 25(41):7238-46.
- 421 OIE 2008. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2008. Available on
- the website: http://www.oie.int/eng/normes/mmanual/A_summry.htm
- Otim, M. O., Christensen, H., Jørgensen, P. H., Handberg, K. J., Bisgaard, M.; 2004. Molecular
- 424 characterization and phylogenetic study of Newcastle disease virus isolates from recent outbreaks in
- eastern Uganda. J Clin Microbiol. 42(6):2802-5.
- Posada, D., Buckley, T. R.; 2004. Model selection and model averaging in phylogenetics:
- 427 advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Syst
- 428 Biol. 53(5):793-808.
- Posada, D., Crandall, K. A.; 2001. Selecting the best-fit model of nucleotide substitution. Syst Biol
- 430 50:580-601.
- Römer-Oberdörfer, A., Veits, J., Werner, O., Mettenleiter, T. C. 2006. Enhancement of
- pathogenicity of Newcastle disease virus by alteration of specific amino acid residues in the surface
- 433 glycoproteins F and HN. Avian Dis.;50(2):259-63.

- Ronquist, F., Huelsenbeck, J. P.; 2003 MrBayes 3: Bayesian phylogenetic inference under mixed
- 435 models. Bioinformatics;19(12):1572-4.
- Seal, B. S, King, D. J, Bennett, J. D.; 1995. Characterization of Newcastle disease virus isolates by
- reverse transcription PCR coupled to direct nucleotide sequencing and development of sequence
- database for pathotype prediction and molecular epidemiological analysis. J Clin Microbiol.
- 439 33(10):2624-30.
- Seal, B. S., King, D. J., Sellers, H. S.; 2000. The avian response to Newcastle disease virus. Dev
- 441 Comp Immunol. 24(2-3):257-68. Review.
- Seal, B. S.; 2004. Nucleotide and predicted amino acid sequence analysis of the fusion protein and
- 443 hemagglutinin-neuraminidase protein genes among Newcastle disease virus isolates. Phylogenetic
- relationships among the Paramyxovirinae based on attachment glycoprotein sequences. Funct Integr
- 445 Genomics. 4(4):246-57.
- Snoeck, C. J., Ducatez, M. F., Owoade, A. A., Faleke, O. O., Alkali, B. R., Tahita, M. C., Tarnagda,
- 447 Z., Ouedraogo, J. B., Maikano, I., Mbah, P. O., Kremer, J. R., Muller, C. P.; 2009. Newcastle
- 448 disease virus in West Africa: new virulent strains identified in non-commercial farms. Arch Virol.
- 449 154(1):47-54.
- 450 Tamura, K., Dudley, J., Nei, M., Kumar, S.; 2007. MEGA4: Molecular Evolutionary Genetics
- 451 Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24:1596-1599.
- 452 Terregino, C., Capua, I.; 2009. Conventional diagnosis of Newcastle disease virus infection. In: I.
- 453 Capua & D.J. Alexander (Eds.). Avian Influenza and Newcastle Disease, a field and laboratory
- 454 manual. Springer- Verlag, Italy, pp. 123- 126.
- Wise, M. G., Suarez, D. L., Seal, B. S., Pedersen, J. C., Senne, D. A., King, D. J., Kapczynski, D.
- 456 R., Spackman, E.; 2004. Development of a real-time reverse-transcription PCR for detection of
- Newcastle disease virus RNA in clinical samples. J Clin Microbiol.; 42(1):329-38.
- 458 World Health Organization/World Organization for Animal Health/Food and Agriculture
- Organization H5N1 Evolution Working Group; 2008. Toward a unified nomenclature system for

460	highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis. [serial on internet]. Available
461	from: http://www.cdc.gov/EID/content/14/7/e1.htm
462	Xing, Z., Cardona, C., Dao, P., Crossley, B., Hietala, S., Boyce, W.; 2008. Inability of real-time
463	reverse transcriptase PCR assay to detect subtype H7 avian influenza viruses isolated from wild
464	birds. J Clin Microbiol. 46(5):1844-6.
465	Yusoff, K., Nesbit, M., McCartney, H., Meulemans, G., Alexander, D.J., Collin, M. S., Emmerson
466	P. T., Samson, A. C. ;1989. Location of neutralizing epitopes on the fusion protein of Newcastle
467	disease virus strain Beaudette C. J Gen Virol. 70 (Pt 11):3105-9.
468	

Table 1. Detection of APMV-1 viruses in samples by rRT-PCR and virus isolation.

Country of origin	Year of isolation	Number of samples positive for APMV-1 by:			
		rRT-PCR	Virus Isolation		
Burkina Faso	2008	4	4		
Burundi	2008	2	2		
Ivory Coast	2008	1	1		
Niger	2006	3	6		
	2008	11	10		
Nigeria	2006	3	3		
-	2008	5	4		
Cameroon	2008	11	11		
Mauritania	2006	3	7		
Totals		43/50	48 /50		

 $\textbf{Table 2} \textbf{ -} \textbf{ The mean number of base substitutions per site for all sequence pairs between lineages is shown . Analyses were conducted using the Maximum Composite Likelihood method in MEGA4 software package.$

LINEAGE	1	2	3	4	5	6
2	0.126					
3	0.140	0.168				
4	0.145	0.172	0.116			
5	0.159	0.193	0.127	0.103		
6	0.400	0.417	0.442	0.432	0.420	
7	0.203	0.212	0.158	0.140	0.113	0.457

Table 3. Pathotyping results of representative African APMV-1 isolates

Isolate	Cleavage site	Lineage	ICPI ^a
	amino acid motif		
Ivory Coast/2601/2008	¹¹² RRQKR/F ¹¹⁷	7a	1.7
Mauritania/1532-1/2006	¹¹² RRQKR/F ¹¹⁷	7a	1.85
Burkina Faso/2415-580/2008	112 RRQKR/F 117	7b	1.8
Burkina Faso/2415-361/2008	112 RRQKR/F 117	7b	1.8
Niger/2602-468/2008	112 RRQKR/F 117	7b	1.7
Nigeria/3724-6/2008	112 RRQKR/F 117	7b	1.8
Cameroon/3490-147/2008	¹¹² RRQKR/F ¹¹⁷	7b	1.87
Niger/1377-14/2006	112 RRQKR/F 117	7d-I	1.78
Niger/1377-8/2006	112 RRQKR/F 117	7d-I	1.8
Niger/1377-9/2006	¹¹² RRRKR/F ¹¹⁷	7d-II	1.7
Burundi/4132-12/2008	112 RRQKR/F 117	5b	1.97

^aIntracerebral pathogenicity in day-old chicks.

478 479

476

Table 4 - Amino acid substitutions located within the neutralizing epitopes of HN and F proteins

Gene	Substitution	Virus		
	E347D	NDV_ck_2415_580_Burkina Faso_2008		
	E34/D	NDV_ck_2415_577_Burkina Faso_2008		
		NDV_ck_3490_147_Cameroon_2008		
HN	Y350H	NDV_ck_3490_149_Cameroon_2008		
	1330H	NDV_ck_2602_605_Niger_2008		
		NDV_ck_2602_625_Niger_2008		
	D569G	NDV_ck_1377_1_Niger_2006		
	K78R	NDV_ck_1377_1_Niger_2006		
		NDV_avian_3724_6_Nigeria_2008		
F		NDV_ck_2601_Ivory Coast_2008		
F	D170S	NDV_ck_2601_Ivory Coast_2008		
		NDV_avian_1532_14_Mauritania_2006		
	L343P	NDV_ck_2415_361_Burkina Faso_2008		

482	
483	Figure 1 – A radial phylogram constructed by Bayesian analysis of 359 NDV isolates belonging to
484	the six lineages identified by Aldous et al., (Aldous et al., 2003). The region analysed was a 264
485	base pair fragment (109 to 374) at the 3' end of the fusion protein gene. Different colours are used
486	to differentiate the viruses from distinct lineages. The new lineage identified in this study is black
487	coloured. * indicates the isolates from Burundi sequenced in this study. The scale indicates the
488	number of substitutions per site. Posterior probabilities of the clades are showed above branches.
489	
490	Figure 2 – A radial phylogram constructed by Bayesian analysis of 33 NDV isolates (26 sequenced
491	in this study) belonging to lineage 7. The region analysed was a 266 base pair fragment (109 to 374)
492	at the 3' end of the fusion protein gene. The circles indicate the four sublineages (7a to 7d)
493	identified in this study. The scale indicates the number of substitutions per site. Posterior
494	probabilities of clades are indicated above branches.
495	
496	Figure 3 – Phylogenetic trees constructed by Bayesian analysis of the complete coding region of
497	HN, M and F genes of viruses analysed in this study. DE/R49/99 and La Sota were selected as
498	representative strains of class I and class II respectively. Blue, red and yellow rectangles indicates
499	the sublineages 7a, 7b and 7d, respectively. The scale indicates the number of substitutions per site.
500	Posterior probabilities of clades are indicated above branches.
501	
502	Figure 4 – Nucleotide sequence alignment of the matrix gene from representative samples tested
503	positive (+) or negative (-) by rRT-PCR. Nucleotide sequence differences between isolates are
504	shown, while identical nucleotides are indicated by a dot. The numbering of nucleotides is relative
505	to the complete genome sequence of the La Sota strain (reference sequence). Primer annealing
506	regions are indicated by two arrows, while probe annealing region is marked by a rectangular.

508	Cum	nlamantal	matarial
JUO	Subi	plemental	materiai

Table S1: Sequences of primers used for the amplification and sequencing of the F, M and HN gene

510

Table S1: Sequences of primers used for the amplification and sequencing of the F, M and HN gene

NAME		SEQUENCE	GENE
M-2996-F	forward	TGAAAACGACGGCCAGTCYAAGCTCCTRAGYAAGCTRGA	M
M-3910-R	reverse	CAGGAAACAGTATGACCCATCAATAGTGACATTGA	M
M-3293-F	forward	TGAAAACGACGGCCAGTAARATGGACTCATCYAGRAC	M
MF-3710-F	forward	TGAAAACGACGGCCAGTCAAAGCTGTADGGTTGTG	М
MF-4650-R	reverse	CAGGAAACAGTATGACCAAGAGGCCTGCCRTCAA	M
F-4514-F	forward	TGAAAACGACGGCCAGTGTAGAAGADTYTGGATCC	F
F-5218-R	reverse	CAGGAAACAGTATGACCGAATACYGTAGTCAAYTCRG	F
F-5443-R	reverse	CAGGAAACAGTATGACCAGGTGGCACGCATATTATT	F
F-5100-F	forward	TGAAAACGACGGCCAGTATGCAGCARTTTGTYAAT	F
F-4544-R	reverse	CAGGAAACAGTATGACCTARGTAATRAGAGCRGATG	F
F-5664-F	forward	TGAAAACGACGGCCAGTAGACYGAAGGCGCACTYAC	F
F-7979-R	reverse	CAGGAAACAGTATGACCAGRGCCACYTGCTTRTATA	F
F-5757-F	forward	TGAAAACGACGGCCAGTAGATRACAACATGTAGRTG	F
F-6449-R	reverse	CAGGAAACAGTATGACCGGCTAACYGCRCGGTCCAT	F
F-START	forward	TGAAAACGACGCCAGTATGGGCYCYARAYCTTCTAC	F
F-460-R	reverse	CAGGAAACAGTATGACCAGCAATGCTCTCYTTAAG	F
F-586-R	reverse	CAGGAAACAGTATGACCTTTAYACAGTCCAATTC	F
F-656-F	forward	TGAAAACGACGGCCAGTTACYTAACTGARYTGACTAC	F
F-1258-R	reverse	CAGGAAACAGTATGACCACATTGCATGAWTGTCTRTC	F
HN-6398-F	forward	TGAAAACGACGGCCAGTTCMCAACATCCGTTCTACCGCATC	HN
HN-7040-R	reverse	CAGGAAACAGTATGACCGAATGYGAGTGATCTCTGCA	HN
HN-6731-F	forward	TGAAAACGACGGCCAGTTTATGAAYGCAATAACNTC	HN
HN-6979-F	forward	TGAAAACGACGGCCAGTATGAGYRCTACCCAYTACTG	HN
HN-7549-R	reverse	CAGGAAACAGTATGACCATAGATAAGATGGCYTGCTG	HN
HN-7326-F	forward	TGAAAACGACGGCCAGTGGTGGCAAAYTACCCAGGAG	HN
HN-8072-R	reverse	CAGGAAACAGTATGACCAGGGTATTGGATATTTCRGCAATGC	HN
HN-7110-F	forward	TGAAAACGACGGCCAGTATCGRAAGTCYTGCAGTGTG	HN
HN-8106-R	reverse	CAGGAAACAGTATGACCATCTCAACTAGTAAVGGRACGATYC	HN
HN-8015-F	forward	TGAAAACGACGGCCAGTCATACACRACATCRACATG	HN
HN-8509-R	reverse	CAGGAAACAGTATGACCGGTARCCCAGTYAATTTCCA	HN