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We describe composite likelihood-based analysis of a genome-wide breast cancer casecontrol sample from the Cancer Genetic Markers of Susceptibility project. We determine 14,380 genome regions of fixed size on a linkage disequilibrium map which delimit comparable levels of linkage disequilibrium. Although the numbers of SNPs are highly variable each region contains an average of ~35 SNPs and an average of ~69 after imputation of missing genotypes. Composite likelihood association mapping yields a single P-value for each region, established by a permutation test, along with a maximum likelihood disease location, standard error and information weight. For single SNP analysis the nominal P-value for the most significant SNP (msSNP) requires substantial correction given the number of SNPs in the region. Therefore imputing genotypes may not always be advantageous for the msSNP test, in contrast to composite likelihood. For the region containing FGFR2 (a known breast cancer gene) the largest chi-square is obtained under composite likelihood with imputed genotypes ( 2 2 χ increases from 20.6 to 22.7), and compares to a single-SNP based 2 2 χ of 19.9 after correction. Imputation of additional genotypes in this region reduces the size of the 95% confidence interval for location of the disease gene by ~40%. Amongst the highest ranked regions, SNPs in the NTSR1 gene would be worthy of examination in additional samples. Meta-analysis, which combines weighted evidence from composite likelihood in different samples, and refines putative disease locations, is facilitated through defining fixed regions on an underlying linkage disequilibrium map.

INTRODUCTION

Genome-wide association mapping studies based on large case-control samples [START_REF] Easton | Genome-wide association study identifies novel breast cancer susceptibility loci[END_REF][START_REF] Hunter | A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer[END_REF] have identified common genetic variants associated with increased risk of breast cancer. Most analyses of genome-wide case-control data sets employ tests based on individual single nucleotide polymorphisms (SNPs) [START_REF]WTCCC): Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls[END_REF] . Meta-analysis (combining evidence across samples) is facilitated by imputation of 'missing' SNP genotypes, using the HapMap samples (http://www.hapmap.org/ ) as a reference population [START_REF] Zeggini | Meta-analysis of genome-wide association data and largescale replication identifies additional susceptibility loci for type 2 diabetes[END_REF] . An alternative approach to single SNP tests [START_REF] Gibson | A multimetric approach to analysis of genome-wide association by single markers and composite likelihood[END_REF][START_REF] Morton | Genome scanning by composite likelihood[END_REF] undertakes composite likelihood analysis of multiple SNPs in a region and determines a location for a putative disease influencing variant on an underlying linkage disequilibrium unit (LDU) map [START_REF] Maniatis | The first linkage disequilibrium (LD) maps: Delineation of hot and cold blocks by diplotype analysis[END_REF] . When plotted against physical (kb) locations the LDU map describes the underlying pattern of linkage disequilibrium (LD) as a series of plateaus (strong LD) and steps (where LD is breaking down, such as at the location of recombination hot spots). The LDU map provides a framework for characterising small chromosome regions which may differ substantially in physical size but share comparable levels of linkage disequilibrium. Modelling the pattern of association with disease at multiple markers in a region generates a single P-value for disease association, a disease location, standard error and corresponding information weight. As there is just one statistical test in a region there is a reduced Bonferroni correction relative to single SNPbased tests which require consideration of the number of tests made at nearby SNPs.

Gibson et al [START_REF] Gibson | A multimetric approach to analysis of genome-wide association by single markers and composite likelihood[END_REF] evaluated the composite likelihood approach using relatively low density genotype data (~200K SNPs) in a relatively small sample (403 cases and 395 controls) with an undisclosed disease phenotype. Larger and more comprehensively genotyped samples are now available. The genome-wide breast cancer association analysis by Hunter et al [START_REF] Hunter | A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer[END_REF] utilised samples from 1,145 postmenopausal women of European ancestry with invasive breast cancer contrasted with 1,142 controls analysed with 528,173 SNPs. These data are made available through the Cancer Genetic Markers of Susceptibility (CGEMS) project data portal (http://cgems.cancer.gov/). The data are valuable for comparing composite likelihood and single marker analyses and for developing strategies for meta-analysis. These data present significant evidence for a now well established breast cancer gene, FGFR2, which has been verified in several studies 1 . We describe the application of a composite likelihood modelling approach to this higher density SNP sample, evaluate relative power for composite likelihood and single-SNP based tests and test the impact of increasing marker coverage through genotype imputation. The chromosome-region based approach used in composite likelihood, with regions defined on the underlying LDU map, is highly suited to meta-analysis which is essential to increase the sample size for the identification of novel causal variants.

MATERIALS & METHODS

Data Preparation & Quality Control

Following successful application for permissions, data comprising 1,145 cases and 1,142 controls and genotypes for 555,148 SNPs were downloaded from the CGEMS data portal.

Data files were converted into PLINK format [START_REF] Purcell | PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses[END_REF] and quality control (QC) procedures undertaken. Samples rejected through the QC employed by Hunter et al 2 had already been excluded in the downloaded dataset from an original set of 1,183 cases and 1,185 controls.

The QC we applied resulted in the removal of 93 SNPs with inconsistent or ambiguous kilobase locations, 8,648 SNPs with a high proportion (>10%) missing genotypes, 53,615 SNPs with minor allele frequencies lower than 0.05 and a further 4,308 SNPs with large deviations from Hardy-Weinberg (HW, χ 2 ≥ 10) in the controls (Supplementary Table 1). In addition, one individual with >10% missing genotypes was excluded at the QC stage. To minimise biases created by population stratification we identified individuals with possible non-Caucasian ancestry through multidimensional scaling cluster analysis 8 (Supplementary Figures 1 and2) using 73,560 "LD-independent" SNPs from CGEMs and HapMap. A total of 12,907 of these SNPs showed strand mismatches and were flipped accordingly. No A/T or G/C SNPs were genotyped in the CGEMS data because of the chemistry of the genotyping beadchip (Infinium II). This cluster analysis identified four individuals which were judged to be outside the CEU cluster, suggesting admixture, and were excluded from further analysis at this point. Following QC we analysed a total of 498,786 SNPs in 1,143 cases and 1,139 controls.

Genotype Imputation

After flipping strands for 94,489 SNPs, to ensure strand concordance of the two SNP data sets, a combined CGEMS and HapMap (CEU, phase 3) dataset was produced for genomewide genotype imputation using the PLINK software. 3).

Composite Likelihood Tests

The program CHROMSCAN 9 develops the model described by Maniatis et al 10 utilising data from SNPs in a chromosome region to compute a maximum likelihood location, S, for a causal variant, a standard error, a 95% confidence interval and a permutation-based Pvalue. The underlying LD structure is incorporated into the model through LDU maps, which represent the association mapping analogue of the linkage map [START_REF] Collins | Mapping genes for common diseases: the case for genetic (LD) maps[END_REF] . Disease mapping on the underlying LDU scale has been shown to increase fine mapping resolution and power relative to the physical (kilobase) map [START_REF] Collins | CHROMSCAN: genome-wide association using a linkage disequilibrium map[END_REF] . We constructed LDU maps from the CEU sample from HapMap Phase II based on physical locations from build 36 of the human genome sequence (University of California, Santa Clara, March 2006). Genome-wide LDU maps [START_REF] Lau | Exploiting large scale computing to construct high resolution linkage disequilibrium maps of the human genome[END_REF] are available on request from the authors.

The association test reduces the 3 2 × table of SNP genotype counts by disease affection status at the i th SNP to the corresponding 2 2 × table of allele counts by affection status, with cell totals a, b, c, d, giving n haplotypes from 2 n diplotypes. Association of disease phenotype with SNPs in a region is modeled using a composite likelihood approach.

Observed association with disease at the i th SNP is:
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Expected association, i z , is modeled using the Malecot equation 10 :
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, where i S is the location of the i th SNP in LDU and the S parameter represents the LDU map location showing maximal association with disease. The ε parameter describes the decline of association with map distance and has a value ~1 for LDU maps [START_REF] Collins | CHROMSCAN: genome-wide association using a linkage disequilibrium map[END_REF] , M is the intercept, and L is the asymptote, representing association not due to linkage which is estimated ( L ) or predicted ( p L ). The predicted asymptote is taken as the mean absolute value of a standard normal deviate, weighted by information z K [START_REF] Collins | CHROMSCAN: genome-wide association using a linkage disequilibrium map[END_REF] . Composite likelihood is defined as:
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, where ( ) The association test statistic for each region is the difference
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is computed for the real data ( 1 H ) and a large number of replicates ( 0 H ), as j X for the j th replicate, in which the disease phenotype is randomised (shuffled). The distribution of P-values under 0 H is obtained from fractional ranks in a large sample of replicates. From each of the replicate P-values the corresponding 2 3 χ for the contrast between models 'A' and 'D' is obtained from the GNU Scientific Library (GSL) function gsl_cdf_chisq_Pinv (http://www.gnu.org/software/gsl/ ), and hence the variance for the j th replicate is:

2 3 X V χ = .
Variances for replicates, j V , , are used to predict, by regression, variance V ( 1 H ) and hence 2 3

χ ( 1 H ). The computation of V ( 1 H ) requires a sorted sub-set of replicates which are centered on the value X ( 1 H ), and the model: lnV j = A + B lnX j , with X centered between the 20 closest replicates with X j ≤ X and the corresponding 20 with X j ≥ X; if X is an outlier, the 20 closest values are taken. From this model V ( 1 H ) is estimated as exp(A + B ln X), and

2 3 χ ( 1 H ) = X/V.
Simultaneous estimates of M , S and L give an information matrix which is inverted to provide the nominal variance (U) for location S. Using V ( 1 H ), the information weight, W , about disease gene location, S , is computed as:

1 3 U W V =
and the standard error ( SE ) of

S is: 1 SE W = .
We revised CHROMSCAN to increment the number of replicates adaptively to ensure that the P-value ( 1 H ) predicted from the replicates is accurately determined, with a minimum of 50 replicates and maximum of 20000 per region (or more for refining evidence in a significant region of interest). Gibson et al [START_REF] Gibson | A multimetric approach to analysis of genome-wide association by single markers and composite likelihood[END_REF] , in their analysis of a relatively low density SNP data, used non-overlapping regions spanning at least 10 LDUs and containing a minimum of 30 SNPs. More recent high-density panels enable analysis in smaller regions and higher resolution with reduced possibility of confounding adjacent independent signals.

We used regions of fixed LDU size which facilitates combination of evidence in metaanalysis. Regions of four LDUs contain an average of over 30 SNPs in a ~550,000 SNP scan, assuming ~60,000 LDUs in the CEU genome [START_REF] Lau | Exploiting large scale computing to construct high resolution linkage disequilibrium maps of the human genome[END_REF] . However, there is wide variation in the number of SNPs per region, although coverage is increased with genotype imputation (Table 1).

Single SNP Tests

For single SNP tests we identify the most significant (ms) SNP in a region, from the nominal [START_REF] Hunter | A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer[END_REF] 1 χ (from the 2 2 × table between affection and the two SNP alleles). Selecting the msSNP from a large number of SNPs in a region biases the nominal P-value ( n P ), computed on the null hypothesis. To correct for the number of SNPs we firstly grouped four-LDU regions into ranges which show relatively limited diversity in the number of SNPs they contain (Table 1). The ranges (SNP range, Table 1) were defined to include approximately similar numbers of four-LDU regions, with the exception of regions containing more than 250 SNPs. This enabled the relationship between T (the observed mean number of SNPs in the range) and R (the effective mean number of SNPs in the range) to be characterized in the tail of the distribution. We determined the distribution of numbers of SNPs in each of 28,750 four-LDU regions (original and imputation inclusive data sets combined) and computed the weighted mean number of SNPs, T , in a range (for each range

i i i f m T f = ∑ ∑
, where f is the number of four-LDU regions containing m SNPs, with summation over i = 1, N regions, Table 1). Under the null hypothesis P-values for random SNPs have expectation 2 2 2 ln P χ = , with an expected variance of four and a mean of two [START_REF] Gibson | A multimetric approach to analysis of genome-wide association by single markers and composite likelihood[END_REF] . For each range we computed, R, the effective number of independent SNPs (Table 1) by regula falsi. Bonferroni correction assumes a corrected P-value χ from the msSNPs (μ = 2.5 and 2.2 for original and imputation datasets respectively) and the 2 2 χ , from permutation-based P- values in composite likelihood analyses (μ = 1.9 for both original and imputation inclusive datasets), were multiplied by 2/μ to correct the deviation from the expected mean of 2.

RESULTS

CHROMSCAN analysis yields 14,370 four-LDU regions containing at least one SNP from the original genotype data and 14,380 from the data containing imputed genotypes. The distribution of SNPs in each region is very variable (Table 1, Figure 1). Many regions contain 20 or fewer SNPs and, since the LDU map describes regions with comparable levels of linkage disequilibrium, this suggests that a substantial proportion of the genome may be poorly screened by this set of genotypes. Coverage is increased by imputation of missing genotypes, with the mean number of SNPs per region increasing from 34.7 to 68.6

(Figure 1). However, following imputation ~15% of the regions still have 20 or fewer SNPs and may be poorly represented by both single SNP and composite likelihood tests. SNP panels with more uniform coverage of markers on the LDU, rather than kilobase scale, would reduce the possibility of overlooking regions associated with disease. In higher SNP density panels the magnitude of the Bonferroni correction required for single SNP analysis will be greater. In contrast, more comprehensive genotyping may increase power for composite likelihood tests because one permutation-based P-value is obtained for every region.

The distribution of nominal single SNPs ( 2 1 χ ) in the FGFR2 gene region (Figure 2) show a cluster of SNPs localized in a region with extensive linkage disequilibrium, represented as a plateau on the underlying LDU map. Composite likelihood mapping in this region (Table 2) indicates that, after imputation adds ~64% more SNPs, there is an increase in 2 2 χ from 20.6 to 22.7. The 95% confidence interval for the location of the causal variant decreases by 40% from 1.5 to 0.9 LDUs using the more densely genotyped imputation data set. This reduction in the confidence interval, which spans intron 2 of FGFR2, is reflected in the composite likelihood surface (Figure 3) which shows the difference in
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between the A (null) and D (causal variant location) models for the original and imputation inclusive data sets. 

DISCUSSION

Comparison of composite likelihood and single SNP tests suggest higher power of the former for the FGFR2 association, which is well established as breast cancer risk gene.

Power is further increased with imputation of missing genotypes (Table 2). None of the other genes identified in Table 3 contain well established breast cancer risk variants although it is notable that the NTSR1 (neurotensin receptor 1) gene ranks highly in both composite likelihood and single SNP tests. NTSR1 is a candidate risk factor involved in ductal breast cancer progression [START_REF] Dupouy | The Neurotensin Receptor-1 Pathway Contributes to Human Ductal Breast Cancer Progression[END_REF] . The authors note that in breast cancer cells functionally expressed NT1 receptor coordinates transforming functions including cellular migration and invasion. High expression of NTSR1 is associated with the tumour grade, size and number of metastatic lymph nodes. Given that the well established breast cancer genes only account for a small proportion of the familial genetic risk, regions that fail to achieve genome-wide significance, but rank highly, are worthy of examination in larger samples. A worthwhile focus of future analyses includes screening highly ranked variants in breast cancer phenotypic sub-types, including those which describe tumor characteristics [START_REF] Tapper | The influence of genetic variation in 30 selected genes on the clinical characteristics of early onset breast cancer[END_REF] .

Hunter et al 2 describe the original analysis of these data and the identification of SNPs in the FGFR2 gene as highly associated with sporadic postmenopausal breast cancer. These findings were confirmed by the authors in a second sample. Although strong evidence for the involvement of FGFR2 is a feature of our analysis, comparison with the results presented by Hunter et al is difficult. Differences in the quality control procedures employed (Supplementary Table 1), their use of additional phenotypic data (details of age and hormone replacement therapy use) and differences in analytical methods employed, including their use of logistic regression models, underlie the difficulty of comparison.

In the FGFR2 gene region the apparent higher power for composite likelihood tests must be achieved partly by modeling association at multiple SNPs simultaneously. Alternative approaches that combine data from multiple SNPs include haplotype-based tests [START_REF] Huang | Detecting haplotype effects in genomewide association studies[END_REF] . Such approaches have the advantage of modeling correlations between markers, potentially increasing power, along with the characterization of genetic effects on different haplotypic backgrounds. The disadvantages include the difficulty in deciding how to define haplotype 'windows', the heavy computational requirements, lack of a clearly defined disease interval that is refined with accession of data and the difficulty of combining evidence across samples. Imputation of genotypes, which can usefully increase coverage and potentially provide further increases in power, must also increase the computational and multipletesting burden for haplotype tests, in line with single-SNP based analyses.

Some authors have found that imputing genotypes is rather accurate [START_REF] Hao | Accuracy of genome-wide imputation of untyped markers and impacts on statistical power for association studies[END_REF] but note that power increases only slightly as imputation 'results in modest gain in genetic coverage, but worsens the multiple testing penalties'. This penalty is likely to further erode power when using more comprehensive SNP panels and with imputation at higher densities, as might be achieved (for example) using data from the 1000 genomes project (http://genome.wellcome.ac.uk/doc_WTX047611.html ). Other authors note that the typical imputation error rates of 2 -6% 17 may substantially decrease power and so the utility of this technique may be questioned for single SNP-based analyses.

As individual genetic effect sizes are generally low for common variants involved in complex traits, meta-analysis combining evidence across studies, is an important strategy to increase power and identify novel targets for further follow-up [START_REF] Zeggini | Meta-analysis of genome-wide association data and largescale replication identifies additional susceptibility loci for type 2 diabetes[END_REF] . A composite likelihoodbased approach, in which association evidence from different genome-wide association samples is combined across corresponding regions, provides a test in which individual samples are weighted according to their information ( W , Table 2). This approach also gives an estimate of disease gene location which becomes more precise as further evidence is combined [START_REF] Tapper | Mapping a gene for rheumatoid arthritis on chromosome 18q21[END_REF] . The methods presented here provide a strategy for the analysis of component samples in such a meta-analysis taking advantage of genotype imputation to increase coverage without increasing the multiple-testing penalty.

Polymorphisms in intron 2 of the FGFR2 gene have been implicated as increasing risk of breast cancer in European and Asian populations. Easton et al 1 reported two SNPs, rs2981582 and rs7895676 (at the upstream and downstream boundaries respectively of intron 2), as the most strongly associated and suggested that the latter was most likely to be a causal variant as it showed the strongest association with breast cancer risk. Recently, Boyarskikh et al [START_REF] Boyarskikh | Association of FGFR2 gene polymorphisms with the risk of breast cancer in population of West Siberia[END_REF] , studying a West Siberian population, noted that rs2981582 explained association with disease much more strongly than rs7895676. The authors hypothesized that the actual causal variant lies somewhere within the LD block which includes these two SNPs. Although rs7895676 (location 123323.987 kb) is not represented in the imputationinclusive data set, and rs2981582 does not have the highest single marker chi-square in the sample (Table 3), these markers flank the cluster of associated SNPs in the intron 2 LD block (Figure 2). Given that intron 2 lies within a strong LD block fine mapping to confirm the location of the causal variant will be facilitated by meta-analysis in which the appropriately weighted accessions of data should enable further reduction of the target confidence interval. W: Information weight for location S (LDU).

95% CI: 95% confidence interval for disease gene, size in brackets.

-2lnP: -2 log P-value for association with disease ~2 2 χ . 
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  evaluates the composite likelihood for two subhypotheses to test the evidence for a disease associated variant in a region. Within a given region the null hypothesis ('model A') assumes only 'background' association and no relationship between the affection status and SNPs with: , 0 p L L M = = . As the null model does not test association with disease there is no location estimate, S . The null model, which estimates no parameters, is contrasted with 'model D', which estimates three parameters: a disease location ( S ), an intercept ( M ), and background association ( L ).
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	is ordered by the 10 most significant regions identified using composite likelihood
	in the imputed data set. The FGFR2 region is highest ranked for both composite likelihood
	and single SNP tests. Power, as indicated by 2 ln P -	(= 2 2 χ ) appears relatively lower in
	these data for single SNP tests compared to the composite likelihood based analysis. There

is quite strong correspondence between ranks in the original and imputed data sets for the five highest ranked regions but less agreement for regions ranked 6-10. There is reduced correspondence between single-SNP and composite likelihood tests, although the NTSR1 gene region has relatively high ranks for both tests.

Table 1 -The distribution of SNPs within four LDU regions

 1 

	SNP range	N	T	R
	1 -5	1120	2.22	1.67
	6 -10	1285	7.13	4.58
	11 -14	1243	11.57	6.98
	15 -18	1449	15.52	9.28
	19 -22	1595	19.52	10.46
	23 -25	1223	23.01	12.32
	26 -28	1284	25.97	14.13
	29 -32	1735	29.50	15.83
	33 -36	1647	33.50	17.24
	37 -39	1171	36.96	16.88
	40 -43	1433	40.49	18.74
	44 -48	1723	44.96	20.10
	49 -53	1496	49.98	23.68
	54 -59	1442	55.45	20.91
	60 -66	1436	61.86	24.56
	67 -75	1526	69.81	25.51
	76 -87	1536	80.19	28.04
	88 -104	1391	94.40	27.52
	105 -136	1527	117.71	30.70
	137 -250	1348	171.24	37.33
	251 -550	135	300.16	55.64
	551 -800	5	656.80	97.20
	Total	28750	-	-

N: Total number of four LDU regions containing the number of SNPs in range, T: weighted mean number of SNPs in the range, R: mean effective number of SNPs in the range (Bonferroni correction). Table

contains

regions from original and imputation data sets combined.

Table 2 -Composite Likelihood Analysis in the FGFR2 Region

 2 

		Number of SNPs S LDU	W	95% CI in LDU	95% CI in Kb	-2lnP
	Original dataset	33	2379.66	7.65	2378.9-2380.4	123311.2-123357.4	20.63
			(0.36)		(1.5)	(46.2)	
	Imputation dataset 54	2379.67	17.55	2379.2-2380.1	123315.6-123347.9	22.68
			(0.24)		(0.9)	(32.3)	

Key: S LDU: Maximum likelihood location for disease gene (LDU), standard errors in brackets.

Table 3 -Composite Likelihood: The ten highest ranked regions (imputation-inclusive dataset)

 3 

	Chromsomes

"Imputed" here refers to the aggregated dataset consisting of both original and imputed SNPs.

Gene including the msSNP identified.

Only 555,148 SNPs out of the 555,352 originally genotyped SNPs were available in the CGEMS Portal datasets.

Only SNPs with HW χ 2 ≥ 10 in the Nurses' Health Study [NHS] control group were excluded from further analyses.
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[Population abbreviations as above in Supplementary Figure 1.] Supplementary Figure 3: Genotypic coverage achieved across the CGEMS cohort from original genotypes and sufficiently well-imputed genotypes. Each bar in total represents the total number of SNPs per chromosome for which imputation was performed.