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BILINEAR SOBOLEV-POINCARÉ INEQUALITIES AND

LEIBNIZ-TYPE RULES

FRÉDÉRIC BERNICOT, DIEGO MALDONADO, KABE MOEN, AND VIRGINIA NAIBO

Abstract. The dual purpose of this article is to establish bilinear Poincaré-type
estimates associated to an approximation of the identity and to explore the con-
nections between bilinear pseudo-differential operators and bilinear potential-type
operators. The common underlying theme in both topics is their applications to
Leibniz-type rules in Sobolev and Campanato-Morrey spaces under Sobolev scaling.

1. Introduction

Leibniz-type rules quantify the regularity of a product of functions in terms of
the regularity of its factors. In this sense, Leibniz-type rules are represented by
inequalities of the form

(1.1) ‖fg‖Z . ‖f‖X1‖g‖Y1 + ‖f‖X2‖g‖Y2,

where X1, X2, Y1, Y2, and Z are appropriate functional spaces. Along these lines,
perhaps the better-known Leibniz-type rules correspond to the fractional Leibniz
rules, pioneered by Kato-Ponce [18], Christ-Weinstein [9] and Kenig-Ponce-Vega [19]
in their work on PDEs, where the spaces X1, X2, Y1, Y2, and Z belong to the scale
of Sobolev spaces Wm,p; namely,

(1.2) ‖fg‖Wm,q . ‖f‖Wm,p1‖g‖Lp2 + ‖f‖Lp1‖g‖Wm,p2 ,

where m ≥ 0 and

(1.3)
1

q
=

1

p1
+

1

p2
with 1 < p1, p2 <∞, 1 ≤ q.

The estimates (1.2) follow as a consequence of interpolation and the boundedness
properties on products of Lebesgue spaces of bilinear Coifman-Meyer multipliers ([10,
15]): If σ satisfies

(1.4) |∂αξ ∂βη σ(ξ, η)| ≤ Cα,β(|ξ|+ |η|)−(|α|+|β|), ξ, η ∈ R
n, α, β ∈ N

n
0 , |α|+ |β| ≤ Cn,
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where Cn is a certain constant depending only on n, and

Tσ(f, g)(x) :=

∫

R2n

σ(ξ, η)f̂(ξ)ĝ(η)eix·(ξ+η) dξ dη, x ∈ R
n, f, g ∈ S(Rn),

then Tσ is bounded from Lp1 ×Lp2 into Lq, where p1, p2, and q conform to the Hölder
scaling (1.3). Then, inequalities (1.2) are obtained from this result after observing
that, by frequency decoupling, the identity

(1.5) Jm(fg)(x) = Tσ1(J
mf, g)(x) + Tσ2(f, J

mg)(x),

holds true for some bilinear symbols σ1 and σ2 and

Ĵm(h)(ξ) := (1 + |ξ|2)m/2 ĥ(ξ), ξ ∈ R
n, m > 0, h ∈ S(Rn).

For m sufficiently large, depending only on dimension, the symbols σ1 and σ2 satisfy
(1.4) and interpolation with the case m = 0 (notice that here q ≥ 1) gives (1.2)
for any m > 0. Two immediate conclusions can be derived from this approach.
First, since the symbol σ0 ≡ 1 satisfies (1.4) and yields, through Tσ0 , the product
of two functions, the Hölder scaling (1.3) occurs naturally. Second, the identity
(1.5) can be exploited to produce Leibniz-type rules (1.1) involving function spaces
that interact well with Jm (for example, Besov and Triebel-Lizorkin spaces) provided
that mapping properties for bilinear multipliers Tσ are established for such spaces.
Indeed, implementations of this program (see, for instance, [7, 16, 25]), produce
Besov, Triebel-Lizorkin, and mixed Besov-Lebesgue Leibniz-type rules.

A Littlewood-Paley-free path towards Leibniz-type rules was introduced in [24] in
the scales of Campanato-Morrey spaces. In this context, the role of the identity (1.5)
is played by the inequality

(1.6) |f(x)g(x)− fBgB| . I1(|∇f |χB, |g|χB) + I1(|f |χB, |∇g|χB), x ∈ B,

where B ⊂ Rn is a ball, f, g ∈ C1(B), I1 is a bilinear potential operator, and
fB := 1

|B|

∫
B
f(x) dx. Inequality (1.6) arises as a bilinear interpretation of the linear

inequality

(1.7) |f(x)− fB| . I1(|∇f |χB), x ∈ B, f ∈ C1(B),

where I1 denotes the Riesz potential of order 1. Inequality (1.7) is usually re-
ferred to as a representation formula (for the oscillation |f(x) − fB|). In the lin-
ear setting, representation formulas and Poincaré inequalities imply embeddings of
Campanato-Morrey spaces (see, for instance, [23] for such embeddings in the Carnot-
Carathéodory framework). As proved in [24], via (1.6), the bilinear analogs to these
embeddings come in the form of Campanato-Morrey Leibniz-type rules. More pre-
cisely, in the scale of Campanato-Morrey spaces (Lp,λ(w) and Lq,λ(w) below), a typical
weighted Leibniz-type rule takes the form (see [24])

(1.8) ‖fg‖Lq,λ(w) . ‖∇f‖Lp1,λ1(u)‖g‖Lp2,λ2 (v) + ‖f‖Lp1,λ1(u)‖∇g‖Lp2,λ2 (v),

for (a large class of) weights u, v, w and indices q, λ, p1, λ1, p2, and λ2. In the un-
weighted case, the natural scaling for (1.8) turns out to be the bilinear Sobolev scaling

(1.9)
1

q
=

1

p1
+

1

p2
− 1

n
with 1 < p1, p2 <∞.
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From (1.6), it now becomes apparent that the prevailing tools for obtaining inequali-
ties (1.8) rely on boundedness properties of suitable bilinear potential-type operators.
Thus, in the scale of Campanato-Morrey spaces, bilinear potential-type operators
play the role that paraproducts and the bilinear Coifman-Meyer multipliers play in
the proofs of the Sobolev-based Leibniz-type rules (1.2) and their Besov and Triebel-
Lizorkin counterparts. Accordingly, the time-frequency Fourier-based tools in the
latter are replaced by real-analysis methods in the former.

The purpose of this article is to further develop time-frequency and real-analysis
approaches that allow to prove new Leibniz-type rules in Sobolev and Campanato-
Morrey spaces. In the rest of this introduction we feature some of the main results
as we explain the organization of the manuscript.

In Section 2 we recall some definitions and known results on boundedness properties
of bilinear fractional integrals in weighted and unweighted Lebesgue spaces that will
be useful for our proofs.

In Section 3 we explore the behavior of the bilinear oscillation |f(x)g(x) − fBgB|
when the mean-value operator is replaced by an approximation of the identity {St}.
Our exposition includes the case of the infinitesimal generator L of an analytic semi-
group {St}t>0 on L2(Rn) (i.e. St = e−tL) whose kernel pt(x, y) has fast-enough off-
diagonal decay. The quantity Stf = e−tLf can be thought of as an average version
of f at the scale t and plays the role of fB for some t = tB, when defining function
spaces, such as BMOL and H1

L, which better capture properties of the solutions to
Lu = 0; see for instance [11]. In the linear case, the new study of Sobolev-Poincaré
inequalities associated to the oscillation |f − StBf | has been successfully carried out
in [2, 17] (see also [1]), yielding Sobolev-Poincaré type inequalities such as

(1.10)

(
1

|B|

∫

B

|f − StBf |q
)1/q

.
∑

k∈N0

αk r(2
kB)

(
1

|2kB|

∫

2kB

|∇f |p
)1/p

,

for suitable choices of indices 1 < p < q and sequences {αk} ⊂ [0,∞). As described in
[2, 17], the presence of the series expansion on the right-hand side of (1.10) accounts
for the lack of localization of the approximation of the identity {St}. In this vein, we
study bilinear oscillations of the type |fg−StBfStBg| and establish bilinear Poincaré-
type inequalities in the Euclidean setting associated to a general approximation of
the identity {St}. We prove:

Theorem 1. Let S := {St}t>0 and S ′ := {t∂tSt}t>0 be approximations of the identity
in Rn of order m > 0 and constant ε in (3.28), 1 < p1, p2 < ∞, q > 0, and 0 < α <
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min{1, ε} such that 1
q
= 1

p1
+ 1

p2
− 1−α

n
.

(∫

B

|fg − Sr(B)m(f)Sr(B)m(g)|q
)1/q

. r(B)α
∑

l≥0

2−l(ε−α)

[(∫

2l+1B

|∇f |p1
)1/p1 (∫

2l+1B

|g|
)1/p2

+

(∫

2l+1B

|f |p1
)1/p1 (∫

2l+1B

|∇g|
)1/p2

]
.

If fact, our full result is a more general weighted version of Theorem 1 (see Theorem
4). The proof consists in establishing a bilinear representation formula tailored to
the semigroup {St}, which, as expected, turns out to be an expanded version of (1.6)
(see Theorem 5). This bilinear representation formula involves logarithmic perturba-
tions of the bilinear fractional integral used in [24], whose kernels are proved to still
satisfy appropriate growth conditions that guarantee boundedness of the operator on
products of weighted Lebesgue spaces.

In Section 4 we define bilinear Campanato-Morrey spaces associated to {St} and
use the results of section 3 to produce associated (weighted) Leibniz-type rules.

In Section 5 we point out relevant extensions to the contexts of doubling Riemann-
ian manifolds and Carnot groups.

In Section 6 we close the circle of ideas developed in Sections 1-3 by relating bilinear
pseudo-differential operators and bilinear potential operators. More specifically, we
study bilinear pseudo-differential operators of the form

Tσ(f, g)(x) =

∫

R2n

eix(ξ+η)σ(x, ξ, η)f̂(ξ)ĝ(η)dξdη, f, g ∈ S(Rn), x ∈ R
n.(1.11)

We relate such operators to potential operators via the inequalities

(1.12) |Tσ(f, g)| . Bs(|f |, |g|) and |Tσ(f, g)| . Is(|f |, |g|), f, g ∈ S(Rn),

where Bs is the bilinear fractional integral of order s, introduced and studied in [14]
and [20], Is is the bilinear Riesz potential of order s introduced in [20], and σ belongs
to standard classes of bilinear symbols of order −s. As a consequence of these bonds
between bilinear pseudo-differential and potential operators, we obtain the following
(see Sections 2 and 6 for pertinent definitions):

Theorem 2. Suppose n ∈ N and consider exponents p1, p2 ∈ (1,∞) and q, s > 0
that satisfy

(1.13)
1

q
=

1

p1
+

1

p2
− s

n
.

(a) If s ∈ (0, 2n), 0 ≤ δ < 1, and σ ∈ BS−s
1,δ(R

n)∪ ˙BS−s
1,δ (R

n) then Tσ is bounded from
Lp1 × Lp2 into Lq.

(b) If s ∈ (0, n), θ ∈ (0, π)\{π/2, 3π/4}, 0 ≤ δ < 1 and σ ∈ BS−s
1,δ;θ(R

n)∪ ˙BS−s
1,δ;θ(R

n)
then the bilinear operator Tσ is bounded from Lp1 × Lp2 into Lq.
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We actually prove a more general weighted version of Theorem 2, for which we refer
the reader to Theorem 12 for a more precise statement. In section 7 we present some
consequences of Theorem 2, such as Sobolev-based fractional Leibniz rules of the
form

(1.14) ‖fg‖Wm,q . ‖f‖W s+m,p1‖g‖Lp2 + ‖f‖Lp1‖g‖W s+m,p2 ,

for a range of indices m and s, with the novelty 0 < q < 1, under the bilinear Sobolev
scaling of equation (1.13). The relation (1.13) sheds additional light onto the balance
between integrability and smoothness built into inequalities of the type (1.2). Notice
that inequality (1.14) cannot be obtained by applying Sobolev embedding and then
the fractional Leibniz rule (1.2), because equation (1.13) allows for 0 < q < 1 in
which case the Sobolev embedding Wm+s,r ⊆ Wm,q fails for any choice of r with
1/r = 1/p1 + 1/p2 and q as in (1.13).

The bilinear Poincaré estimates introduced in [24] rely on the oscillation of the
pointwise product of two functions (i.e. Tσ with σ ≡ 1); in turn, they give rise to
bilinear Sobolev inequalities of the form

(1.15) ‖fg‖Lq . ‖∇f‖Lp1‖g‖Lp2 + ‖f‖Lp1‖∇g‖Lp2 ,

for exponents p1, p2 > 1 and q > 0 satisfying the Sobolev relation (1.9). These results
correspond to the limit of bilinear Poincaré inequalities on balls, by making the radius
of the ball tend to infinity. We direct the reader to [24, 27, 28] for other versions of
(1.15), including weights and higher order derivatives in the context of Hörmander
vector fields. The results presented in Section 7 further substantiates inequalities
of the type (1.15) under Sobolev scaling and unifies their study in the language of
bilinear pseudo-differential operators.

Throughout the paper, we use upper-case letters to label theorems corresponding
to known results while we use single numbers (with no reference to the section) for
theorems, propositions and corollaries that are new and proved in this article.

2. Bilinear fractional integrals and their boundedness properties on
weighted Lebesgue spaces

Given a weight w defined on Rn and p > 0, the notation Lp
w will be used to refer

to the weighted Lebesgue space of all functions f : Rn → C such that ‖f‖p
Lp
w
:=∫

Rn |f(x)|pw(x) dx <∞, when w ≡ 1 we will simply write Lp.

If w1, w2 are weights defined on Rn, 1 < p1, p2 < ∞, q > 0, and w := w
q/p1
1 w

q/p2
2 ,

we say that (w1, w2) satisfies the A(p1,p2),q condition (or that (w1, w2) belongs to the
class A(p1,p2),q) if

[(w1, w2)]A(p1,p2),q
:= sup

B

( 1

|B|

∫

B

w(x) dx
) 2∏

j=1

( 1

|B|

∫

B

wj(x)
1−p′j dx

) q

p′
j <∞,

where the supremum is taken over all Euclidean balls B ⊂ Rn and |B| denotes the
Lebesgue measure of B.
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The classes A(p1,p2),q are inspired in the classes of weights Ap,q, 1 ≤ p, q < ∞,
defined by Muckenhoupt and Wheeden in [29] to study weighted norm inequalities
for the fractional integral: a weight u defined on Rn is in the class Ap,q if

sup
B

(
1

|B|

∫

B

u
q
p dx

)(
1

|B|

∫

B

u(1−p′) dx

) q
p′

<∞.

The classes A(p1,p2),q for 1/q = 1/p1+1/p2 were introduced in [22] to study character-
izations of weights for boundedness properties of certain bilinear maximal functions
and bilinear Calderón-Zygmund operators in weighted Lebesgue spaces. As shown
in [27], the classes A(p1,p2),q characterize the weights rendering analogous bounds for
bilinear fractional integral operators .

Remark 2.1. If (w1, w2) satisfies the A(p1,p2),q condition then w = w
q/p1
1 w

q/p2
2 and

w
1−p′i
i , i = 1, 2, are A∞ weights as shown in [22, Theorem 3.6 ] and [27, Theorem 3.4].

For α > 0, we consider bilinear fractional integral operators on Rn of order α > 0
defined by

Bα(f, g)(x) :=

∫

Rn

f(x− s1y)g(x− s2y)

|y|n−α
dy, x ∈ R

n.(2.16)

Iα(f, g)(x) :=

∫

R2n

f(y)g(z)

(|x− y|+ |x− z|)2n−α
dydz, x ∈ R

n,(2.17)

where s1 6= s2 are nonzero real numbers. In the following theorem we summarize
results concerning boundedness properties on weighted and unweighted Lebesgue
spaces for the operators Bα and Iα, which will be useful in some of our proofs.

Theorem A. In Rn :

(a) [20, 27] Let α ∈ (0, 2n), 1 < p1, p2 < ∞ and q > 0 such that 1
q
= 1

p1
+ 1

p2
− α

n
.

Then Iα is bounded from Lp1
w1

× Lp2
w2

into Lq
w for w := w

q/p1
1 w

q/p2
2 and pairs of

weights (w1, w2) satisfying the A(p1,p2),q condition.
(b) [14, 20] Let α ∈ (0, n), 1 < p1, p2 <∞ and q > 0 such that 1

q
= 1

p1
+ 1

p2
− α

n
. Then

Bα is bounded from Lp1 × Lp2 into Lq.
(c) [Remark 2.2] Let α ∈ (0, n), 1 < p1, p2 < ∞ such that 1/p := 1/p1 + 1/p2 < 1

and q > 1 such that 1/q = 1/p− α/n. Then Bα is bounded from Lp1
w1

× Lp2
w2

into

Lq
w for w := w

q/p1
1 w

q/p2
2 and weights w1, w2 in Ap,q.

Remark 2.2. Part (c) of Theorem A follows from the following observations. Muck-
enhoupt and Wheeden [29] showed that the linear fractional integral operator

Iαf(x) :=

∫

Rn

f(x− y)

|y|n−α
dy

satisfies (∫

Rn

|Iαf(x)|qu
q
p dx

)1/q

≤ C

(∫

Rn

|f(x)|pu dx
)1/p
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for 1/q = 1/p − α/n, u ∈ Ap,q and p, q > 1. Using p and q as in the statement of
part (c) of Theorem A, let r = p1/p and s = p2/p, so that r, s > 1 and 1/r+1/s = 1.
By Hölder’s inequality

|Bα(f, g)| . Iα(|f |r)1/rIα(|g|s)1/s,
and

(∫

Rn

|Bα(f, g)|qw
)1/q

≤
(∫

Rn

Iα(|f |r)q/rIα(|g|s)q/sw
q
p1
1 w

q
p2
2

)1/q

≤
(∫

Rn

Iα(|f |r)qw
q
p

1 dx

)1/qr (∫

Rn

Iα(|g|s)qw
q
p

2

)1/sq

.

Using the result of Muckenhoupt and Wheeden, the last inequality is bounded by

C

(∫

Rn

|f |rpw1

)1/rp(∫

Rn

|g|spw2

)1/sp

= C

(∫

Rn

|f |p1w1

)1/p1 (∫

Rn

|g|p2w2

)1/p2

,

which is the desired result.

Multilinear potential operators, of which Iα is a particular case, were studied in
[24] in the context of spaces of homogeneous type. We now briefly recall some those
results, as they will be used in the proofs in the next sections.

Let (X, ρ, µ) be a space of homogenous type. That is, X is a non-empty set, ρ is a
quasi-metric defined on X that satisfies the quasi-triangle inequality

(2.18) ρ(x, y) ≤ κ(ρ(x, z) + ρ(z, y)), x, y, z ∈ X,

for some κ ≥ 1, and µ is a Borel measure on X (with respect to the topology defined
by ρ) such that there exists a constant L0 ≥ 0 verifying

(2.19) 0 < µ(Bρ(x, 2r) ≤ L0 µ(Bρ(x, r)) <∞
for all x ∈ X and 0 < r < ∞, and where Bρ(x, r) = {y ∈ X : ρ(x, y) < r} is the
ρ-ball of center x and radius r. Given a ball B = Bρ(x, r) and θ > 0 we will usually
write r(B) to denote the radius r and θB to denote Bρ(x, θr). In the Euclidean
setting, this is, when X = Rn, ρ is Euclidean distance and µ is Lebesgue measure,
we use the notation B(x, r) instead of Bρ(x, r).

The measure µ is said to satisfy the reverse doubling property if for every η > 1
there are constants c(η) > 0 and γ > 0 such that

(2.20)
µ(Bρ(x1, r1))

µ(Bρ(x2, r2))
≥ c(η)

(
r1
r2

)γ

,

whenever Bρ(x2, r2) ⊂ Bρ(x1, r1), x1, x2 ∈ X and 0 < r1, r2 ≤ η diamρ(X).
We consider bilinear potential operators of the form

(2.21) T (f, g)(x) =

∫

X2

f(y)g(z)K(x, y, z) dµ(y)dµ(z),

where the kernel K is the restriction of a nonnegative continuous kernel K̃(x1, x2, y, z)
(i.e. K(x, y, z) = K̃(x, x, y, z) for (x, y, z) ∈ X ×X ×X) that satisfies the following
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growth conditions : for every c > 1 there exists C > 1 such that

K̃(x1, x2, y, z) ≤ CK̃(v, w, y, z) if ρ(v, y) + ρ(w, z) ≤ c (ρ(x1, y) + ρ(x2, z)), and

(2.22)

K̃(x1, x2, y, z) ≤ CK̃(y, z, v, w) if ρ(y, v) + ρ(z, w) ≤ c (ρ(x1, y) + ρ(x2, z)).

The functional ϕ associated to K is defined by

ϕ(B) := sup{K(x, y, z) : (x, y, z) ∈ B × B × B, ρ(x, y) + ρ(x, z) ≥ c r(B)}
for a sufficiently small positive constant c and for B a ρ ball such that r(B) ≤
η diamρ(X), for some fixed η > 1. The functional ϕ associated to K will be assumed
to satisfy the following property: there exists δ > 0 such that for all C1 > 1 there
exists C2 > 0 such that

(2.23) ϕ(B′)µ(B′)2 ≤ C2

(
r(B′)

r(B)

)δ

ϕ(B)µ(B)2

for all balls B′ ⊂ B, with r(B′), r(B) < C1 diamρ(X).
We note that, in the Euclidean setting, the operator Iα defined in (2.17) has kernel

and associated functional given, respectively, by

K(x, y, z) =
1

(|x− y|+ |x− z|)2n−α
and ϕ(B) ∼ r(B)α−2n,

and both satisfy (2.22) and (2.23).

Theorem B ([24]). Suppose that 1 < p1, p2 ≤ ∞, 1
p
= 1

p1
+ 1

p2
and 1

2
< p ≤ q <

∞. Let (X, ρ, µ) be a space of homogeneous type that satisfies the reverse doubling
property (2.20) and let K be a kernel such that (2.22) holds with ϕ satisfying (2.23).
Furthermore, let u, vk, k = 1, 2 be weights defined on X that satisfy condition (2.24)
if q > 1 or condition (2.25) if q ≤ 1, where
(2.24)

sup
B ρ-ball

ϕ(B)µ(B)
1
q
+ 1

p1
′+

1
p′
2

(
1

µ(B)

∫

B

uqtdµ

)1/qt 2∏

j=1

(
1

µ(B)

∫

B

v
−tp′i
i dµ

)1/tp′i

<∞,

for some t > 1,

(2.25)

sup
B ρ-ball

ϕ(B)µ(B)
1
q
+ 1

p1
′ +

1
p′
2

(
1

µ(B)

∫

B

uqdµ

)1/q 2∏

j=1

(
1

µ(B)

∫

B

v
−tp′i
i dµ

)1/tp′i

<∞,

for some t > 1, with the supremum taken over ρ-balls with r(B) . diamρ(X). Then
there exists a constant C such that

(∫

X

(|T (f1, f2)|u)q dµ
)1/q

≤ C

2∏

k=1

(∫

X

(|fk|vk)pk dµ
)1/pk

for all (f1, f2) ∈ Lp1
v
p1
1
(X)× Lp2

v
p2
2
(X). The constant C depends only on the constants

appearing in (2.18), (2.19), (2.20), (2.22), (2.23), (2.24) and (2.25).
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Remark 2.3. A careful examination of the proof of Theorem B yields

‖T ‖op .
C

1−D−δ
W,

where W is the constant from (2.24) or (2.25), C = max(C1, C2) and δ > 0 are the
constants from (2.23), and D > 1 is a structural constant.

Remark 2.4. In the Euclidean setting, consider weights w1, w2 ∈ A(p1,p2),q and w =

w
q/p1
1 w

q/p2
2 , for some 1 < p1, p2 < ∞, 0 < 1

q
< 1

p1
+ 1

p2
and suppose that T is an

operator of the form (2.21) such that

sup
B
ϕ(B)|B|

1
q
+ 1

p1
′+

1
p′2 ∼ sup

B
ϕ(B)r(B)

n
q
+ n

p1
′ +

n
p′2 <∞.

It then follows that u := w
1
q and vk := w

1
pk
k , k = 1, 2, satisfy (2.24) and (2.25).

Indeed, the second factor in (2.24) is given by

sup
x∈Rn,r>0

(
1

|B(x, r)|

∫

B(x,r)

wtdx

)1/qt 2∏

j=1

(
1

|B(x, r)|

∫

B(x,r)

w
− t

pi−1

i dx.

)1/tp′i

(2.26)

Since w, w
− 1

p1−1

1 , w
− 1

p2−1

2 are A∞ weights (see Remark 2.1), there exists t > 1 such
that (2.26) is bounded by

sup
B

(
1

|B|

∫

B

w dx

)1/q 2∏

j=1

(
1

|B|

∫

B

w
− 1

pi−1

i dx

)1/p′i

= [(w1, w2)]A(p1,p2),q
<∞,

where finiteness is due to (w1, w2) satisfying the A(p1,p2),q condition. A similar rea-
soning applies to (2.25).

The last two remarks imply the following

Corollary 3. In the n-dimensional Euclidean setting, consider weights w1, w2 ∈
A(p1,p2),q and w = w

q/p1
1 w

q/p2
2 , for some 1 < p1, p2 <∞, 0 < 1

q
< 1

p1
+ 1

p2
. Suppose that

T is an operator of the form (2.21) such that its kernel satisfies (2.22), the associated
functional ϕ satisfies (2.23), and

sup
B
ϕ(B)r(B)

n
q
+ n

p1
′+

n
p′2 <∞.

Then there exists a constant A such that
(∫

Rn

|T (f1, f2)|qw dx
)1/q

≤ A

2∏

k=1

(∫

Rn

|fk|pkwk dx

)1/pk

for all (f1, f2) ∈ Lp1
w1

× Lp2
w1
. The constant A satisfies

A ≤ c sup
B
ϕ(B)r(B)

n
q
+ n

p1
′+

n
p′
2 ,

where c depends only on [(w1, w2)]A(p1,p2),q
and other absolute constants.



10 FRÉDÉRIC BERNICOT, DIEGO MALDONADO, KABE MOEN, AND VIRGINIA NAIBO

3. Bilinear Poincaré-type inequalities relative to an approximation
of the identity

An approximation of the identity of order m > 0 in Rn is a collection of operators
S := {St}t>0 acting on functions defined on Rn,

Stf(x) =

∫

Rn

pt(x, y)f(y) dy, x ∈ R
n,

such that for each t > 0 the kernels pt satisfy
∫
Rn pt(x, y) dy = 1 for all x and the

scaled Poisson bound

(3.27) |pt(x, y)| ≤ t−n/m γ

( |x− y|
t1/m

)
, x, y ∈ R

n,

where γ : [0,∞) → [0,∞) is a bounded, decreasing function for which

(3.28) lim
r→∞

r2n+εγ(r) = 0, for some ε > 0.

As examples, it is well-known that if a sectorial operator L generates a holomorphic
semigroup {e−zL}z whose kernels satisfy suitable pointwise bounds, then St = e−tL

gives rise to an approximation of the identity. The resolvents St = (1 + tL)−M or
St = 1 − (1 − e−tL)N can be considered as well. We refer the reader to [11] and
[26] for more details concerning holomorphic functional calculus. Other examples
can be built on a second-order divergence form operator L = −div(A∇) with an
elliptic matrix-valued function A. Since L is maximal accretive, it admits a bounded
H∞-calculus on L2(Rn). Moreover, when A has real entries or when the dimension
n ∈ {1, 2}, then the operator L generates an analytic semigroup on L2 with a heat
kernel satisfying Gaussian upper-bounds.

The main result of this section is the following:

Theorem 4. Let S := {St}t>0 and S ′ := {t∂tSt}t>0 be approximations of the identity
in Rn of order m > 0 and constant ε in (3.28), 1 < p1, p2 < ∞, q > 0, and 0 < α <
min{1, ε} such that 1

q
= 1

p1
+ 1

p2
− 1−α

n
. If (w1, w2) satisfy the A(p1,p2),q condition and

w := w
q/p1
1 w

q/p2
2 , then there exists a constant C such that for all Euclidean balls B

∥∥fg − Sr(B)m(f)Sr(B)m(g)
∥∥
Lq
w(B)

≤ C r(B)α
∑

l≥0

2−l(ε−α)
[
‖∇f‖Lp1

w1
(2l+1B) ‖g‖Lp2

w2
(2l+1B) + ‖f‖Lp1

w1
(2l+1B) ‖∇g‖Lp2

w2
(2l+1B)

]
.

Remark 3.1. It is possible to consider two collections of operators S1 := {S1
t }t>0

and S2 := {S2
t }t>0, then the proof of Theorem 4 holds true when estimating the

oscillation ‖fg − S1
r(B)m(f)S

2
r(B)m(g)‖Lq

w(B).

Remark 3.2. Note that condition (3.28) assumes exponent 2n + ε rather than n +
ε. This is quite natural in our context since the proof of Theorem 4 involves the
semigroup Pt := St⊗St which is expected to have decay for 2n-dimensional variables.
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Remark 3.3. The scaling of the result in Theorem 4 is in accordance with the classical
situation corresponding to α = 0 and obtained in [24]. More precisely, a particular
case of [24, Theorem 1] reads

(3.29) ‖fg − fBgB‖Lq
w(B) ≤ C (‖∇f‖Lp1

w1
(B) ‖g‖Lp2

w2
(B) + ‖f‖Lp1

w1
(B) ‖∇g‖Lp2

w2
(B))

for 1
q
= 1

p1
+ 1

p2
− 1

n
, with 1

p1
+ 1

p2
< 2, (w1, w2) ∈ A(p1,p2),q and w = w

q/p1
1 w

q/p2
2 .

Hölder’s inequality and the conditions on the weights imply

‖fg − fBgB‖Lq
w(B) ≤ C r(B)α (‖∇f‖Lp1

w1
(B) ‖g‖Lp2

w2
(B) + ‖f‖Lp1

w1
(B) ‖∇g‖Lp2

w2
(B))

for 1
q
= 1

p1
+ 1

p2
− 1−α

n
, (w1, w2) ∈ A(p1,p2),q and w = w

q/p1
1 w

q/p2
2 .

For instance, let p1, p2, q, α, w1, w2, w be as in the statement of Theorem 4. Define
q̄ by 1

q̄
= 1

p1
+ 1

p2
− 1

n
= 1

q
− α

n
and assume that q̄ > 0 and that the pair (w1, w2) is in

A(p1,p2),q̄. Setting w̄ = w
q̄/p1
1 w

q̄/p2
2 and using Hölder’s inequality and (3.29) we obtain

‖fg − fBgB‖Lq
w(B) ≤

(∫

B

w̄

(
w

q−q̄
p1
1 w

q−q̄
p2
2

)( q̄
q
)′
) 1

q(q̄/q)′

‖fg − fBgB‖Lq̄
w̄(B)

. r(B)α (‖∇f‖Lp1
w1

(B) ‖g‖Lp2
w2

(B) + ‖f‖Lp1
w1

(B) ‖∇g‖Lp2
w2

(B)).

Note, however, that Theorem 4 does not include the case α = 0.

Remark 3.4. Since we do not require spatial regularity on the kernels pt in (3.27),
our results can be extended to every subset of Rn (not necessarily Lipschitz) by
considering truncations as used in [12].

Our proof of Theorem 4 is based on an appropriate representation formula for the
bilinear oscillations associated to the approximation of the identity and the bound-
edness properties of operators studied in [24]. We present the details in the next two
subsections.

3.1. Representation formula. We start by introducing the collection of bilinear
operators that shape our representation formula. For a ball B ⊂ Rn, the operator
JB is defined as

(3.30) JB(f1, f2)(x) :=

∫

B×B

K(x, (a, b))f1(a)f2(b) da db x ∈ B,

with kernel

K(x, (a, b)) :=
1

(|x− a|+ |x− b|)2n−1
log

(
8 r(B)

|x− a|+ |x− b|

)
, x, a, b ∈ B.

Theorem 5 (Bilinear representation formula). Let S = {St}t>0 and S ′ = {t∂tSt}t>0

be approximations of the identity in Rn of order m > 0 and constant ε in (3.28).
There exists a constant C > 0 such that for every ball B ⊂ Rn and x ∈ B,∣∣f(x)g(x)− Sr(B)m(f)(x)Sr(B)m(g)(x)

∣∣

≤ C
∑

l≥0

2−lε [J2l+1B(|∇f |χ2l+1B, |g|χ2l+1B)(x) + J2l+1B(|f |χ2l+1B, |∇g|χ2l+1B)(x)] .
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Remark 3.5. As mentioned in the Introduction, since the approximation operator
Sr(B)m is not a local operator, we cannot expect perfectly localized estimates as for
the “classical” Poincaré inequality.

Proof. We consider the operator on R2n given by Pt := St ⊗ St, that is,

Pt(F )(x, x) =

∫

Rn

∫

Rn

pt(x, y)pt(x, z)F (y, z) dydz.

For given functions f and g defined on Rn, let F (y, z) := f(y)g(z). Fix B of radius
r(B), x ∈ B and for each t ∈ (0, r(B)m) let Bt be the ball of radius t1/m centered at
x ∈ Rn. Then

F (x, x)−Pr(B)m(F )(x, x) = −
∫ r(B)m

0

t∂tPt(F )(x, x)
dt

t

= −
∫ r(B)m

0

t∂tPt(F − FBt×Bt)(x, x)
dt

t
,

where we used that FBt×Bt = fBtgBt is a constant and ∂tSt(1) = 0 for all t > 0. The
pointwise bounds (3.27) for the kernels pt(x, y) give

|t∂tPt(F − FBt×Bt)(x, x)|

.

∫

Rn

∫

Rn

t−
2n
m

(
1 +

|x− y|
t

1
m

)−2n−ε(
1 +

|x− z|
t

1
m

)−2n−ε

|f(y)g(z)− fBtgBt | dydz

.

∫∫

Bt×Bt

t−
2n
m

(
1 +

|x− y|
t

1
m

)−2n−ε(
1 +

|x− z|
t

1
m

)−2n−ε

|f(y)g(z)− fBtgBt | dydz

+
∑

l∈N

∫∫

Cl(Bt×Bt)

t−
2n
m

(
1 +

|x− y|
t

1
m

)−2n−ε(
1 +

|x− z|
t

1
m

)−2n−ε

|f(y)g(z)− fBtgBt | dydz

=: I0(f, g, t)(x) +
∑

l∈N

Il(f, g, t)(x),

where for l ≥ 1, Cl(Bt × Bt) denotes the annulus

Cl(Bt × Bt) := 2l(Bt × Bt) \ 2l−1(Bt ×Bt).

We now proceed to estimating each of the terms Il(f, g, t), l ≥ 0.

The bound for I0(f, g, t). Notice that for all y, z ∈ Bt,

(3.31) |f(y)g(z)− fBtgBt | .
∫∫

Bt×Bt

|∇f(a)||g(b)|+ |f(a)||∇g(b)|
(|y − a|+ |z − b|)2n−1

dadb.

Indeed, the usual representation formula for a linear oscillation in (Rn)2 gives

|F (y, z)− FBt×Bt | ≤ C

∫

Bt×Bt

|∇F (a, b)|
|(y, z)− (a, b)|2n−1

dadb
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which yields (3.31). Hence, we get

I0(f, g, t)(x) .

∫∫

Bt×Bt

t−2n/m|f(y)g(z)− fBtgBt | dydz

.

∫∫

Bt×Bt

(|∇f(a)||g(b)|+ |f(a)||∇g(b)|)I(a, b, t) da db,

where

I(a, b, t) :=

∫∫

Bt×Bt

t−2n/m

(|y − a| + |z − b|)2n−1
dy dz.

For a, b ∈ Bt, we have

I(a, b, t) ≤
∫∫

|y−a|≤2t1/m

|z−b|≤2t1/m

1

(|y − a|+ |z − b|)2n−1

dy

tn/m
dz

tn/m

.

∫ 2t1/m

0

∫ 2t1/m

0

1

(u+ v)2n−1
un−1vn−1 du

tn/m
dv

tn/m

. t(−2n+1)/m

∫ 1

0

∫ 1

0

un−1vn−1

(u+ v)2n−1
dudv . t(−2n+1)/m,(3.32)

where the last integral is controlled by separately estimating for v ≥ u and for u ≥ v.
We conclude that, for a, b ∈ Bt,

∫∫

Bt×Bt

1

(|y − a|+ |z − b|)2n−1

dy

tn/m
dz

tn/m
. t(−2n+1)/m .

1

(|x− a|+ |x− b|)2n−1
,(3.33)

and therefore

I0(f, g, t)(x) .

∫∫

Bt×Bt

|∇f(a)||g(b)|+ |f(a)||∇g(b)|
(|x− a|+ |x− b|)2n−1

da db.
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Integration with respect to the variable t ∈ (0, r(B)m) yields,

∫ r(B)m

0

I0(f, g, t)(x)
dt

t
.

∫ r(B)m

0

∫∫

Bt×Bt

|∇f(a)||g(b)|+ |f(a)||∇g(b)|
(|x− a|+ |x− b|)2n−1

da db
dt

t

.

∫ r(B)m

0

∫∫

|x−a|≤t1/m

|x−b|≤t1/m

|∇f(a)||g(b)|+ |f(a)||∇g(b)|
(|x− a|+ |x− b|)2n−1

da db
dt

t

.

∫∫

2B×2B

∫
0≤t≤r(B)m

|x−a|≤t1/m

|x−b|≤t1/m

|∇f(a)||g(b)|+ |f(a)||∇g(b)|
(|x− a|+ |x− b|)2n−1

dt

t
da db

.

∫∫

2B×2B

|∇f(a)||g(b)|+ |f(a)||∇g(b)|
(|x− a|+ |x− b|)2n−1

log

(
1 +

r(B)m

max{|x− a|m, |x− b|m}

)
da db

.

∫∫

2B×2B

|∇f(a)||g(b)|+ |f(a)||∇g(b)|
(|x− a|+ |x− b|)2n−1

log

(
16r(B)

|x− a|+ |x− b|

)
da db

. J2B(|∇f |, |g|)(x) + J2B(|f |, |∇g|)(x),

where the operator J2B was defined in (3.30). It remains to treat the terms Il(f, g, t)(x)
with l ≥ 1.

The bound for Il(f, g, t) with l ≥ 1. Recall that Il is given by

Il(f, g, t)(x) :=

∫∫

Cl(Bt×Bt)

t−2n/m

(
1 +

|x− y|
t

1
m

)−2n−ε(
1 +

|x− z|
t

1
m

)−2n−ε

× |f(y)g(z)− fBtgBt | dydz,

where Bt = B(x, t1/m) (and therefore x ∈ Bt) and Cl(Bt×Bt) := 2l(Bt×Bt)\2l−1(Bt×
Bt). We have to estimate the oscillation |f(y)g(z)−fBtgBt |, with (y, z) ∈ Cl(Bt×Bt),
for which we consider the intermediate averages as follows:

|f(y)g(z)− fBtgBt | ≤ |f(y)g(z)− f2lBt
g2lBt

|+
l−1∑

k=0

|f2k+1Bt
g2k+1Bt

− f2kBt
g2kBt

| .

For all k ∈ 0, ..., l− 1, we use

|f2k+1Bt
g2k+1Bt

− f2kBt
g2kBt

| . (2kt1/m)−2n

∫∫

2kBt×2kBt

|f(u)g(v)− f2k+1Bt
g2k+1Bt

|dudv

. (2kt1/m)−2n

∫∫

2k+1Bt×2k+1Bt

|f(u)g(v)− f2k+1Bt
g2k+1Bt

|dudv.
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As done in (3.31) applied to the ball 2k+1Bt, we obtain that for (u, v) ∈ 2k+1Bt ×
2k+1Bt

|f(u)g(v)− f2k+1Bt
g2k+1Bt

| .
∫∫

2k+1Bt×2k+1Bt

|∇f(a)||g(b)|+ |f(a)||∇g(b)|
(|u− a|+ |v − b|)2n−1

dadb.

Proceeding as in (3.33), by replacing the ball Bt with 2k+1Bt, we have that for
(a, b) ∈ 2k+1Bt × 2k+1Bt and (u, v) ∈ 2k+1Bt × 2k+1Bt,

(3.34)

∫∫

2k+1Bt×2k+1Bt

2−2knt−2n/mdydz

(|u− a|+ |v − b|)2n−1
. (2kt1/m)−(2n−1) . (|x−a|+ |x−b|)1−2n.

Combining everything we have

|f2k+1Bt
g2k+1Bt

− f2kBt
g2kBt

|

.
22knt2n/m

(2kt1/m)2n

∫∫

2k+1Bt×2k+1Bt

|∇f(a)||g(b)|+ |f(a)||∇g(b)|
(|x− a|+ |x− b|)2n−1

dadb

.

∫∫

2k+1Bt×2k+1Bt

|∇f(a)||g(b)|+ |f(a)||∇g(b)|
(|x− a|+ |x− b|)2n−1

dadb.

We conclude that for (y, z) ∈ 2l+1(Bt ×Bt) (actually for any y and z)

|f(y)g(z)− fBtgBt | . |f(y)g(z)− f2lBt
g2lBt

|

+
l−1∑

k=0

∫∫

2k+1Bt×2k+1Bt

|∇f(a)||g(b)|+ |f(a)||∇g(b)|
(|x− a|+ |x− b|)2n−1

dadb.(3.35)

Consequently,

Il(f, g, t)(x) . I1l (f, g, t)(x) + I2l (f, g, t)(x)

with

I1l (f, g, t)(x) :=

∫∫

Cl(Bt×Bt)

[(
1 +

|x− y|
t

1
m

)(
1 +

|x− z|
t

1
m

)]−2n−ε

× |f(y)g(z)− f2lBt
g2lBt

| dydz
t2n/m

and

I2l (f, g, t)(x) :=
l∑

k=0

∫∫

Cl(Bt×Bt)

[ ∫∫

2k+1Bt×2k+1Bt

(
1 +

|x− y|
t

1
m

)−2n−ε(
1 +

|x− z|
t

1
m

)−2n−ε

|∇f(a)||g(b)|+ |f(a)||∇g(b)|
(|x− a|+ |x− b|)2n−1

dadb

]
dydz

t2n/m
.
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The first term I1l (f, g, t)(x) can be estimated in the same way as the quantity I0(f, g, t)
by replacing Bt with 2lBt. Since (y, z) ∈ Cl(Bt × Bt) and x ∈ Bt, the term

(
1 +

|x− y|
t

1
m

)−2n−ε(
1 +

|x− z|
t

1
m

)−2n−ε

provides an extra factor 2−l(ε+2n) which partially compensates the normalization co-
efficient 22ln. So we have

∫ r(B)m

0

I1l (f, g, t)(x)
dt

t
. 2−lε

[
J2l+1B(|∇f |χ2l+1B, |g|χ2l+1B)(x)

+ J2l+1B(|f |χ2l+1B, |∇g|χ2l+1B)(x)
]
.

We now study the term related to I2l (f, g, t)(x). Since x ∈ Bt,

∫∫

Cl(Bt×Bt)

(
1 +

|x− y|
t

1
m

)−2n−ε(
1 +

|x− z|
t

1
m

)−2n−ε
dydz

t2n/m
. 2−l(ε+n).

Integrating in the variable t ∈ (0, r(B)m), we obtain

∫ r(B)m

0

I2l (f, g, t)(x)
dt

t

.

∫ r(B)m

0

2−l(ε+n)

l−1∑

k=0

∫∫

2k+1Bt×2k+1Bt

|∇f(a)||g(b)|+ |f(a)||∇g(b)|
(|x− a|+ |x− b|)2n−1

dadb
dt

t

. l2−l(ε+n)

∫∫

2lB×2lB



∫

0≤t≤r(B)m

|x−a|≤2lt1/m

|x−b|≤2lt1/m

dt

t




|∇f(a)||g(b)|+ |f(a)||∇g(b)|
(|x− a|+ |x− b|)2n−1

dadb

. l2−l(ε+n)

∫∫

2lB×2lB

|∇f(a)||g(b)|+ |f(a)||∇g(b)|
(|x− a|+ |x− b|)2n−1

× log

(
1 +

r(B)

2−l(|x− a|+ |x− b|)

)
dadb

. l2−l(ε+n)

∫∫

2lB×2lB

|∇f(a)||g(b)|+ |f(a)||∇g(b)|
(|x− a|+ |x− b|)2n−1

log

(
8 · 2l+1r(B)

(|x− a|+ |x− b|)

)
dadb

. l2−l(ε+n)
[
J2l+1B(|∇f |χ2l+1B, |g|χ2l+1B)(x) + J2l+1B(|f |χ2l+1B, |∇g|χ2l+1B)(x)

]
.

Having obtained pointwise estimates both for I0(f, g, t) and Il(f, g, t), we can now
conclude the proof of the theorem.
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End of the proof of Theorem 5. Using the estimates for I0(f, g, t), I
1
l (f, g, t) and

I2l (f, g, t), we finally obtain that
∣∣f(x)g(x)− Sr(B)m(f)(x)Sr(B)m(g)(x)

∣∣

.
∑

l≥0

2−lε(1 + l2−ln)

×
[
J2l+1B(|∇f |χ2l+1B, |g|χ2l+1B)(x) + J2l+1B(|f |χ2l+1B, |∇g|χ2l+1B)(x)

]

.
∑

l≥0

2−lε
[
J2l+1B(|∇f |χ2l+1B, |g|χ2l+1B)(x) + J2l+1B(|f |χ2l+1B, |∇g|χ2l+1B)(x)

]
.

�

3.2. Boundedness properties of the operator JB. Boundedness properties of
the operators JB follow from results for multilinear potential operators in the context
of spaces of homogeneous type studied in [24]. We use those results, which were
recalled in Section 2, to prove the following proposition.

Proposition 6. Let p1, p2 > 1, q > 0, 0 < α ≤ 1 and 1
q
= 1

p1
+ 1

p2
− 1−α

n
. If (w1, w2)

belongs to the class A(p1,p2),q then the operator JB defined in (3.30) satisfies

‖JB‖Lp1
w1

(B)×L
p2
w2

(B)→Lq
w(B) . [r(B)]α ,

with a constant uniform in B.

Proof. Following the results in [24], we work in the space of homogeneous type (B, | ·
− · |, dx) noting that the constants in (2.18), (2.19), (2.20) are independent of B.

We will consider the kernel

K̃((x, y), (a, b)) :=
1

(|x− a|+ |y − b|)2n−1
log

(
8 r(B)

|x− a|+ |y − b|

)
, x, y, a, b ∈ B

and check that K̃ satisfies (2.22) and (2.23). For condition (2.22), note that for

any c > 1 the function h(t) = 1
t2n−1 log(

8r(B)
t

) satisfies h(t) ≤ Ch(t′) if t′ ≤ c t and
t, t′ ≤ 4r(B), for some C > 0 independent of B. Regarding condition (2.23), recall
that the ball with center x ∈ B and radius r > 0 in the space (B, | · − · |, dx) is
B(x, r)∩B where B(x, r) is the Euclidean ball in Rn of radius r centered at x. Since
for x ∈ B and r . r(B), |B(x, r)∩B| ∼ |B(x, r)| = cn r

n, we then have to prove that
there exists δ > 0 such that given C1 > 1 there is C2 > 0 independent of B for which

ϕ(B1 ∩B)

ϕ(B2 ∩B)
≤ C2

(
r2
r1

)2n−δ

,

for all balls Bi = B(xi, ri), xi ∈ B, ri ≤ C1r(B), B1 ∩ B ⊂ B2 ∩ B, where

ϕ(Bi ∩ B) = sup{K(x, a, b) : x, a, b ∈ Bi ∩ B, |x− a|+ |x− b| ≥ c ri}
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for some fixed positive small constant c and i = 1, 2. We have ϕ(Bi ∩ B) =

( 1
cri
)2n−1 log(8r(B)

cri
) which gives

ϕ(B1 ∩B)

ϕ(B2 ∩B)
∼
(
r2
r1

)2n−1 log
(

8r(B)
cr1

)

log
(

8r(B)
cr2

) .

(
r2
r1

)2n−δ

, 0 < δ < 1,

since log(t′)
log(t)

. ( t
′

t
)γ for 2 ≤ t ≤ t′ and 0 < γ < 1.

We now check that the assumptions on the weights w1, w2, and w imply (2.24) if

q > 1 and (2.25) if q ≤ 1 with u = w1/q = w
1/p1
1 w

1/p2
2 , vk = w

1/pk
k , k = 1, 2. This

means that we have to prove that there exists t > 1 such that
(3.36)

sup
Q
ϕ(Q)|Q|

1
q
+ 1

p1
′ +

1
p′2

(
1

|Q|

∫

Q

wtdx

)1/qt 2∏

j=1

(
1

|Q|

∫

Q

w
− t

pi−1

i dx

)1/tp′i

<∞, q > 1,

and
(3.37)

sup
Q
ϕ(Q)|Q|

1
q
+ 1

p1
′+

1
p′
2

(
1

|Q|

∫

Q

wdx

)1/q 2∏

j=1

(
1

|Q|

∫

Q

w
− t

pi−1

i dx

)1/tp′i

<∞, q ≤ 1,

where the sup is taken over all balls Q in the space (B, | ·− · |, dx) with r(Q) . r(B).
The proofs follow using the same ideas as in Remark 2.4 . Let Q be a ball in the
space (B, | · − · |, dx) with r(Q) . r(B); then Q = B ∩ B(x, r) for some x ∈ B and
r > 0, r(Q) = r . r(B) and |Q| ∼ |B(x, r)|. Moreover, using the relation between
p1, p2, q and α as in the statement of the proposition,

ϕ(Q)|Q|
1
q
+ 1

p1
′+

1
p′
2 ∼ 1

r(Q)2n−1
log

(
8r(B)

c r(Q)

)
r(Q)2n−1+α

= r(Q)α log

(
8r(B)

c r(Q)

)
. r(B)α.

In addition, the second factor in (3.36) is bounded by

sup
x∈Rn,r>0

(
1

|B(x, r)|

∫

B(x,r)

wtdx

)1/qt 2∏

j=1

(
1

|B(x, r)|

∫

B(x,r)

w
− t

pi−1

i dx

)1/tp′i

.(3.38)

Since w, w
− 1

p1−1

1 , w
− 1

p2−1

2 are A∞ weights (see Remark 2.1), there exists t > 1 such
that (3.38) is bounded by

sup
x∈Rn,r>0

(
1

|B(x, r)|

∫

B(x,r)

w dx

)1/q 2∏

j=1

(
1

|B(x, r)|

∫

B(x,r)

w
− 1

pi−1

i dx

)1/p′i

<∞,

where finiteness is due to (w1, w2) satisfying the A(p1,p2),q condition. A similar reason-
ing applies to (3.37). We conclude that (3.36) and (3.37) are bounded by a multiple
(independent of B) of r(B)α.



BILINEAR SOBOLEV-POINCARÉ INEQUALITIES AND LEIBNIZ-TYPE RULES 19

By Theorem B and Remark 2.3 we have that JB is bounded from Lp1
w1
(B)×Lp2

w2
(B)

into Lq
w(B) and the operator norm is bounded by a multiple (uniform on B) of

r(B)α. �

3.3. Proof of Theorem 4. Let p1, p2, q, w1, w2 and w be as in the statement of
Theorem 4. By Proposition 6 we have

‖J2lB‖Lp1
w1

(B)×L
p2
w2

(B)→Lq
w(B) .

[
2lr(B)

]α
,

uniformly in B and l ≥ 0, this and Theorem 5 imply
∥∥fg − Sr(B)m(f)Sr(B)m(g)

∥∥
Lq
w(B)

.
∑

l≥0

2−lε2α(l+1)r(B)α
[
‖∇f‖Lp1

w1
(2l+1B) ‖g‖Lp2

w2
(2l+1B) + ‖f‖Lp1

w1
(2l+1B) ‖∇g‖Lp2

w2
(2l+1B)

]
,

which concludes the proof of Theorem 4. �

Applying an analogous proof to that of Theorem 4, we obtain the following result:

Theorem 7. Under the same assumptions of Theorem 4,
∥∥fg − Sr(B)m

[
Sr(B)m(f)Sr(B)m(g)

]∥∥
Lq
w(B)

≤ C r(B)α
∑

l≥0

2−l(ε−α)
[
‖∇f‖Lp1

w1
(2l+1B) ‖g‖Lp2

w2
(2l+1B) + ‖f‖Lp1

w1
(2l+1B) ‖∇g‖Lp2

w2
(2l+1B)

]
.

We will leave it to the reader to check the details for the fact that the proof of
Theorem 4 still holds after noting that a similar representation formula can be used
as we can write

fg − Sr(B)m
[
Sr(B)m(f)Sr(B)m(g)

]
= −

∫ r(B)m

0

t∂tSt [Pt(F )]
dt

t
,

since t∂tSt [Pt] satisfies the same estimates as t∂tPt and the cancellation property
t∂tSt [Pt(1)] = 0.

4. Leibniz-type rules in Campanato-Morrey spaces associated to
generalized approximations of identity

In this section we apply Theorem 4 to prove a Leibniz-type rule of the form (1.1)
where the spaces X1, X2, Y1, Y2 belong to the scale of the classical Campanato-
Morrey spaces and the space Z quantifies the oscillation |fg−Sr(B)m(f)Sr(B)m(f)| of
the product fg in Lq(B) where B ⊂ Rn is a Euclidean ball in Rn (compare to (1.8)).
In this context, it will become clear how, as announced in the Introduction, the
bilinear potential operators introduced in Section 2 play the role that paraproducts
and the bilinear Coifman-Meyer multipliers play in the proofs of the Sobolev-based
Leibniz-type rules (1.2).

Next, we recall the definition of the classical Campanato-Morrey spaces and intro-
duce notions of bilinear Campanato-Morrey spaces associated to approximations of
the identity and semigroups.



20 FRÉDÉRIC BERNICOT, DIEGO MALDONADO, KABE MOEN, AND VIRGINIA NAIBO

For p > 0 and λ ≥ 0 we say that f ∈ L1
loc(R

n) belongs to the Campanato-Morrey
space Lp,λ(Rn) if

(4.39) ‖f‖Lp,λ(Rn) := sup
B⊂Rn

1

|B|λ
(

1

|B|

∫

B

|f(x)|p dx
) 1

p

is finite. For f, g ∈ L1(Rn) we say that the pair (f, g) belongs to the bilinear

Campanato-Morrey space Lp,λ
S⊗S(R

n) associated to an approximation of the identity
S = {St}t>0 of order m > 0 if
(4.40)

‖(f, g)‖Lp,λ
S⊗S(R

n) := sup
B⊂Rn

1

|B|λ
(

1

|B|

∫

B

|f(x)g(x)− Sr(B)m(f)(x)Sr(B)m(g)(x)|p dx
) 1

p

is finite. We use the notation S⊗S to signify that the oscillation in question coincides
with the tensorial oscillation |(f ⊗ g)(x, y)− (S ⊗ S)r(B)m(f ⊗ g)(x, y)|, for x, y ∈ B,

restricted to the diagonal x = y. These new spaces Lp,λ
S⊗S(R

n) arise as natural bilinear

counterparts to the Campanato-Morrey spaces Lp,λ
S (Rn) associated to S introduced

by Duong and Yan in [11, 12]. In this case, f ∈ Lp,λ
S (Rn) if

(4.41) ‖f‖Lp,λ
S (Rn) := sup

B⊂Rn

1

|B|λ
(

1

|B|

∫

B

|f(x)− Sr(B)m(f)(x)|p dx
) 1

p

<∞.

Theorem 8. Let S := {St}t>0 and S ′ := {t∂tSt}t>0 be approximations of the identity
of order m > 0 in Rn and constant ε in (3.28), 1 < p1, p2 < ∞, 0 < α < min(ε, 1)
and q > 0 such that 1

q
= 1

p1
+ 1

p2
− 1−α

n
. Given λ1, λ2 ≥ 0 set λ = 1

n
+ λ1 + λ2 and

assume that ε > n
(
λ+ 1

q

)
. Then there exists a structural constant C > 0 such that

the following Leibniz-type rule holds true
(4.42)

‖(f, g)‖Lq,λ
S⊗S(R

n) ≤ C
(
‖∇f‖Lp1,λ1(Rn)‖g‖Lp2,λ2(Rn) + ‖f‖Lp1,λ1 (Rn)‖∇g‖Lp2,λ2(Rn)

)
.

Proof. From Theorem 4 we have
∥∥fg − Sr(B)m(f)Sr(B)m(g)

∥∥
Lq(B)

. r(B)α
∑

l≥0

2−l(ε−α)
(
‖∇f‖Lp1 (2lB) ‖g‖Lp2(2lB) + ‖f‖Lp1 (2lB) ‖∇g‖Lp2 (2lB)

)
.

By writing

‖∇f‖Lp1(2lB) = |2lB|λ1+
1
p1

1

|2lB|λ1

(
1

|2lB|

∫

2lB

|∇f |p1
) 1

p1

≤ |2lB|λ1+
1
p1 ‖∇f‖Lp1,λ1 (Rn)

and

‖g‖Lp2 (2lB) = |2lB|λ2+
1
p2

1

|2lB|λ2

(
1

|2lB|

∫

2lB

|g|p2
) 1

p2

≤ |2lB|λ2+
1
p2 ‖g‖Lp2,λ2(Rn),
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and similarly with ‖f‖Lp1 (2lB) and ‖∇g‖Lp2 (2lB) , and by setting s := λ1+λ2+
1
p1
+ 1

p2
,

we obtain

r(B)α
∑

l≥0

2−l(ε−α)
(
‖∇f‖Lp1 (2lB) ‖g‖Lp2 (2lB) + ‖f‖Lp1 (2lB) ‖∇g‖Lp2(2lB)

)

≤ |B|αn+s
∑

l≥0

2−l(ε−α−ns)
(
‖∇f‖Lp1,λ1 (Rn)‖g‖Lp2,λ2 (Rn) + ‖f‖Lp1,λ1(Rn)‖∇g‖Lp2,λ2(Rn)

)

≤ C|B|αn+s
(
‖∇f‖Lp1,λ1(Rn)‖g‖Lp2,λ2(Rn) + ‖f‖Lp1,λ1 (Rn)‖∇g‖Lp2,λ2 (Rn)

)
,

since α+ns = n
(

α
n
+ 1

p1
+ 1

p2
+ λ1 + λ2

)
= n

(
λ+ 1

q

)
< ε. Consequently, using that

λ+ 1
q
= α

n
+ s,

1

|B|λ
(

1

|B|

∫

B

|f(x)g(x)− Sr(B)m(f)(x)Sr(B)m(g)(x)|q dx
) 1

q

=
1

|B|αn+s

∥∥fg − Sr(B)m(f)Sr(B)m(g)
∥∥
Lq(B)

≤ C
(
‖∇f‖Lp1,λ1 (Rn)‖g‖Lp2,λ2(Rn) + ‖f‖Lp1,λ1(Rn)‖∇g‖Lp2,λ2 (Rn)

)
,

and (4.42) follows. �

In relation with (4.41), we define another suitable notion of Campanato-Morrey
spaces associated to an approximation of the identity S = {St}: a function f belongs

to L̃p,λ
S (Rn) if

‖f‖L̃p,λ
S (Rn) := sup

B⊂Rn

inf
h∈L1

loc

1

|B|λ
(

1

|B|

∫

B

|f(x)− Sr(B)m(h)(x)|p dx
) 1

p

<∞,

where the supremum is taken over all Euclidean balls B ⊂ Rn. Then, we have the
following Leibniz-type rule:

Theorem 9. Let S := {St}t>0 and S ′ := {t∂tSt}t>0 be approximations of the identity
in Rn of order m > 0 and constant ε in (3.28), 1 < p1, p2 < ∞, 0 < α < min(ε, 1)
and q > 0 such that 1

q
= 1

p1
+ 1

p2
− 1−α

n
. Given λ1, λ2 ≥ 0 set λ = 1

n
+ λ1 + λ2 and

assume that ε > n
(
λ+ 1

q

)
. Then there exists a structural constant C > 0 such that

the following Leibniz-type rule holds true

(4.43) ‖fg‖L̃q,λ
S (Rn) ≤ C

(
‖∇f‖Lp1,λ1(Rn)‖g‖Lp2,λ2(Rn) + ‖f‖Lp1,λ1 (Rn)‖∇g‖Lp2,λ2(Rn)

)
.

The proof follows by estimating the norm

sup
B⊂Rn

inf
h∈L1

loc

1

|B|λ
(

1

|B|

∫

B

|f(x)g(x)− Sr(B)m(h)(x)|p dx
) 1

p

with h = Sr(B)m(f)Sr(B)m(g) and following the arguments in Theorem 8 by invoking
Theorem 7 instead of Theorem 4.
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5. Extensions to doubling Riemannian manifolds and Carnot groups

5.1. Doubling Riemannian manifolds. Let (M, ρ, dµ) be a doubling Riemannian
manifold, this is a space of homogeneous type with a gradient vector field ∇ (e.g. a
complete Riemannian manifold with nonnegative Ricci curvature).

An approximation of the identity of order m > 0 in M is a collection of operators
S := {St}t>0 acting on functions defined on M,

Stf(x) =

∫

M

pt(x, y)f(y) dµ(y),

such that for each t > 0 the kernels pt satisfy
∫
M
pt(x, y) dµ(y) = 1 for all x and the

scaled Poisson bound

(5.44) |pt(x, y)| ≤ µ(Bρ(x, t
1/m))−1 γ

(
ρ(x, y)

t1/m

)
,

where γ : [0,∞) → [0,∞) is a bounded, decreasing function such that

(5.45) lim
r→∞

r2n+εγ(r) = 0, for some ε > 0.

Theorem 10. Assume (M, ρ, µ) is a doubling Riemannian manifold. Let S :=
{St}t>0 and S ′ := {t∂tSt}t>0 be approximations of the identity in M of order m > 0
and constant ε in (5.45), 1 < p1, p2 < ∞, q > 0, and 0 < α < min{1, ε} such that
1
q
= 1

p1
+ 1

p2
− 1−α

n
. Then there exists a constant C such that for all balls B ⊂M

∥∥fg − Sr(B)m(f)Sr(B)m(g)
∥∥
Lq(B)

≤ C r(B)α
∑

l≥0

2−l(ε−α)
[
‖∇f‖Lp1 (2l+1B) ‖g‖Lp2 (2l+1B) + ‖f‖Lp1 (2l+1B) ‖∇g‖Lp2(2l+1B)

]
.

The proof of this theorem follows from that of Theorem 4 after minor modifica-
tions. The Leibniz rules in Campanato/Morrey spaces, obtained in Section 4, can be
extended to this framework as well.

5.2. Carnot groups. In this section we provide a description of how to extend our
results of section 3 in the context of Carnot groups. Let Ω be an open connected
subset of Rn and X = {Xk}Mk=1 be a family of infinitely differentiable vector fields
with values in Rn. We identify Xk with the first order differential operator acting on
continuously differentiable functions defined on Ω by the formula

Xkf(x) = Xk(x) · ∇f(x), k = 1, · · · ,M,

and we set Xf = (X1f,X2f, · · · , XMf) and

|Xf(x)| =
(

M∑

k=1

|Xkf(x)|2
)1/2

, x ∈ Ω.

Given two vector fields Xi and Xj define the commutator or Lie bracket by [Xi, Xj] =
XiXj −XjXi. We will assume that X satisfies Hörmander’s condition in Ω; that is,
there is some finite positive integerM0 such that the commutators of the vector fields
in X up to length M0 span Rn at each point of Ω.
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Suppose that X = {Xk}Mk=1 satisfies Hörmander’s condition in Ω. Let CX be the
family of absolutely continuous curves ζ : [a, b] → Ω, a ≤ b, such that there exist

measurable functions cj(t), a ≤ t ≤ b, j = 1, · · · ,M, satisfying
∑M

j=1 cj(t)
2 ≤ 1 and

ζ ′(t) =
∑M

j=1 cj(t)Yj(ζ(t)) for almost every t ∈ [a, b]. If x, y ∈ Ω define

ρ(x, y) = inf{T > 0 : there exists ζ ∈ CX with ζ(0) = x and ζ(T ) = y}.

The function ρ is in fact a metric in Ω called the Carnot-Carathéodory metric on Ω
associated to X.

Let G be a Lie group on Rn, that is a group law on Rn such that the map (x, y) 7→
xy−1 is C∞. The Lie algebra associated to G, denoted g, is the collection of all left
invariant vector fields on G. A Carnot group is a Lie group whose Lie algebra admits
a stratification

g = V1 ⊕ · · · ⊕ Vl,

where [V1, Vi] = span{[Y, Z] : Y ∈ V1, Z ∈ Vi} = Vi+1, i = 1, · · · , l − 1, and [V1, Vi] =
{0} for i ≥ l. A basis for V1 generates the whole Lie algebra. We will often denote this
family as {X1, . . . , Xn1} and refer to it as a family of generators for the Carnot group.
In particular, a system of generators {X1, . . . , Xn1} satisfies Hörmander’s condition,
and hence we have the notion of a Carnot-Caratheodory metric.

Set ni = dim(Vi), then n = n1 + · · ·+ nl, and the number Q =
∑l

i=1 ini is called
the homogeneous dimension of G . The dilation operators

δλx = (λx(1), λ2x(2), . . . , λlx(l)) x(i) ∈ R
ni

form automorphisms of G for each λ > 0. Furthermore, if B is a metric ball of radius
r(B) with respect to the Carnot-Carathéodory metric then |B| = c r(B)Q, which
shows that (Rn, ρ,Lebesgue measure) is a space of homogenous type. We refer the
reader to [8] for more information about analysis on Carnot groups.

An approximation of the identity of order m > 0 in G is a collection of operators
S := {St}t>0 acting on functions defined on Rn,

Stf(x) =

∫

Rn

pt(x, y)f(y) dy,

such that for each t > 0 the kernels pt satisfy
∫
Rn pt(x, y) dy = 1 for all x and the

scaled Poisson bound

|pt(x, y)| ≤ t−Q/mγ
(ρ(x, y)
t1/m

)
,

where γ : [0,∞) → [0,∞) is a bounded, decreasing function such that

lim
r→∞

r2Q+εγ(r) = 0, for some ε > 0.

Theorem 11. Suppose G is a homogeneous Carnot group of dimension Q with gener-
ators X = {X1, . . . , Xn1} and ρ is the Carnot-Carathéodory metric on Rn associated
to X. Suppose further that S = {St}t>0 and S ′ = {t∂tSt}t>0 are approximations of
the identity in G of order m and ε as given above. If p1, p2 > 1, 0 < α < min(ε, 1)
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and q > 0 are such that 1
q
= 1

p1
+ 1

p2
− 1−α

Q
, then, for every ρ-ball B,

∥∥fg − Sr(B)m(f)Sr(B)m(g)
∥∥
Lq(B)

. r(B)α
∑

l≥0

2−l(ε−α)(l + 1)
[
‖Xf‖Lp1(2l+1B) ‖g‖Lp2 (2l+1B) + ‖f‖Lp1 (2l+1B) ‖Xg‖Lp2 (2l+1B)

]
.

Sketch of Proof. We will take the same approach as the proof of Theorem 4. The
multilinear representation formula is given by

|f(x)g(x)− Sr(B)mf(x)Sr(B)mg(x)|
.
∑

l≥0

2−l(ε−Q)[J2l+1B(|Xf |, |g|)(x) + J2l+1B(|f |, |Xg|)(x).(5.46)

where

JB(f, g)(x) =

∫∫

B×B

f(y)g(z)

(ρ(x, y) + ρ(x, z))2Q−1
log
( cr(B)

ρ(x, y) + ρ(x, z)

)
dydz x ∈ B

and B is a ball in Rn with respect to the metric ρ. The operator JB satisfies the
necessary growth bounds on its kernel and hence

(5.47) ‖JB‖Lp1 (B)×Lp2 (B)→Lq(B) . [r(B)]α.

The inequalities (5.46) and (5.47) prove the desired result. The proof of inequality
(5.46) follows that of Theorem 5 with the Euclidean distance replaced by ρ(x, y) and
the dimension n replaced by Q. We just highlight the analog to inequality (3.33),

(5.48)

∫∫

Bt×Bt

1

(ρ(y, a) + ρ(z, b))2Q−1
dydz .

1

(ρ(x, a) + ρ(x, b))2Q−1
.

Let B = Bρ be a ball in Rn with respect to the metric ρ, x ∈ B, r(B) be the radius
of B. Suppose 0 < t < r(B)m and a, b ∈ Bt = Bρ(x, t

1/m) then
∫∫

Bt×Bt

1

(ρ(y, a) + ρ(z, b))2Q−1
dydz .

∫∫

Bρ(a,2t1m)×Bρ(b,2t1/m)

1

(ρ(y, a) + ρ(z, b))2Q−1
dydx

.
∑

k≥0

∫∫

Dk

1

(ρ(y, a) + ρ(z, b))2Q−1
dydx

where

Dk := {(y, z) : 2−kt1/m ≤ ρ(a, y) < 2−k+1t1/m, 2−kt1/m ≤ ρ(b, z) < 2−k+1t1/m}.
We continue estimating each term in the series

∫∫

Dk

1

(ρ(y, a) + ρ(z, b))2Q−1
dydz

. (2kt−1/m)2Q−1|Bρ(a, 2
−k+1t1/m)| · |Bρ(b, 2

−k+1t1/m)|
. 2−kt1/m
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which leads to∫∫

Bt×Bt

1

(ρ(y, a) + ρ(z, b))2Q−1
dydz .

∫∫

Bρ(a,2t1m)×Bρ(b,2t1/m)

1

(ρ(y, a) + ρ(z, b))2Q−1
dydx

. t1/m

.
1

(ρ(x, a) + ρ(x, b))2Q−1

This estimate contributes to the first term on the right side of inequality (5.46), the
other terms are obtained in a similar manner.

�

6. Boundedness of bilinear pseudodifferential operators under
Sobolev scaling

Let BSm
ρ,δ(R

n) and BSm
ρ,δ;θ(R

n), where m ∈ R, 0 ≤ δ ≤ ρ ≤ 1, θ ∈ (0, π), be the

classes of symbols σ ∈ C∞(R3n) satisfying,

(6.49)
∣∣∣∂αx ∂βξ ∂γησ(x, ξ, η)

∣∣∣ ≤ Cα,β,γ (1 + |ξ|+ |η|)m−ρ(|β|+|γ|)+δ|α| ,

respectively,

(6.50)
∣∣∣∂αx∂βξ ∂γησ(x, ξ, η)

∣∣∣ ≤ Cα,β,γ (1 + |ξ − tan(θ) η|)m−ρ(|β|+|γ|)+δ|α| ,

for all x, ξ, η ∈ Rn, all multi-indices α, β, γ ∈ Nn
0 and some constants Cα,β,γ, with

the convention that θ = π
2
corresponds to decay in terms of 1 + |ξ|. We will use

the notation ˙BSm
1,δ(R

n) and ˙BSm
1,0;θ(R

n) for the homogeneous versions of the above
classes, defined by replacing 1+|ξ|+|η| by |ξ|+|η| and 1+|ξ−tan(θ) η| by |ξ−tan(θ) η|
in (6.49) and (6.50), respectively. Also, we will use ‖σ‖α,β,γ to denote the smallest
constant Cα,β,γ in (6.49) or (6.50).

These classes can be regarded as bilinear counterparts to the linear Hörmander
classes Sm

ρ,δ(R
n) (and their homogeneous analogs ˙Sm

ρ,δ(R
n)) which consists of symbols

σ ∈ C∞(R2n) such that
∣∣∣∂αx ∂βξ σ(x, ξ)

∣∣∣ ≤ Cα,β (1 + |ξ|)m−ρ|β|+δ|α| ,

for all x, ξ ∈ Rn, all multiindices α, β, and some constants Cα,β.

Our results in this section assume symbols in the classes BSm
1,δ(R

n) or ˙BSm
1,δ(R

n),

as well as those symbols in BSm
1,δ;θ(R

n) or ˙BSm
1,δ;θ(R

n) of the form

(6.51) σ(x, ξ, η) = σ0(x, ξ − tan(θ) η),

where σ0 ∈ Sm
1,δ(R

n) or ˙Sm
1,δ(R

n), respectively.
For a number of properties of the Hörmander classes BSm

ρ,δ(R
n), including symbolic

calculus and boundedness properties of the associated bilinear operators with indices
related by Hölder scaling, see [3, 4, 5] and references therein. The classes BSm

ρ,δ;θ(R
n)

were first introduced in [5] inspired by their x-independent versions which originated
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in work on the bilinear Hilbert transform in [21] and were extensively studied in
[13, 6, 7] and references therein.

In this section we prove boundedness properties on Lebesgue spaces for bilinear
pseudodifferential operator with symbols of negative order where the indices relation
is now dictated by the Sobolev scaling. More precisely, the main result in this section
is the following:

Theorem 12. Suppose n ∈ N and consider exponents p1, p2 ∈ (1,∞) and q, s > 0
such that

(6.52)
1

q
=

1

p1
+

1

p2
− s

n
.

(a) If s ∈ (0, 2n), 0 ≤ δ ≤ 1, and σ ∈ BS−s
1,δ(R

n) ∪ ˙BS−s
1,δ (R

n) then Tσ is bounded
from Lp1

w1
×Lp2

w2
into Lq

w for every pair of weights (w1, w2) satisfying the A(p1,p2),q

condition and w := w
q/p1
1 w

q/p2
2 .

(b) If s ∈ (0, n), θ ∈ (0, π)\{π/2, 3π/4}, 0 ≤ δ ≤ 1 and σ ∈ BS−s
1,δ;θ(R

n)∪ ˙BS−s
1,δ;θ(R

n)
is of the form (6.51) then the bilinear operator Tσ is bounded from Lp1 ×Lp2 into
Lq. If in addition 1

p
:= 1

p1
+ 1

p2
< 1, then Tσ is bounded from Lp1

w1
× Lp2

w2
into Lq

w

for weights w1, w2 in the class Ap,q and w := w
q/p1
1 w

q/p2
2 .

Proof. We start with the proof of part (a). Let 0 ≤ δ < 1, s ∈ (0, 2n), and σ ∈
BS−s

1,δ (R
n) ∪ ˙BS−s

1,δ (R
n). The results will follow from part (a) of Theorem A once we

have proved that the operator Tσ is controlled by the bilinear fractional integral Is

as defined in (2.17). Tσ is given by the spatial representation

Tσ(f, g)(x) =

∫∫

Rn×Rn

k(x, x− y, x− z)f(y)g(z)dydz

where the kernel k is defined by

k(x, u, v) := ̂σ(x, ·, ·)(u, v).

We will prove that,

(6.53) |k(x, u, v)| . 1

(|u|+ |v|)2n−s , uniformly in x,

which gives

|Tσ(f, g)(x)| .
∫∫

Rn×Rn

|f(y)||g(z)|
(|x− y|+ |x− z|)2n−sdydz = Is(|f |, |g|)(x),

and therefore the boundedness properties of Tσ follow from part (a) of Theorem A.
Let Ψ(ξ, η) be a smooth function in R2n supported on the annulus 1 ≤ |(ξ, η)| ≤ 2,

and such that ∫ ∞

0

Ψ(tξ, tη)
dt

t
= 1, (ξ, η) 6= (0, 0).
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So for each scale t > 0, we have to estimate ̂Ψ(t·)σ(x, ·). Now, integration by parts

and the hypothesis σ ∈ BS−s
1,δ(R

n) ∪ ˙BS−s
1,δ(R

n) yield

(6.54)
∣∣∣ ̂Ψ(t·)σ(x, ·)(u, v)

∣∣∣ . t−2n+s

(1 + t−1|(u, v)|)N

for every large enough integer N . Indeed, suppose that |v| ≤ |u| ∼ uj, so that
|(u, v)| ∼ |u| ∼ uj, then

̂Ψ(t·)σ(x, ·)(u, v) =
∫∫

Rn×Rn

Ψ(tξ, tη)σ(x, ξ, η)e−i(u·ξ+v·η)dξdη

=

∫∫

Rn×Rn

Ψ(tξ, tη)σ(x, ξ, η)
1

(−i)NuNj
∂Nξj e

−i(u·ξ+v·η)dξdη

=
1

(−i)NuNj

∫∫

|ξ|+|η|∼t−1

∂Nξj (Ψ(tξ, tη)σ(x, ξ, η))e−i(u·ξ+v·η)dξdη.

But, by the usual Leibniz rule and using the condition on the support of Ψ (which
implies t−1 ∼ |ξ|+ |η| ≤ 1 + |ξ|+ |η|), we have

|∂Nξj (Ψ(tξ, tη)σ(x, ξ, η))| = |
N∑

k=0

CN,k∂
N−k
ξj

Ψ(tξ, tη)∂kξjσ(x, ξ, η)|

≤
N∑

k=0

CN,kt
N−k|(∂N−k

ξj
Ψ)(tξ, tη)|‖σ‖0,k,0(1 + |ξ|+ |η|)−s−k

≤
(

sup
0≤k≤N

‖∂kΨ‖L∞

)(
sup

0≤k≤N
‖σ‖0,k,0

) N∑

k=0

CN,kt
N−kts+k =: Cσ,N t

N+s.

Consequently,

(6.55) | ̂Ψ(t·)σ(x, ·)(u, v)| . tN+s

uNj

∫∫

|ξ|+|η|∼t−1

dξdη ∼ t−2n+s

(t−1|(u, v)|)N .

On the other hand, again by the hypothesis σ ∈ BS−s
1,δ(R

n) ∪ ˙BS−s
1,δ (R

n), we have

| ̂Ψ(t·)σ(x, ·)(u, v)| ≤
∫∫

Rn×Rn

|Ψ(tξ, tη)||σ(x, ξ, η)|dξdη

≤ ‖Ψ‖L∞‖σ‖0,0,0
∫∫

|ξ|+|η|∼t−1

(1 + |ξ|+ |η|)−sdξdη . t−2n+s,

and (6.54) follows from this last inequality and (6.55). Then, (6.54) and integration
over t ∈ (0,∞) yield

|k(x, u, v)| .
∫ ∞

0

∣∣∣ ̂Ψ(t·)σ(x, ·)(u, v)
∣∣∣ dt
t
.

∫ ∞

0

t−2n+s

(1 + t−1|(u, v)|)N
dt

t

. |(u, v)|−2n+s

∫ ∞

0

t2n−s

(1 + t)N
dt

t
. |(u, v)|−2n+s,
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which ends the proof of (6.53).
We now turn to the proof of part (b) of the theorem. If s ∈ (0, n), θ ∈ (0, π) \

{π/2, 3π/4} and σ ∈ BS−s
1,δ;θ(R

n) ∪ ˙BS−s
1,δ;θ(R

n) is of the form σ(x, ξ, η) = σ0(x, ξ −
tan(θ) η) with σ0 ∈ S−s

1,δ(R
n) or σ0 ∈ ˙S−s

1,δ(R
n) as appropriate, we consider the following

spatial representation for Tσ :

Tσ(f, g)(x) =

∫

Rn

k(x, y)f(x+ y)g(x− tan(θ) y)dy

where the kernel k is defined by

k(x, y) := σ̂0(x, ·)(y).
Following the same reasoning as above, we obtain

|k(x, y)| . |y|s−n, uniformly in x,

and therefore

|Tσ(f, g)| . Bs(f, g),

with Bs defined in (2.16). The result then follows from parts (b) and (c) of Theorem A.
�

Remark 6.1. We note that pointwise decay properties of the kernels (and their
derivatives) of pseudodifferential operators with symbols in the Hörmander classes
have been studied in [3, Theorem 5.1]. In particular, it is proved there that if
σ ∈ BS−s

1,δ (R
n), then (6.53) holds.

Remark 6.2. We observe that the proof of Theorem 12 uses the fact that the symbol
σ satisfies conditions (6.49), (6.50), or their homogenous counterparts, only for a
certain number of derivatives cn depending only on the dimension n.

7. Leibniz-type rules in Sobolev spaces

In the following, we consider the inhomogeneous and homogeneous Sobolev spaces
for indices s > 0 and 0 < p <∞,

W s,p(Rn) = {f ∈ S ′(Rn) : Jsf ∈ Lp(Rn)}
and

Ẇ s,p(Rn) = {f ∈ S ′(Rn) : Dsf ∈ Lp(Rn)},
where F−1 denotes the inverse Fourier transform, Js is the operator with Fourier
multiplier (1+ |ξ|2) s

2 , and Ds is the operator with Fourier multiplier |ξ|s. We use the
notation ‖f‖W s,p := ‖Jsf‖Lp and ‖f‖Ẇ s,p := ‖Dsf‖Lp.

Corollary 13 (Leibniz-type rules). Let n ∈ N and consider exponents p1, p2 ∈ (1,∞)
and q, s > 0 such that 1

q
= 1

p1
+ 1

p2
− s

n
.

(a) If s ∈ (0, 2n), 0 ≤ δ < 1, and σ ∈ BSm
1,δ(R

n) for some m ≥ −s then

‖Tσ(f, g)‖Lq . ‖f‖Wm+s,p1‖g‖Lp2 + ‖f‖Lp1‖g‖Wm+s,p2 .
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(b) If n ∈ N, s ∈ (0, 2n), 0 ≤ δ < 1, and σ ∈ ḂS
m

1,δ(R
n) for some m ≥ −s then

‖Tσ(f, g)‖Lq . ‖f‖Ẇm+s,p1‖g‖Lp2 + ‖f‖Lp1‖g‖Ẇm+s,p2 .

Proof. Part (a) of Corollary 13 follows from Theorem 12 and composition with Jm+s,
along the lines of [5, Theorem 2] (see also [16, Theorem 1.4] and [3, Corollary 8]).
Indeed, let σ ∈ BSm

1,δ(R
n) and consider φ ∈ C∞(R) such that 0 ≤ φ ≤ 1, supp(φ) ⊂

[−2, 2] and φ(r) + φ(1/r) = 1 on [0,∞), then, the symbols σ1 and σ2 defined by

σ1(x, ξ, η) = σ(x, ξ, η)φ

(
1 + |ξ|2
1 + |η|2

)
(1 + |η|2)−(m+s)/2

and

σ2(x, ξ, η) = σ(x, ξ, η)φ

(
1 + |η|2
1 + |ξ|2

)
(1 + |ξ|2)−(m+s)/2

are symbols in the class BS−s
1,δ(R

n), and the operators Tσ, Tσ1 , and Tσ2 are related
through

Tσ(f, g) = Tσ1(J
m+sf, g) + Tσ2(f, J

m+sg).

Part (b) of Corollary 13 follows in the same way using the operators Dm+s instead
of Jm+s. �

We end this section by presenting particular cases related to Theorem 12 and
Corollary 13.

• Fractional Leibniz rule under Sobolev scaling.

Corollary 14. Let n ∈ N, s ∈ [0, 2n), p1, p2 ∈ (1,∞), q > 0 such that 1
q
=

1
p1

+ 1
p2

− s
n
, m ≥ 0 if q ≥ 1 and m > max(0, n − s) if q < 1. Then for functions

defined on Rn,

‖fg‖Wm,q . ‖f‖Wm+s,p1‖g‖Lp2 + ‖f‖Lp1‖g‖Wm+s,p2 .

Proof. The case q ≥ 1 of the above inequality follows from the Sobolev imbedding
Wm,q ⊂Wm+s,r, 1

r
= 1

p1
+ 1

p2
, and the well-known fractional Leibniz rule (1.2). For

the case q < 1 we proceed as follows:
Consider φ, φ̃ ∈ C∞(R) such that 0 ≤ φ ≤ 1, supp(φ) ⊂ [0, 1

2
], supp(φ̃) ⊂

[1
4
, 4] and φ(r) + φ(1/r) + φ̃(r) = 1 on [0,∞). Then, since Jm(fg) is a bilinear

pseudodifferential operator with symbol (1 + |ξ + η|2)m/2, we get

Jm(fg) = Tσ1(J
m+sf, g) + Tσ2(f, J

m+sg) + Tσ3(f, g),

where

σ1(x, ξ, η) :=
(
1 + |ξ + η|2

)m/2
φ

(
1 + |ξ|2
1 + |η|2

)
(1 + |η|2)−(m+s)/2,

σ2(x, ξ, η) :=
(
1 + |ξ + η|2

)m/2
φ

(
1 + |η|2
1 + |ξ|2

)
(1 + |ξ|2)−(m+s)/2,

σ3(x, ξ, η) :=
(
1 + |ξ + η|2

)m/2
φ̃

(
1 + |ξ|2
1 + |η|2

)
.
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The symbols σ1 and σ2 belong to the class BS
−s
1,0 (1+|ξ+η| ∼ 1+|η| and 1+|ξ+η| ∼

1 + |ξ|, in the respective supports) and therefore Corollary 13 imply that

‖fg‖Wm,q . ‖f‖Wm+s,p1‖g‖Lp2 + ‖f‖Lp1‖g‖Wm+s,p2 + ‖Tσ3(f, g)‖Lq

Since 1 + |ξ + η| is not comparable to 1 + |η| or 1 + |ξ| in the support of σ3, we
cannot expect to prove that this symbol belongs to a suitable class. We will then
split σ3 into elementary symbols. Choose smooth cut-off functions (ζj)1≤j≤3, such

that ζ̂j is supported on B(0, 4) \B(0, 1) and

σ3(x, ξ, η) =
∑

l≥0

∑

l≥k

2kmζ̂3
(
1 + |ξ + η|2

22k

)
ζ̂1
(
1 + |ξ|2

22l

)
ζ̂2
(
1 + |η|2

22l

)

=:
∑

l≥0

∑

l≥k

mk,l(ξ, η).

Now choose Ψ1,Ψ2 smooth functions verifying the same support properties as the

ζj’s with Ψ̂j ≡ 1 on the support of ζ̂j, so that

Tσ3(f, g) =
∑

l≥0

∑

l≥k

Tmk,l
(Ψ1

l (f),Ψ
2
l (g)),

where Ψl stands for the usual dilation of Ψ and we identify Ψl with the multiplier
it produces. Now we focus on Kk,l, the bilinear kernel of Tmk,l

, that is

Tmk,l
(Ψ1

l (f),Ψ
2
l (g))(x) =

∫
Kk,l(x− y, x− z)Ψ1

l (f)(y)Ψ
2
l (g)(z)dydz.

Then,

|Kk,l(x− y, x− z)| ≤
∣∣∣∣
∫
ei((x−y)ξ+(x−z)η)mk,l(ξ, η)dξdη

∣∣∣∣ .

First we notice that mk,l is supported on the set {(ξ, η), |ξ| ≃ |η| ≃ 2l, |ξ+η| ≃ 2k}
whose measure is bounded by 2n(k+l). After the change of variables u := (ξ + η)
and v := (ξ − η) we get

|Kk,l(x− y, x− z)| .
∣∣∣∣
∫
ei((2x−y−z)u+(z−y)v)mk,l

(
u+ v

2
,
u− v

2

)
dudv

∣∣∣∣ .

Next, integration by parts and the bounds
∣∣∣∣∂αu∂βvmk,l

(
u+ v

2
,
u− v

2

)∣∣∣∣ . 2km2−k|α|2−l|β|,

yield the following pointwise estimates for Kk,l

|Kk,l(x− y, x− z)| . 2km
2n(k+l)

(1 + 2k|2x− y − z|+ 2l|z − y|)2n−s
.

By Lemma 15 below, with m > n− s, we deduce that

l∑

k=0

|Kk,l(x− y, x− z)| . 2lm
22nl

(2l|2x− y − z|+ 2l|z − y|)2n−s
.
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Consequently, since |2x− y − z|+ |z − y| ≃ |x− y|+ |x− z|, we get

|Tσ3(f, g)(x)| ≤
∑

l≥0

l∑

k=0

∣∣Tmk,l
(Ψ1

l (f),Ψ
2
l (g))(x)

∣∣

.
∑

l≥0

∫∫
2lm

22nl

(2l|y + z − 2x|+ 2l|y − z|)2n−s
|Ψ1

l (f)(y)Ψ
2
l (g)(z)|dydz

≃
∑

l≥0

∫∫
1

(|y + z − 2x|+ |y − z|)2n−s
2l(m+s)|Ψ1

l (f)(y)Ψ
2
l (g)(z)|dydz

≃
∫∫

1

(|y − x| + |z − x|)2n−s

∑

l≥0

2l(m+s)|Ψ1
l (f)(y)Ψ

2
l (g)(z)|dydz

≤
∫∫

1

(|y − x| + |z − x|)2n−s

(∑

l

22l(m+s)|Ψ1
l (f)(y)|2

) 1
2
(∑

l

|Ψ2
l (g)(z)|2

) 1
2

≃ Is



(∑

l

22l(m+s)|Ψ1
l (f)|2

) 1
2

,

(∑

l

|Ψ2
l (g)|2

) 1
2


 (x).

Then the proof follows from the boundedness of the bilinear operator Is and
Littlewood-Paley characterizations of Lebesgue spaces, since p1, p2 ∈ (1,∞). �

Lemma 15. For l ∈ N0, a, b, s > 0 and m,n ∈ N0 with m > n− s, we have

l∑

k=0

2k(m+n)

(a2k + b)2n−s
.

2l(m+n)

(a2l + b)2n−s
,

where the implicit constants depend only on n,m, and s.

Proof. Given a > 0, let k0 ∈ Z such that 2k0−1 ≤ a ≤ 2k0. Suppose first that
0 < b ≤ 2k0+l and write

l∑

k=0

2k(m+n)

(a2k + b)2n−s
≃

l∑

k=0

2k(m+n)

(2k+k0 + b)2n−s
≃

l+k0∑

k=k0

2(k−k0)(m+n)

(2k + b)2n−s

≃
l+k0∑

k=k0
2k≤b

2(k−k0)(m+n)

(2k + b)2n−s
+

l+k0∑

k=k0
2k>b

2(k−k0)(m+n)

(2k + b)2n−s
.

l+k0∑

k=k0
2k≤b

2(k−k0)(m+n)

b2n−s
+

l+k0∑

k=k0
2k>b

2(k−k0)(m+n)

2k(2n−s)

.
bm+n

b2n−s
2−k0(m+n) + 2−k0(m+n)2(k0+l)[m+n−(2n−s)]

.

(
b

2k0

)m+n−(2n−s)

2−k0(2n−s) + 2−k0(2n−s)2l[m+n−(2n−s)] . 2−k0(2n−s)2l[m+n−(2n−s)]

≃ 2l(m+n) 1

2(l+k0)(2n−s)
≃ 2l(m+n)

(2l+k0 + b)2n−s
≃ 2l(m+n)

(a2l + b)2n−s
.
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In the case b > 2k0+l we do
l∑

k=0

2k(m+n)

(a2k + b)2n−s
≃

l∑

k=0

2k(m+n)

(2k+k0 + b)2n−s
≃

l+k0∑

k=k0

2(k−k0)(m+n)

(2k + b)2n−s

.
1

b2n−s

l+k0∑

k=k0

2(k−k0)(m+n) ≃ 2l(m+n)

b2n−s
≃ 2l(m+n)

(2k0+l + b)2n−s
≃ 2l(m+n)

(a2l + b)2n−s
.

�

Remark 7.1. A shorter proof of Corollary 14 for q < 1 can be obtained as follows if
we assume m > cn where cn is as in Remark 6.2 (note that cn > n − s). Consider
φ ∈ C∞(R) such that 0 ≤ φ ≤ 1, supp(φ) ⊂ [−2, 2] and φ(r)+φ(1/r) = 1 on [0,∞)
and write

Jm(fg) = Tσ1(J
m+sf, g) + Tσ2(f, J

m+sg),

where

σ1(ξ, η) = (1 + |ξ + η|2)m/2φ

(
1 + |ξ|2
1 + |η|2

)
(1 + |η|2)−(m+s)/2

and

σ2(ξ, η) = (1 + |ξ + η|2)m/2φ

(
1 + |η|2
1 + |ξ|2

)
(1 + |ξ|2)−(m+s)/2.

By Remark 6.2 we can use Theorem 12 and conclude that Tσ1 and Tσ2 are bounded
from Lp1 × Lp2 into Lq if m > cn and therefore

‖Tσ1(J
m+sf, g)‖Lq . ‖f‖Wm+s,p1‖g‖Lp2 , m > cn,(7.56)

‖Tσ2(J
m+sf, g)‖Lq . ‖f‖Lp1‖g‖Wm+s,p2 , m > cn,

from which the desired result follows.

• Paraproduct estimates under Sobolev scaling. Let n ∈ N, s ∈ (0, 2n),
p1, p2 ∈ (1,∞) and q > 0 such that 1

q
= 1

p1
+ 1

p2
− s

n
. Consider a radial, real-valued

function ϕ ∈ S(Rn) such that ϕ̂(ξ) = 1 for |ξ| ≤ 1 and ϕ(ξ) = 0 for |ξ| ≥ 3/2. Let

ψ be given by ψ̂(ξ) = ϕ̂(ξ/2)− ϕ̂(ξ). For f ∈ L1(Rn) we set

Sj(f) := ϕj ∗ f and ∆j(f) := Sj+1(f)− Sj(f),

where ϕj(x) = 2jnϕ(2jx), j ∈ Z. We also define ψj(x) := 2jnψ(2jx) and note that

supp(ψ̂j) ⊂ {ξ : 2j ≤ |ξ| ≤ 3 2j}. For f, g ∈ S(Rn) we define the Bony paraproduct
of f and g by

Π(f, g) :=
∑

j∈Z

∆j(f)Sj−1(g).

Straightforward computations show that fg = Π(f, g)+Π(g, f)+
∑1

m=−1Rm(f, g),
where Rm(f, g) =

∑
j∈Z ∆j(f)∆j+m(g) for m = −1, 0, 1.

The symbol σ of the paraproduct Π is x-independent,

Π(f, g)(x) =

∫

Rn

∫

Rn

σ(ξ, η)f̂(η)ĝ(ξ)eix(ξ+η) dη dξ,
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is given by

σ(ξ, η) =
∑

j∈Z

ψ̂j(ξ)ϕ̂j−1(η),

and belongs to the class ḂS
0

1,0. As a consequence of Corollary 13, we have

‖Π(f, g)‖Lq . ‖f‖Ẇ s,p1‖g‖Lp2 + ‖f‖Lp1‖g‖Ẇ s,p2 .

• Lowering the exponents for linear embeddings. It is well-known that in Rn,
for s ∈ (0, 1), W s,p is continuously embedded into Lq as soon as p < d/s and q ≥ 1
with

1

q
=

1

p
− s

d
.

By the previous approach, we get bilinear analogs: indeed we have proved that
(f, g) → fg is continuous from W s,p1 ×W s,p2 into Lq as soon as p < d/s (where p
is the harmonic mean value of p1, p2) and q > 1/2. It is then possible to use this
bilinear approach to give extensions of the linear inequalities for q < 1.

Proposition 16. Let consider s ∈ (0, 1) and p = t/2 < d/s and q ≤ 1 with

1

q
=

1

p
− s

d
=

2

t
− s

d
.

Then for every nonnegative smooth function h, we have

‖h‖Lq . ‖h1/2‖2W s,t = ‖h1/2‖2W s,2p.

Proof. We just write h = h1/2h1/2 and apply the bilinear inequalities to the functions
f = g = h1/2 with the exponents p1 = p2 = t. �

Such inequalities are of interest since they allow for an exponent q ≤ 1. To do
that we have to pay the cost of estimating the regularity of

√
h.
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[2] N. Badr, A. Jiménez-del-Toro and J. M. Martell, Lp self-improvement of generalized Poincaré
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[3] Á. Bényi, D. Maldonado, V. Naibo and R. H. Torres, On the Hörmander classes of bilinear
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