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René BLACHER

Laboratory LJK
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Summary : When we consider a congruence T (x) ≡ ax modulo m as a pseudo random
number generator, there are several means of ensuring the independence of two successive num-
bers. In this report, we show that this dependence depends on the continued fraction expansion of
m/a. We deduce that the congruences such that m and a are two successive elements of Fibonacci
sequences are those having the weakest dependence. We will use this result to obtain truly random
number sequences xn. For that purpose, we will use non-deterministic sequences yn such that the
conditional probabilities have Lipschitz coefficients not too large. They are transformed using
Fibonacci congruences and we will get by this way sequences xn. These sequences xn admit the
IID model for correct model.

Key Words : Fibonacci sequence, Random numbers, Congruence, Dependence, Correct mod-
els.

Résumé : Quand on considère une congruence T (x) ≡ ax modulo m comme générateur de
nombres pseudo-aléatoires, il y a plusieurs moyens de s’assurer de l’indépendance de deux nombres
successifs. Dans ce rapport, nous montrons que cette dépendance dépend du développement en
fraction continue de m/a. On en déduit que les congruences telles que m et a sont deux éléments
successifs de la suite de Fibonacci sont celles ayant la dépendance la plus faible. Nous utiliserons
ce résultat pour obtenir des suites de nombres réellement aléatoires xn. Pour cela, nous utiliserons
des suites non-déterministes yn telles que leurs probabilités conditionnelles aient un coefficient de
Lipschitz pas trop grand. On les transformera en utilisant les congruences de Fibonacci et on
obtiendra ainsi les suites xn. Ces suites xn admettent le modèle IID pour modèle correct.

Mots-clefs : Suite de Fibonacci, Nombres aléatoires, Modelès corrects, Congruence

1 Introduction

1.1 Fibonacci Congruence

One needs a transformation which transforms the elements of {0, 1, ....,m − 1} in independent
numbers. Simplest is to use a congruence T (x) ≡ ax mod(m). Indeed, the dependence induced
by

(
Tn(x0), ....., T

n+p(x0)
)

is easy to know. In particular, one can use the spectral test or the
results of Dieter which allow to choose the best ”a” and ”m” (cf [16], [1]) .

Then, in this report, we study the set E2 =
{
ℓ, T (ℓ) | ℓ ∈ {0, 1, .....,m−1}

}
when z ≡ z modulo

m and 0 ≤ z < m if z ∈ Z. We will understand that this dependence depends on the continued
fraction m

a , i.e. it depends on sequences rn and hn defined in the following way.
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Notations 1.1 Let r0 = m, r1 = a. One denotes by rn the sequence defined by rn = hn+1rn+1 +
rn+2 the Euclidean division of rn by rn+1 when rn+1 6= 0. Moreover, one denotes by d the smallest
integer such as rd+1 = 0. One sets rd+2 = 0.

One sets k0 = 0, k1 = 1 and kn+2 = hn+1kn+1 + kn if n + 1 ≤ d.

Then, dependence depends on the hi’s : more they are small, more the dependence is weak.

Theorem 1 Let (x0, y0) ∈ E2. Let R0 =
{
[x0, x0 + kn]⊗ [y0, y0 + rn−2[

}
and let R0 = R0, be the

rectangle R0 modulo m. Then
If n is even, E2 ∩ R0 =

{
(x0 + kn−1ℓ , y0 + rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
. Moreover the points

(x0 + kn−1ℓ , y0 + rn−1ℓ) are lined up modulo m .
If n is odd,

E2 ∩ R0 =
{
(x0 + kn−2 + kn−1ℓ , y0 + rn−2 − rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
. Moreover, the points

(x0 + kn−2 + kn−1ℓ , y0 + rn−2 − rn−1ℓ) are lined up modulo m.

Of course, in general, it is only on the border that R0, the rectangle modulo m, satisfies
R0 6= R0. If not, R0 is a normal rectangle.

For example if x0 = y0 = 0, this theorem means that the rectangle [0, kn/2] ⊗ [rn−2/2, rn−2[
does not contain points of E2 if n is even : E2 ∩

{
[0, kn/2] ⊗ [rn−2/2, rn−2[

}
= ∅ . If hn−1 is

large, that will mean that an important rectangle of R
2 is empty of points of E2: that will mark

a breakdown of independence.
As hi ≥ 1, the congruence which defines the best independence of E2 will satisfy hi = 1

and hd = 2. In this case we call it congruence of Fibonacci. Indeed, there exists n0 such
that a = fin0

and m = fin0+1 where fin is the sequence of Fibonnacci : fi1 = fi2 = 1,
fin+2 = fin+1 + fin. Moreover sequences hn and kn are the sequence of Fibonacci except for the
last terms.

1.2 Application : building of random sequence

To have IID random number 1 two methods exists : use of pseudo-random generators (for example
the linear congruence) and use of random noise (for example Rap music). But, up to now no
completely reliable solution had been proposed (cf [4]). To set straight this situation, Marsaglia
has created a Cd-Rom of random numbers by using sequences of numbers provided by Rap music
(cf [5], page 3 of [1]). But, it does not have proved that the sequence obtained is really random.

Congruences of Fibonacci cannot be used in order to directly generate good pseudo random
sequences because T 2 = ±Id where Id is the identity (cf page 141 of [9]). However, by using
Fibonacci congruences, there exists simple means of obtaining random sequences whose the quality
is sure : one uses the same method as Marsaglia, but one transforms the obtained sequence by
using functions Tq defined by the following way.

Definition 1.2 Let q ∈ N
∗. Let T be the congruence of Fibonacci modulo m. We define the

function of Fibonacci Tq by Tq = Prq ◦ T̂ where

1) T̂ (x) = T (mx)/m,

2) Prq(z) = 0, b1b2....bq when z = 0, b1b2... is the binary writing of z.

In order to build IID sequences, we will need to have a truly random sequence ỹn = myn ∈
{0, 1, ....,m − 1}, n=1,2,....,N, admitting for model a sequence of random variables Ỹn defined on
a probability space (Ω,A, P ). We will need that Yn = Ỹn/m satisfies the following condition : the
conditional probabilities of Yn admit densities with Lipschitz coefficient bounded by K0 not too
large.

In fact, since Yn is with discrete value, we can always assume that Yn has a continuous density
with respect to µm, where µm is the uniform measure : µm(k/m) = 1/m for all k such that

1By abuse of language, we will call ”IID sequence” (Independent Identically Distributed) the sequences of random
numbers.
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k ∈ {0, 1, ....,m − 1}. One can always admit that this density has a Lipschitz coefficient bounded
by K0 > 0. The assumption which we make about Yn is that K0 is not too large.

We will see in Section 8 that there is such sequences yn.

So, in Proposition 6.1, we shall prove easily that the conditional probabilities of Tq(Yn) check

P
{
Tq(Yn) = x0

∣∣ Yn−1 = y′
1, Yn−2 = y′

2, ...., Yn+1 = y”1, Yn+2 = y”2, .....
}

= (1/m)[1+O(1)K02
q/m] .

By setting Xn = Tq(Yn) and xn = Tq(yn), we shall deduce that

P
{
Xn = x0

∣∣ Xn−1 = x′
1, Xn−2 = x′

2, ...., Xn+1 = x”1, Xn+2 = x”2, .....
}

= (1/m)[1+O(1)K02
q/m] ,

and that, for all Borel set Bo ⊂ {0/2q, 1/2q, ...., (2q − 1)/2q}N ,

P
{
(X1, ...., XN ) ∈ Bo

}
= L(Bo)[1 + O(1)ǫ] ,

where |ǫ| ≤ K0N2q/m and where L is the measure corresponding to the Borel measure in the case
of discrete space. We prove this result in Section 6.

We shall choose m and q such that ǫ is small enough. Indeed, if ǫ is small enough with respect
to N, the size of sample, then xn = Tq(yn) cannot be differentiated from an IID sequence.

Indeed, it is wellknown that, for a sample xn, there is many correct models : in particular,
if xn is a sample of an IID sequence of random variables, models such that P{(X1, ...., XN ) ∈
Bo} = L(Bo)[1 + ǫBo], |ǫBo| ≤ ǫ, are correct if ǫ is small enough. Reciprocally, if the sequence
of random variables Xn checks P{(X1, ...., XN ) ∈ Bo} = L(Bo)[1 + ǫBo], the model IID is also a
correct model for the sequence xn.

Thus one will be able to admit that IID model is a correct model for the sequences xn. As a
matter of fact, one will be even able to admit that there exists another correct model Y θ0

n of

yn such that Tq(Y
θ0
n ) is exactly the IID sequence. We shall prove this result in proposition

5.1.
In fact, we must know what is called a correct model. We will discuss this problem in Section 4.

So finally we can build sequences xn admitting for correct model the IID model. This means
that, a priori, these sequences xn behave as random sequences. It is always possible that they do
not satisfy certain tests. But it will be a very weak probability as we know that it is the case for
samples of sequences of IID random variables.

By using this technique, we have created such real sequences xn by using various texts. We
have tested the sequence xn with classical Diehard tests, and higher order correlation coefficients.
Results are in accordance with what we waited : the hypothesis ”randomness” is accepted by all
these tests (cf section 9.2) . One can obtain such real random sequences in [13].

By this method, we therefore have a means to develop the technique used by Marsaglia to
create a CD-ROM. We can indeed prove mathematically that the sequence obtained

can be regarded a priori as random, what Marsaglia did not.

2 Dependence induced by linear congruences

In this section, we study the set E2 =
{
ℓ, T (ℓ) | ℓ ∈ {0, 1, .....,m − 1}

}
.

2.1 Notations

We recall that we define sequences rn and hn by the following way : we set r0 = m, r1 = a and
we define rn by rn = hn+1rn+1 + rn+2, the Euclidean division of rn by rn+1 when rn+1 6= 0. One
denotes by d the smallest integer such as rd+1 = 0. One sets rd+2 = 0.
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One sets k0 = 0, k1 = 1 and kn+2 = hn+1kn+1 + kn if n + 1 ≤ d.

Then we have the writing of m/a in continued fraction :

m

a
= h1 +

1

h2 + 1
h3+

1
h4+....

.

Now, hn ≥ 1 for all n=1,2,...,d and rd−1 = hdrd + rd+1 = hdrd + 0 = hdrd. The full sequence
rn is thus the sequence r0 = m, r1 = a, .........., rd+1 = 0, rd+2 = 0. Then, if T is a Fibonacci
conguence, rn is the Fibonacci sequence fin, except for the last terms.

Remark that if hn = 1 for n=1,2,...,d-1, kn is also the Fibonacci sequence for n=1,2,...,d. In-
deed by definition, k0 = 0, k1 = 1, k2 = 1 and kn+2 = kn+1 + kn if n + 1 ≤ d.

2.2 Theorems

Now, in order to prove the theorem 1, it is enough to prove the following theorem.

Theorem 2 Let n ∈ {2, 3...., d}. Then
If n is even , E2 ∩

{
[0, kn[⊗[0, rn−2[

}
=

{
(kn−1ℓ , rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
. Moreover the

points (kn−1ℓ , rn−1ℓ) are lined up.
If n is odd,

E2 ∩
{
]0, kn]⊗]0, rn−2]

}
=

{
(kn−2 + kn−1ℓ , rn−2 − rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
. Moreover, the

points (kn−2 + kn−1ℓ , rn−2 − rn−1ℓ) are lined up.

Then, if there exists hi large, there is a breakdown of independence. For example suppose
n=2. Then, one has a wellknown result. Indeed, m = r0, r1 = a, k1 = 1 and k2 = h1 = ⌊m/a⌋
where ⌊x⌋ means the integer part of x. Thus, the rectangle Rect2 = [0, m/(2a)] ⊗ [m/2, m[ will
not contain any point of E2. However, this rectangle has its surface equal to m2/(4a). Thus if
”a” is not sufficiently large, i.e if h1 is too large, there is breakdown of independence.

2.2.1 Numerical examples

We confirm by graphs the previous conclusion. We suppose m=21. If a = 13, we have a Fibonacci
congruence : cf figure 1. If one chooses a=10, sup(hi) = 20 : cf figure 2 . If one chooses a=5,
sup(hi) = 5 : cf figure 3.
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Figure 1: Fibonacci congruence

2.2.2 Conclusion

To avoid any dependence, it is necessary that sup(hi) is small. In the case of the Fibonacci
congruence, independence is checked on all rectangles Rect.
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Figure 2: sup(hi) = 20
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Figure 3: sup(hi) = 5 Fig

2.3 Distribution of T([c,c’[) when T is a Fibonacci congruence

We assume that T is a Fibonacci congruence. Let I = [c, c′[∩{0, 1, ....,m − 1} where c, c′ ∈
{0, 1, ....,m − 1}. We are interested by T

−1
(I) or T (I) because T 2 = ±Id. Since T (I) behaves as

independent of I, normally, we should find that T (I) and, therefore T
−1

(I), is well distributed in
{0, 1, ....,m − 1}. As a matter of fact it is indeed the case.

Indeed, let kn, n=1,2,..,c’-c, be a permutation of {c, c + 1, ..., c′ − 1} such that T
−1

(k1) <

T
−1

(k2) < T
−1

(k3) < ...... < T
−1

(kc′−c). Then, for all numerical simulations which we executed,
one has always obtained, for r=0,1,2,....,c’-c-1,

|T−1
(kr)/m − r/N(I)| ≤ ϕ(m)/N(I)

where ϕ(m) << Log(m). In fact, it seems ϕ(m) is the order of Log(Log(m)). Moreover,
Maxr=0,1,....,N(I)−1

(∣∣N(I)T−1(kr)/m−r
∣∣) seems maximum when I is large enough : c′−c > m/2.

For example, in figures 4, 5 and 6, we have the graphs N(I)T−1(kr)/m − r, r=0,1,....,N(I)-1
for various Fibonacci congruences when c’-c=100.

3 Proof of theorem 2

In this section, the congruences are conguences modulo m. Now the first lemma is obvious.

Lemma 3.1 For n=3,4,...,d+1, kn+1 > kn > kn−1 . Moreover kn+2 = hn+1kn+1 + kn is the
Euclidean division of kn+2 by kn+1.

Now, we prove the following results.

Lemma 3.2 Let n=0,1,2,...,d. If n is even, kna = m − rn. If n is odd, kna = rn.
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Figure 4: a= 1346269, m=2178309
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Figure 5: a= 121393, m=196418
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Figure 6: a= 10946, m=17711
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Proof : We prove this lemma by recurrence.
For n=0, kna = 0 = 0 = m − m = m − r0. For n=1, kna = a = a = r1.

We suppose that it is true for n.
One supposes n even. Then, kn+1a ≡ ahnkn + akn−1 ≡ −hnrn + rn−1 = rn+1.
One supposes n odd. Then, kn+1a ≡ ahnkn + akn−1 ≡ hnrn − rn−1 = −rn+1 ≡ m − rn+1.
Therefore, kn+1a = m − rn+1. �

Lemma 3.3 Let n=2,3,...,d+1. Let t ∈ {1, 2, ..., kn − 1}. If n ≥ 2 is even, rn−1 ≤ at < m − rn .
If n ≥ 3 is odd, m − rn−1 ≥ at > rn.

Moreover, if n ≥ 2 is even, kna = m − rn. If n ≥ 3 is odd, kna = rn.

Proof : The second assertion is lemma 3.2. Now, we prove the first assertion by recurrence.
One supposes n=2. Then, m = r0 = h1r1 + r2 = h1a + r2. Moreover, k2 = h1. If

1 ≤ t < h1 = k2, r1 = a ≤ at < h1a = m − r2 .

One supposes that the first assertion is true for n where 2 ≤ n ≤ d.

Let 0 < t′ < kn+1. Let t′ = fkn + e be the Euclidean division of t’ by kn : e < kn.
Then, f ≤ hn . If not, t′ ≥ (hn + 1)kn + e ≥ hnkn + kn−1 = kn+1.

One supposes n even.

In this case, rn−1 ≤ at < m − rn for t ∈ {1, 2, ..., kn − 1}.
Moreover, at′ ≡ fakn + ae ≡ f(m − rn) + ae ≡ −frn + ae.

First, one supposes e = 0. Then, f ≥ 1.
Moreover, because n ≥ 2, m−rn ≥ m−frn ≥ m−hnrn = m−(rn−1−rn+1) = r0−rn−1 +rn+1 ≥
r0 − r1 + rn+1 > rn+1 .
Therefore, because at′ ≡ −frn, at′ = m − frn .
Therefore, m − rn ≥ at′ > rn+1 .

Now, one supposes f < hn and e > 0 .
By recurrence, m − rn ≥ ae ≥ ae − frn ≥ rn−1 − frn ≥ rn−1 − (hn − 1)rn = rn + rn+1 > rn+1.
Therefore, because at′ ≡ −frn + ae, at′ = ae − frn .
Therefore, m − rn ≥ at′ > rn+1 .

One supposes f = hn, e 6= kn−1 and e > 0.
If e 6= kn−1, ae 6= kn−1a. Indeed, if not, a(e − kn−1) = 0. For example, if e − kn−1 > 0,
kn > e − kn−1 > 0. Then, because our recurence, a(e − kn−1) > rn−1 > 0 : it is impossible.

Now, if n = 2, kn−1a = k1a = a = r1 = rn−1.
Moreover, if n > 2, n ≥ 4. Then, by recurence kn−1a = rn−1.
Then, if e 6= kn−1, ae 6= kn−1a = rn−1. Then, ae > rn−1.

Moreover, m − rn ≥ ae ≥ ae − frn > rn−1 − frn ≥ rn−1 − hnrn = rn+1.
Therefore, because at′ ≡ −frn + ae, at′ = ae − frn .
Therefore, m − rn ≥ at′ > rn+1 .

One supposes f = hn and e = kn−1. Then, t′ = hnkn + kn−1 = kn+1. It is oppositite to the
assumption.
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Then, in all the cases, for t′ ∈ {1, 2, ...., kn+1 − 1}, m− rn ≥ at′ > rn+1. Therefore, the lemma
is true for n+1 if n is even. Then, it is also true for n+1=3.

One supposes n odd with n ≥ 3. In this case, rn < at ≤ m − rn−1 for t ∈ {1, 2, ..., kn − 1}.
Moreover, akn = rn. Therefore, at′ ≡ fakn + ae ≡ frn + ae.

Assume e = 0. Then, f ≥ 1.
Then, rn ≤ frn ≤ hnrn = rn−1 − rn+1 < m − rn+1.
Then, because at′ ≡ frn, rn ≤ at′ = frn < m − rn+1.

Assume e > 0 and f ≤ hn − 1.
By recurrence, rn < ae+frn ≤ m−rn−1+frn ≤ m−rn−1+(hn−1)rn = m−(rn−1−hnrn)−rn =
m − rn+1 − rn < m − rn+1.
Then, because at′ ≡ frn + ae, rn < at′ = ae + frn < m − rn+1

Assume e > 0, e 6= kn−1 and f = hn.
Because, e 6= kn−1, ae 6= m − rn−1. If not, ae = akn−1 = m − rn−1. For example, if e > kn−1,
a(e − kn−1) = 0 where 0 < e−kn−1 < kn. Then, by the assumption of recurrence, a(e − kn−1) > 0.
It is impossible.
Then, ae < m − rn−1.
Then, by recurrence, rn ≤ ae + hnrn < m − rn−1 + hnrn = m − rn+1.
Then, because at′ ≡ hnrn + ae, rn ≤ at′ = ae + hnrn < m − rn+1

One supposes f = hn and e = kn−1. Then, t′ = hnkn + kn−1 = kn+1. It is oppositite to the
assumption.

Then the lemma is true for n+1. �

Lemma 3.4 The following inequalities holds : kd+1 ≤ m.

Proof If t ∈ {1, 2, ..., kd+1 − 1}, by lemma 3.3, rd ≤ at < m− rd+1 or m− rd ≥ at > rd+1, i.e.
rd ≤ at < m or m − rd ≥ at > 0 where rd > 0. Then, 0 < at < m or m > at > 0.

Then, if kd+1 > m, there exists t0 ∈ {1, 2, ..., kd+1 − 1} such that t0 = m, i.e. at0 = am = 0.
It is impossible. �

Lemma 3.5 Let t, t′ ∈ {1, 2, ..., kd+1 − 1} such that at = at′. Then, t=t’.

Proof Suppose t > t′. Then, a(t − t′) ≡ 0 and a(t − t′) = 0. Then, by lemma 3.3,
rd ≤ a(t − t′) < m − rd+1 or m − rd ≥ a(t − t′) > rd+1 = 0 where rd > 0. Then, 0 < a(t − t′). It
is a contradiction. �

Lemma 3.6 Let n=1,2,...,d. Let Hn = h1k1+h2k2+h3k3+.......+hnkn. Then, Hn = kn+1+kn−1.

Proof We have Hn = h1k1 + h2k2 + h3k3 + ....... + hn−1kn−1 + hnkn

= k2 − k0 + k3 − k1 + k4 − k2 + k5 − k3 + k6 − k4 + k7 − k5 + ........ + kn − kn−2 + kn+1 − kn−1.

Therefore, if n=2m,
Hn =

8



k2 − k0 + k3 − k1 + k4 − k2 + k5 − k3 + k6 − k4 + ...... + k2m − k2m−2 + k2m+1 − k2m−1

= k2 − k0 + k4 − k2 + k6 − k4 + ........ + k2m − k2m−2

+k3 − k1 + k5 − k3 + k7 − k5 + ........ + k2m+1 − k2m−1

= k2m − k0 + k2m+1 − k1 = kn+1 + kn − k1 − k0 = kn+1 + kn − 1.

If n=2m+1
Hn =

k2 − k0 + k3 − k1 + k4 − k2 + k5 − k3 + k6 − k4 + ...... + k2m+1 − k2m−1 + k2m+2 − k2m

= k2 − k0 + k4 − k2 + k6 − k4 + ........ + k2m+2 − k2m

+k3 − k1 + k5 − k3 + k7 − k5 + ........ + k2m+1 − k2m−1

= k2m+2 − k0 + k2m+1 − k1 = kn+1 + kn − 1 . �

Lemma 3.7 Let n=1,2,3,...,d-1 . Let Ln =
{
t
∣∣t = 0, 1, 2, ....,Hn

}
. Then, for all n ≥ 1,

Ln+1 =
{
t = l + gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
.

Proof Let l ∈ Ln , l ≤ Hn. Let g ≤ hn+1.
Therefore, if t = l + gkn+1, t ≤ Hn + hn+1kn+1 = Hn+1.
Therefore,

{
t = l + gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
⊂ Ln+1 .

Reciprocally, let t ∈ Ln+1 and let t = fkn+1 + e , e < kn+1 be the Euclidean division of t by
kn+1.

We know that Hn = kn+1 + kn − 1 ≥ kn+1. Therefore, e ≤ Hn. Therefore, e ∈ Ln.

Therefore, if f ≤ hn+1 , t = fkn+1 + e ∈
{
t = l + gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
.

Moreover, if f > hn+1 + 1 , t = fkn+1 + e ≥ (hn+1 + 2)kn+1 + e ≥ hn+1kn+1 + 2kn+1 =
Hn+1 − Hn + 2kn+1 = Hn+1 − kn+1 − kn + 1 + 2kn+1 = Hn+1 + kn+1 − kn + 1 ≥ Hn+1 + 1 .
Therefore, t /∈ Ln+1.

Then, suppose f = hn+1+1. Then, t = fkn+1+e = (hn+1+1)kn+1+e = hn+1kn+1+kn+1+e =
Hn+1 − Hn + kn+1 + e = Hn+1 − kn+1 − kn + 1 + kn+1 + e = Hn+1 − kn + 1 + e.
Because t ∈ Ln+1 and t = Hn+1 − kn + 1 + e, e + 1 − kn ≤ 0. Therefore, e ≤ kn − 1.
Therefore, t = fkn+1 + e = hn+1kn+1 + kn+1 + e,
where kn+1 + e ≤ kn+1 + kn − 1 = Hn

Therefore, t = hn+1kn+1 + e′ where e′ ≤ Hn.
Therefore, t ∈

{
t = l + gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
.

Therefore, Ln+1 ⊂
{
t = l + gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
.

Therefore, Ln+1 =
{
t = l + gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
. �.

Lemma 3.8 Let Fn =
{
at

∣∣t = 0, 1, 2, ....,Hn

}
.

Let En =
{
at + km

∣∣t = 0, 1, 2, ....,Hn, k ∈ Z
}

. We set En = {on
s |s ∈ Z} where on

0 = 0 et
on

s+1 > on
s for all s ∈ Z.

Then, for all s ∈ Z, on
s+1 − on

s = rn or on
s+1 − on

s = rn+1.

9



Proof We prove this lemma by recurrence.
Suppose n=1. Then, r1 = a, H1 = h1k1 = k2 = h1. Therefore,

F1 =
{
at

∣∣t = 0, 1, 2, ..., h1

}
=

{
0, a, 2a, ..., h1a

}
=

{
0, r1, 2r1, ..., h1r1 = m − r2

}
. Therefore, the

lemma is true for n=1.

Suppose that the lemma is true for n.
Then, En+1 =

{
at + km

∣∣t = 0, 1, 2, ....,Hn+1, k ∈ Z
}
,

where Hn+1 = h1k1 + h2k2 + h3k3 + ....... + hn+1kn+1 = Hn + hn+1kn+1.

Because t ∈ {0, 1, 2, ....,Hn+1}, t ∈ Ln+1. By lemma 3.7, si t ∈ Ln+1, t = l + gkn+1 where
g ≤ hn+1. By lemma 3.2, at ≡ a(l + gkn+1) ≡ al + (−1)n+2grn+1 ≡ al + (−1)ngrn+1 .

Therefore,
En+1 =

{
at + km

∣∣t ∈ Ln+1, k ∈ Z
}

=
{
at + km

∣∣t = l + gkn+1, l ∈ Ln, g ≤ hn+1, k ∈ Z
}

=
{
al + (−1)ngrn+1 + km

∣∣l ∈ Ln, g ≤ hn+1, k ∈ Z
}

=
{
f + (−1)ngrn+1 + km

∣∣f ∈ Fn, g ≤ hn+1, k ∈ Z
}

=
{
on

s + (−1)ngrn+1 + km
∣∣s ∈ Z, g ≤ hn+1, k ∈ Z

}
.

Suppose that n is even.
Then, on

s + (−1)ngrn+1 = on
s + grn+1 ≤ on

s + rn − rn+2 because grn+1 ≤ hn+1rn+1 = rn − rn+2 .

Use the recurrence. Suppose on
s+1 − on

s = rn . Then, on
s + (−1)ngrn+1 ≤ on

s + rn − rn+2 =
on

s+1 − rn+2.
Therefore,
{on+1

t | on
s ≤ on+1

t < on
s+1} = {on

s < on
s + rn+1 < .... < on

s + hn+1rn+1 < on
s+1} .

Therefore, on+1
t+1 − on+1

t = rn+1 or rn+2 if on
s ≤ on+1

t < on+1
t+1 ≤ on

s+1.

Suppose on
s+1 − on

s = rn+1. Then, s is fixed .
Let T = min{t = 0, 1, ..., |on

s+t+1 − on
s+t = rn}. Therefore, on

s+T+1 − on
s+T = rn.

Let O = ∪T
t=0{on

s+t + grn+1 | 0 ≤ g ≤ hn+1}.
Then, O = {on

s , on
s+1, ....., o

n
s+T−1} ∪ {on

s+T + grn+1| 0 ≤ g ≤ hn+1}.
Therefore, O = {o′s, o′s+1, ....., o

′
s+K} where o′s′+1 − o′s′ = rn+1. Moreover, on

s+T+1 − o′s+K =
rn − hn+1rn+1 = rn+2.
Therefore, if on+1

t′ and on+1
t′+1 ∈ {on+1

t | on
s ≤ on+1

t ≤ on
s+T+1}, on+1

t′+1 − on+1
t′ = rn+1 or rn+2.

Suppose that n is odd.
Then, on

s + (−1)ngrn+1 = on
s − grn+1 ≥ on

s − rn + rn+2 because grn+1 ≤ hn+1rn+1 = rn − rn+2 .

Suppose on
s − on

s−1 = rn . Then, on
s + (−1)ngrn+1 ≥ on

s − rn + rn+2 = on
s−1 − rn+2.

Therefore,
{on+1

t | on
s ≥ on+1

t > on
s−1} = {on

s > on
s − rn+1 > ..... > on

s − hn+1rn+1 > on
s−1}.

Therefore, on+1
t − on+1

t−1 = rn+1 or rn+2 if on
s ≥ on+1

t > on+1
t−1 ≥ on

s−1.

Suppose on
s − on

s−1 = rn+1. Let T = min{t = 0, 1, ..., |on
s−t − on

s−t−1 = rn}. Therefore,
on

s−T − on
s−T−1 = rn

Let O = ∪T
t=0{on

s−t − grn+1 | 0 ≤ g ≤ hn+1}.
Then, O = {on

s , on
s−1, ....., o

n
s−T+1} ∪ {on

s−T − grn+1| 0 ≤ g ≤ hn+1}.
Therefore, O = {o′s, o′s−1, ....., o

′
s−K} where o′s′ − o′s′−1 = rn+1. Moreover, o′s−K − on

s−T−1 =
rn − hn+1rn+1 = rn+2.
Therefore, if on+1

t′ and on+1
t′−1 ∈ {on+1

t | on
s ≥ on+1

t ≥ on
s−T−1}, on+1

t′ − on+1
t′−1 = rn+1 or rn+2. �
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Proof 3.9 Now one proves theorem 2.

Suppose that n is even.
Then, kn−1a = rn−1, 2kn−1a = 2rn−1, ......hn−1kn−1a = hn−1rn−1 = rn − rn−2.

Now, akn−1ℓ = ℓrn−1 = ℓrn−1 for ℓ = 0, 1, 2, ...., hn−1.
Therefore,{

(kn−1ℓ, rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
=

{
(kn−1ℓ, akn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
⊂ E2 .

Moreover, rn−2 = hn−1rn−1 + rn. On the other hand, by lemma 3.8 , all the points of
E2 = (t, at), t ≤ Hn−1, have ordinates distant of rn or rn−1.

Therefore, if there is other points of E2∩
{
[0, Hn−1]⊗[0, rn−2[

}
that the points

{
(kn−1ℓ, rn−1ℓ)

∣∣ℓ =

0, 1, 2, ...., hn−1

}
, there exists ℓ0 ∈ {1, 2, ...., hn−1} and (x1, y1) ∈ E2 ∩

{
[0, Hn−1]⊗ [0, rn−2]

}
such

that rn−1ℓ0 − y1 = rn.

Because Hn−1 = kn + kn−1 − 1 < kn+1 ≤ kd+1, by lemma 3.5, there exists an only t ∈
{1, ....,Hn−1}, such that at = y1 : t = x1. Because y1 6= 0, there exists an only t ∈ {0, 1, ....,Hn−1},
such that at = y1.

Now, rn−1ℓ0 − y1 = aℓ0kn−1 − at = rn = −akn. Then, aℓ0kn−1 − −akn = at. Then,
a(ℓ0kn−1 + kn) = at.

Because rd−1 = hdrd with rd−1 > rd, hd ≥ 2. Moreover, d ≥ n ≥ 2. Then, d − 1 > 0. Then,
kd−1 > 0.

Then, by lemma 3.4, 0 < kn−1 + kn ≤ ℓ0kn−1 + kn ≤ hn−1kn−1 + kn ≤ kn − kn−2 + kn =
2kn − kn−2 ≤ 2kd < 2kd + kd−1 ≤ hdkd + kd−1 = kd+1 ≤ m. Then, 0 < ℓ0kn−1 + kn < kd+1.

Now 0 < t ≤ Hn−1 = kn + kn−1 − 1 < kd + kd−1 ≤ kd+1. Moreover, 0 < ℓ0kn−1 + kn < kd+1.
Then, because a(ℓ0kn−1 + kn) = at, by lemma 3.5, t = ℓ0kn−1 + kn.
Then, t = ℓ0kn−1 + kn ≥ kn−1 + kn > Hn−1. It is a contradiction.

Therefore, there is not other points of E2 ∩
{
[0, Hn−1] ⊗ [0, rn−2[

}
that

{
(kn−1ℓ, rn−1ℓ)

∣∣ℓ =

0, 1, 2, ...., hn−1

}
.

Therefore, there is not other points of E2∩
{
[0, kn[⊗[0, rn−2[

}
that the points

{
(kn−1ℓ, rn−1ℓ)

∣∣ℓ =

0, 1, 2, ...., hn−1

}
.

Therefore,

E2 ∩
{
[0, kn[⊗[0, rn−2[

}
=

{
(kn−1ℓ, rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
.

According to what precedes,
{
(kn−1ℓ, akn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
=

{
(kn−1ℓ, rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}

is located on the straight line y = (rn−1/kn−1)x if n is even.

Suppose that n is odd. Then, kn−2a = rn−2, kn−2a + kn−1a = rn−2 − rn−1, kn−2a + 2kn−1a =
rn−2 − 2rn−1, ......, kn−2a + hn−1kn−1a = rn−2 − hn−1rn−1.

Therefore, {
(kn−2 + kn−1ℓ , rn−2 − rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}

=
{
(kn−2 + kn−1ℓ , kn−2a + ℓkn−1a

∣∣ℓ = 0, 1, 2, ...., hn−1

}
⊂ E2.

For ℓ = 0, 1, 2, ...., hn−1, kn−2 + kn−1ℓ ≤ kn−2 + hn−1kn−1 = kn. Therefore,
{
(kn−2 + kn−1ℓ , rn−2 − rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
⊂ E2 ∩

{
]0, kn]⊗]0, rn−2]

}
.
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Moreover, rn−2 − hn−1rn−1 = rn. On the other hand, by lemma 3.8 , all the points of
E2 = (t, at), t ≤ Hn−1, have ordinates distant of rn or rn−1.

Therefore, if there is other points of E2 ∩
{
[0, Hn−1]⊗]0, rn−2]

}
that the points

{
(kn−2 +

kn−1ℓ , rn−2 − rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
, there exists ℓ0 ∈ {1, 2, ...., hn−1} and (x1, y1) ∈

E2 ∩
{
[0, Hn−1] ⊗ [0, rn−2]

}
such that y1 − (rn−2 − rn−1ℓ0) = rn.

Because Hn−1 = kn + kn−1 − 1 < kn+1 ≤ kd+1, by lemma 3.5, there exists an only t ∈
{1, ....,Hn−1}, such that at = y1. Because y1 6= 0, there exists an only t ∈ {0, 1, ....,Hn−1}, such
that at = y1.

Then, y1−(rn−2−rn−1ℓ0) = at−kn−2a + ℓ0kn−1a = rn = akn. Then, at = kn−2a + ℓ0kn−1a+
akn. Then, at = a(kn−2 + ℓ0kn−1 + kn).

Now, because rd−1 = hdrd with rd−1 > rd, hd ≥ 2. Now, n ≥ 3. Then, d − 1 ≥ n − 1 > 1.
Then, kd−1 > 0.

Then 0 < kn−2 + ℓ0kn−1 + kn ≤ kn−2 + hn−1kn−1 + kn ≤ 2kn ≤ 2kd < 2kd + kd−1 ≤
hdkd + kd−1 = kd+1 ≤ m.

Now 0 < t ≤ Hn−1 = kn + kn−1 − 1 < kd + kd−1 ≤ kd+1.
Then, because a(kn−2 + ℓ0kn−1 + kn) = at, by lemma 3.5, t = kn−2 + ℓ0kn−1 + kn.
Then, t = kn−2 + ℓ0kn−1 + kn ≥ kn−1 + kn > Hn−1. It is a contradiction.

Therefore, there is not other points of E2 ∩
{
[0, Hn−1]⊗]0, rn−2]

}
that the points

{
(kn−2 +

kn−1ℓ , rn−2 − rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
.

Therefore, there is not other points of E2 ∩
{
]0, kn]⊗]0, rn−2]

}
that the points

{
(kn−2 +

kn−1ℓ , rn−2 − rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
: i.e.

E2 ∩
{
]0, kn] ⊗ [0, rn−2[

}
=

{
(kn−2 + kn−1ℓ , rn−2 − rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
.

According to what precedes,

{
(kn−2 + kn−1ℓ , rn−2 − rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}

=
{
(kn−2 + kn−1ℓ , akn−2 + akn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}

is located on a straight line. �

4 Correct models

4.1 General study

One can always suppose that yn, n=1,2,...,N, is the realization of a sequence of random variables
Yn defined on a probability space (Ω, A, P ) : yn = Yn(ω) where ω ∈ Ω and where Yn is a correct
model of yn.

As a matter of fact, there exist an infinity of correct models of yn. It is thus necessary to be
placed in the set of all the possible random variables.

Notations 4.1 Let m ∈ N
∗. One considers the sequences of random variables Y θ

n , n=1,.......,N,
defined on the probabilities spaces (Ω,A, Pθ), θ ∈ Θ : (Y θ

1 , Y θ
2 , Y θ

3 , Y θ
4 , ............., Y θ

N ) : Ω →
{0/m, 1/m, ...., (m − 1)/m}N . One assumes that Y θ

n = Yn for all θ ∈ Θ.

For example, one can assume that Ω = {0, 1, ....,m − 1}N and (Y1, ...., YN ) = (Id, ...., Id).
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4.2 Definitions

It thus raises the question to define correctly what is a correct model. Indeed, if a model Y θ
n is

not correct, it is however possible that yn = Y θ
n (ω) , where Y θ

n is a sequence of random variable
defined on a probability space (Ω,A, P ).

In the case where the model Y θ
n is IID, to define a correct model is a generalization of the

already very complex problem of the definition of an IID sequence (cf [1]). However one can have
a solution because one wants only to prove that the correct models Tq(Y

θ
n ) will be close to the IID

model.

4.2.1 A scientific assumption

Generally, one feels well that correct models exist. In fact, it is a traditional assumption in science.
In weather for example, the researchers seek a correct model, which implies its existence (if not,
why to try to make forecasts?). One could thus admit that like a conjecture or a postulate without
defining exactly what is a correct model.

4.2.2 Definition using tests

Now, in order to know if a sequence yn is a realization of a model Yn, tests are generally used.
So we could say that the model Yn is a correct model of a sequence yn if the sequence yn satisfies
all the tests that one could make about hypothesis ”yn is a realization of Yn” with a frequency
equivalent 2 to that real realizations of model Yn.

4.2.3 Definitions using estimate

In fact, this is a case a little similar to the definition using the tests. We will estimate the
parameters of the distribution of Yn. In order to do this the easiest way is to estimate the marginal
distributions and higher order correlation coefficients : cf [6]. This will define the dependence of
the model Yn.

In some cases, it is indeed possible. So for some texts, one can admit the Q dependence when
Q is not too large (cf [9] section 10) and perhaps the stationarity. Indeed, in this case, there will
need to define only some dependences between Yn, Yn+1 and Yn+2, for example.

However, in more general cases, this may pose difficulties. Estimators may then be less clear.
It is the relation between the coefficients of p variables p and p’ variables, p′ > p, which is a
problem. For example if we have a sample of size N = 4, and points on each interval [0,1/2[ and
[1/2,1[ of X1 and X2, it is possible that in the associated squares, there is one with an empirical
probability equal to 0. If p is large, it is possible that there are many such hypercubes. This raises
problems.

But in concrete cases, it is always possible to get estimates for models Yn, n=,2,...,N. It can
be assumed that such estimates exist.

4.2.4 Other definition

One can also define a correct model by the following way : if Yn is a correct model for the sequence
yn, n=1,2,...,N, that means that the event ”the sequence yn is the result of a choice at random of
ω ∈ Ω where yn = Yn(ω)” is an event which has reasonable probability to be carried out.

2It agree to know what we call ”equivalent frequency”. Then, in this definition, we assume that there is a
mathematical answer, which is reasonable, but not completely sure. Note that there may exist infinitely from
them and that we may be in the same problem (there are an infinite number of possible tests). In this case, the
easiest will be to choose one from them. It is therefore assumed here that there are mathematical definitions of this
fact without giving more details. For example the test of uniformity by the chi-square could be not verified : the
probability of result which vould be found would be only one percent that uniform assumption is verified. But if we
do 100 tests, it is possible that such an event happens. It would be necessary still that these tests are independent
and it would then be necessary to know what ”independent tests” means. Such a study might be long.
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We thus find the same problem as the definition using tests : what is the probability that it
is reasonable 3? But we feel that a such definition means and it is reasonable. The simplest is to
assume that it exists.

4.2.5 To predict the future

In fact, a correct model depends on its usefulness. For example, in meteorology, its usefulness is
to predict weather.

One can transpose that to unspecified sequences of real numbers yn, n=1,2,....,N. The usefulness
of a model will be in general to predict the future. That applies perfectly to the research which
we carry out in order to obtain IID sequences : if a sequence is IID random, one will not be able
to predict the future knowing the past.

One could thus admit like definition of a correct model this one : a correct model is a model
such as, knowing the past Y θ

n−s = y′
n−s, s=1,2,..., this one makes possible to predict the best

possible the future. To be more complete, it is necessary to extend this definition to the sequences
yφ(n) where φ is a permutation of {1, 2, ...., N}.

It is necessary thus that the forecast is good : it has to be the most precise possible, but, if
knowing the past, one predicts the future in a too precise way and that it is not real, the model
will be bad.

Let us notice, that, under this condition, we suppose that one does not know the future yφ(n+s),
s=1,2,... : if not, the empirical probability would be a correct model.

4.2.6 Mathematical definition

Mathematically, one can thus specify that: it will be said that Y θ
n is a correct model, if, for any

permutation φ of {1, 2, ..., N}, for all sequence y′
s, for all n, it makes possible to give the conditional

probability of Y θc

φ(n) knowing the past Y θc

φ(n−1) = y′
1, Y θc

φ(n−2) = y′
2,....., which is the best possible

one.
It will be thus true in particular when y′

s = yφ(n−s) for s=1,2,3,.... It will thus be known that

P{Y θc

φ(n) ∈ Bo | Y θc

φ(n−1) = yφ(n−1), Y
θc

φ(n−2) = yφ(n−2), ......} will be the most precise possible by

taking account of what one really knows, i.e the sequence yφ(n−s).
Therefore, one can nothing object to this conditional probability in order to define the future

when what one really knows, it is the sequence yn. Of course it is in question conditional proba-
bilities which one could really deduce from the sample yn if all the mathematical properties were
known and if one had an infinite computing power.

4.2.7 Some difficulties

Unfortunately, in these definitions, one made only to move the problem: mathematically, what
means ”probabilities the most precise possible” and ”the best possible”? One understands well
what one wishes. But to define it mathematically seems complicated.

However, one can do our study without knowing it. Indeed, which interests us, it is that the
Xθ

n = Tq(Y
θ
n ) have a law close to an IID distribution.

Now, if Y θc
n is a correct model, P{Y θc

φ(n) ∈ Bo | Y θc

φ(n−1) = y′
1, Y

θc

φ(n−2) = y′
2, .........} defines the

future Y θc

φ(n) ∈ Bo sufficiently well for all Borel set Bo, when, which one knows, it is the sequence

yφ(n). It will be thus true in particular for P{Tq(Y
θc

φ(n)) ∈ Bo′ | Y θc

φ(n−1) = y′
1, Y

θc

φ(n−2) = y′
2, .........},

and, therefore, for P{Xθc

φ(n) ∈ Bo′ | Xθc

φ(n−1) = x′
1, X

θc

φ(n−2) = x′
2, ....} (cf proposition A1 [11]).

Therefore, this conditional probability defines a good forecast of the future. That means that if
one knows xφ(n−s), s=1,2,.., a good prediction of xφ(n) will be given by this conditional probability.

3Remark that if yn = Yn(ω) is an event which has reasonable probability to be carried out, the tests will have
to be checked with a good frequency.
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However we will prove in theorem 3 that P{Xθc

φ(n) ∈ Bo′ | Xθc

φ(n−1) = x′
1, X

θc

φ(n−2) = x′
2, ....} =

L(Bo′)[1+Ob(1)ǫ] where ǫ is small enough for the models with a continuous density and a coefficient
of Lipschitz K ′

0 not too large. Moreover, one will understand in section 8 that one can admit that
such models are correct if yn is obtained from texts. At last, we shall prove in section 5.9 that, in
this case, there exists a correct model Y θc

n such that P{Xθc

φ(n) ∈ Bo′ | Xθc

φ(n−1) = x′
1, X

θc

φ(n−2) =

x′
2, ....} = L(Bo′) if ǫ is small enough.

That means that if one knows xφ(n−s), s=1,2,.., a good prediction of xφ(n) will be given by

uniform probability. Then, we have proved that, there exists a correct model Y θc
n such that Tq(Y

θc
n )

is exactly the IID random sequence.

4.2.8 A Problem

It raises a problem : according to the definition which one chooses, it is often the empirical model
which is the best model possible. It is a known problem of the definition of an IID sequence :
some say there is no random sequence of finite dimension (cf [1] and section 10.2 of [9]).

In this case, the IID model is one of the worst model. For example if we use the definition of
Section 4.2.4, an increasing sequence xn has as much chance to be realized than a real IID sample
IID. In spite of this difficulty, we happens to prove that this model is correct for the sequences
Tq(yn). It’s almost a feat.

In order to adress this problem, we can try to impose conditions - known a priori or not - like
the Lipschitz coefficient not too large. But in this case again, it will be the models whose marginal
densities are bumps near each point of the sample yn which are the best. This is also true for a
real IID sample : the model with bumps will be the best model possible.

Even if we assumed that the Yn’s have the same distribution, one could assume that each Yn

is concentrated only on the points of the sample. One might assume that there is in addition a
function g such that Yn+1 = g(Yn) (in this case, K0 would be great) .

4.2.9 Other definition

To remedy this, we can introduce a new definition : we say that a model Yn is correct if the
hypothesis ”yn = Yn(ω)” is an assumption that nothing prevents. This means that yn is perfectly
plausible as realization of Yn. Then, expected properties of a such sample should be checked,
especially the tests and estimates.

4.2.10 Connection between some definitions

Some definitions have common points : the definition which defines the best conditional probability
for all sequences yφ(n) and the definition saying that the hypothesis ”yn = Yn(ω)” is a plausible
hypothesis (especially using the tests and estimates). In order to understand this connection, it is
enough to assume that the conditional probabilities are defined by estimate (e.g. by using higher
order correlation coefficients cf [6]). It can be difficult to define all the conditional probabilities
depending on the choice of the permutations φ in some cases. But in others cases, it is possible
as is the case for texts. In this case the two definitions are almost equivalent because how is it
possible to know the conditional probabilities of the model if we are not able to estimate?

In conclusion, a correct model would make possible to obtain the best conditional probability
for all sequences yφ(n), In particular, by taking into account the estimate

Does there exist such a model? Presumably, because generally yn represents a physical phe-
nomenon. It is thus normal to suppose its existence. Moreover, in certain cases, one can show
such models : it is the case for texts.

4.3 Texts

Now, we consider the particular case where the yn’s result from texts.
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A priori, a correct model would be a model which makes possible to predict the following letters
(yn, yn+1,.....) with a satisfactory probability if one knows the preceding letters yn−1, yn−2 .....
One could thus say that the model will predict all the possible texts which follows the beginning
of the text.

We will choose therefore as model the model of all possible texts with the uniform probability
(or another: see below). We can also choose more perfect models as all possible texts of the
author.

This seems a good model because knowing any subsequence, we can predict the following letters
with reasonable probability 4.

However such a model is too precise: indeed, for sequences representing a text, to suppose that
one is in an English text is a priori which is wrong : cf 6) page 307 of [9]. For example, one could
logically predict words invented not existing. A model in modern English language would be a
correct model. But a model in a possible evolution of the English language would be it too.

These model can be refined besides: if a novel is used, it would be astonishing to find texts
speaking about mathematical theorem. Therefore, there are models which make possible to better
predict the continuation than others. But it is necessary that is explained by the text which
precedes. If one takes only 100 words, one will not deduce from it the style of the author.

In fact in order to admit that only the English texts can represent the yn, it would be necessary
that sequence yn consists of a very large number of books which make possible to decode the
language. In this case, it is possible that the only correct models are texts, even texts of the
author.

Let us suppose that it is the case. That makes possible to define precise correct models. Indeed,
in this case, one can admit that the correct model will be that representing all the possible texts
written according to the style of the author. Of course, there is an almost infinite number of
possible texts as soon as N, the sample size of yn is large.

Concerning the associated probabilities, one can suppose that all the texts are equiprobable.
That seems a correct model.

But it is not the alone one. One can choose other probabilities than the equiprobable proba-
bility, for example a close probability, even another. Indeed, it seems that certain text are likely
more to exist than the different ones. The equiprobable model is thus not the best inevitably. In
order to find the best models it would be necessary to find those whose probabilities correspond
the best to all which one knows about texts of the author. That seems impossible to realize. But
theoretically, it could exist. In fact, there are several suitable models.

It thus seems difficult to find exactly all the possible correct models and especially to find a
better model. However, it is felt well that these models including all the texts which the author
can write seems rather correct and that there are from them which are better than others.

Therefore, for the texts, one can show correct models. All the possible texts of the author
with an about uniform probability seems be a good model. Then this model defines conditional
probabilities P{Y θt

φ(n) ∈ Bo|Y θt

φ(n−1) = y′
1, Y

θt

φ(n−2) = y′
2, ....} for all n, for all y′

s, s=1,2,..., and for

all permutation φ.
Now, if we use the definition by estimates, we obtain similar results if we assume that we have

a very large number of texts at our disposal.
Of course, this is not the case. But it is not serious : what matters to us is being able to

increase the Lipschitz coefficients of conditional probabilities. We reach this result by adding a
pseudo random and a text written backward (cf section 8).

4It is not embarrassing to be limited to the following letters : it is enough to take a subsequence containing the
letters preceding and following a portion of text to get a correct estimate.
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4.4 Conclusion

Thus in certain cases, there exist correct models which enable us to predict the future correctly.
One can suppose that the method described for the texts is good and can be generalized.

If this assumption is refused, it may be easier to admit that there exists such correct mod-
els defining correctly the conditional probabilities without more precise details as one does it in
weather and elsewhere. It was understood that it is enough in order to prove that the IID model
is a correct model of xn = Tq(yn).

5 Models equivalent with a margin of ǫ

5.1 The problem

Let Y θ2
n and Y θ1

n be two sequences of random variables such that, for all Borel set Bo,

P
{
(Y θ2

1 , ......, Y θ2

N ) ∈ Bo
}

= P
{
(Y θ1

1 , ......, Y θ1

N ) ∈ Bo
}[

1 + Ob(1)ǫ
]

,

where ǫ is small enough and where Ob(.) means the classical O(.) with the additional condition
|Ob(1)| ≤ 1. One supposes that Y θ1

n is a correct model of the sequence yn, n=1,2,....,N. One wants
to prove that Y θ2

n is also a correct model of yn if ǫ is small enough.

5.2 Example

Let us suppose that we have a really IID sequence of random variables Xǫ
n with uniform distribution

on [0,1/2] and [1/2,1] and with a probability such as P{Xǫ
n ∈ [1/2, 1]} = 0, 500[1 + ǫ] where

ǫ = 0, 001. Then, this sequence has not the uniform distribution on [0,1]. However, if we have a
sample with size 10, we will absoluetely not understand that Xǫ

n has not the uniform distribution
on [0,1]. It is wellknown that one need samples with size larger than N=1000 minimum in order
to test this difference.

More precisely, by the CLT (Central Limit Theorem), P
{

|
PN

n=1(1[1/2,1](X
ǫ
n)−1/2−ǫ/2)|√

N(1−ǫ2)/4
≥ b

}
≈

Γ(b) where Γ(b) = P{|XG| ≥ b} when XG ∼ N(0, 1). Then, P
{

|
PN

n=1(1[1/2,1](X
ǫ
n)−1/2)|√

N/4
≥ b

}
≈

Γ
(
b[1 − η(ǫ)]

)
where η is continuous with η(0) = 0.

More generally, one cannot test significantly H0 : ”Xθ
n has the uniform distribution” against

H1(ǫ) : ”P{Xθ
n ∈ Bo} = L(Bo)[1 + Ob(1)ǫ] ” if

√
N ǫ ≤ 1/10.

For example, if
√

N ǫ = 1/10 and b=2, the probability of obtaining
PN

n=1[1[1/2,1](X
θ
n)−1/2]√

N/4
≥ 2

is about 0.0466 under H1(ǫ) and about 0.0455 under H0 : i.e. the probability of rejecting the
assumption IID, H0, under H1(ǫ) is not much bigger than that of rejecting H0 if Xθ

n is really IID
(cf also section 4.3 of [11]).

5.3 IID models with a margin of ǫ

These results hold in dimension p , i.e. for 1
N−p

∑
n 1Bo1

(Y θ1
n+j1

)......1Bop
(Y θ1

n+jp
). One deduces

from what precedes that, if xn is the realization of a sequence of random variables Xθ
n such that

P{(Xθ
1 , ...., Xθ

N ) ∈ Bo} = L(Bo)[1+Ob(1)ǫ] for all Borel set Bo, one will not be able to differentiate
this model from an IID model if ǫ is rather small with respect to N.

Reciprocally, if xn, n=1,2,....,N, is really an IID sample, a model such that P{(Xθ
1 , ...., Xθ

N ) ∈
Bo} = L(Bo)[1 + ǫ] is also a correct model of the sequence xn.

Because we shall obtain P{(Xθ
1 , ...., Xθ

N ) ∈ Bo} = L(Bo)[1 + ǫ] in theorem 3 if m and q are
well chosen, one will be able to admit that the IID model is a correct model of the sequences xn

which we built in this report.
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5.4 Case where the CLT holds

One can adopt assumptions more general than those of the IID case by only supposing that the CLT
is checked. For example, assume that the CLT holds and that the Y θ1

n ’s have the same distribution
for n=1,2,....,N. Let PY1

(I) = P{Y θ1
n ∈ I} where I is an interval. Let P 1

e = (1/N)
∑

n 1I(Y
θ1
n )

and P 2
e = (1/N)

∑
n 1I(Y

θ2
n ). Let σ2

B the variance of P 1
e . Then, if N is big enough, by the CLT,

P{|P 1
e − PY1

(I)| > σBb} ≈ Γ(b) ,

where Γ(b) = P{|XG| ≥ b} when XG ∼ N(0, 1). Then, it is easy to prove (cf page 8 of [11])

P{|P 2
e − PY1(I)| > σBb} ≈ Γ(b)[1 + Ob(1)ǫ] .

Then, there will not be possible to conclude that yn is a realization of Y θ1
n rather than of Y θ2

n

by testing PY1(I). For example, let us suppose N = 104, ǫ = 0.00001. In this case, for b=2,

P{|P 1
e − PY1(I)| > 2σB} ≈ 0.0455,

P{|P 2
e − PY1

(I)| > 2σB} ≤ c2, where c2 ≈ 0.0500 .

Now, if yn is a realization of Y θ1
n , it is known that (1/N)

∑
n 1I(yn) is close to PY1

(I) with
a certain probability : it is completely possible that (1/N)

∑
n 1I(yn) is enough different from

PY1(I), but the probability that occurs is weak.
Moreover, if yn is a realization of Y θ2

n , it is also possible that (1/N)
∑

n 1I(yn) is enough
different from PY1

(I), but that is not likely much more to occur than if yn is a realization of Y θ1
n .

Then, for the test associated to PY1
(I), it will be thus impossible to differentiate the model

Y θ1
n and Y θ2

n as good model for the sequence yn.

These results are not only true for the estimate of only one PY1(I), but of several (cf page 9 of
[11] with ps = P{Y θ1

n ∈ Is}) :

P
{

N
∑

s

[ 1

N

∑

n

1Is(Y
θ2
n ) − ps

]2

≥ a
}

= P
{

N
∑

s

[ 1

N

∑

n

1Is(Y
θ1
n ) − ps

]2

≥ a
}

[1 + Ob(1)ǫ] .

Then, if ǫ is small enough, one cannot differentiate Y θ1
n and Y θ2

n by this chi squared test.

One can generalize these results in dimension p : one uses
∑

n 1Bo1(Y
θ1
n+j1

)......1Bop(Y θ1
n+jp

).
Of course, one can also generalize to other functions, i.e. to about the totality of the known tests.
Because of it, it seems impossible to differentiate Y θ1

n and Y θ2
n as models of yn .

Then, we have just studied the tests associated to these models. In order to be able to apply
them it is useful to be able to use the CLT. Now, in general, the sequences yn which we use are
asymptotically independent (for example texts or numbers provided by machines). The models
where the CLT is checked are thus correct. The conclusions that we deduce of it are thus correct
too : it is impossible to differentiate Y θ1

n and Y θ2
n as models of yn .

5.5 Another case

As a matter of fact, the relation P{(Y θ2
1

, ........., Y θ2

N ) ∈ Bo} = P{(Y θ1
1 , ..........., Y θ1

N ) ∈ Bo}
[1+Ob(1)ǫ] for all Borel set Bo ⊂ {0/m, 1/m, ...., (m− 1)/m}N is a very strong relation. Because
of it, it seems impossible to differentiate Y θ1

n and Y θ2
n as models of yn in other cases than the case

where the CLT holds.
For example, this results holds also if only the Weak Law of Large Number holds. Indeed one

does not know the exact law of Pe −PY1
(I). But it exists theoretically. However, to know this law
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is not important : it is enough that one has the relation P{|P 2
e −PY1

(I)| > b} = P{|P 1
e −PY1

(I)| >
b}[1+Ob(1)ǫ] for all b > 0 in order to be able to conclude from it that one will cannot differentiate
the models Y θ1

n and Y θ2
n .

Moreover, the inequality of Bienaymé-Tschebischeff shows that the sums divided by the vari-
ance are normalized. One deduced from it that one cannot differentiate the effects of these models.

5.6 General Case

One now asks if to prove this result in the general case is possible, i.e. if, whatever the model Y θ1
n

(for example without tests), the relation P{(Y θ2
1

, ...., Y θ2

N ) ∈ Bo} = P{(Y θ1
1 , ...., Y θ1

N ) ∈ Bo}[1 +
Ob(1)ǫ] implies always that one cannot differentiate Y θ1

n and Y θ2
n . It is maybe the case. But, in

order to prove it, there is likely philosophical or other problems of the type of the definition of the
randomness of Franklin (cf [1], [17]). That is thus likely a complicated study.

But one can say still a certain number of thing in the general case.

5.6.1 Empirical probability

It is observed now that, if a model Y θ1
n is correct and a model Y θ2

n is not correct, it would be
necessary that a variation of the probability which would be smaller than P

{
(Y θ1

1 , ......, Y θ1

N ) ∈
Bo

}
ǫ exchange something sufficiently important so that one understands a difference of the models

with respect to the sample. Therefore, the probability in question will be close to the empirical
probability. Thus the model would be very close to the empirical model.

However, the empirical model is in general a bad theoretical model. Thus, in the case of texts,
it is known a priori that the empirical probability is not the good model because it will fail as
soon as one increases N. One thus arrives at a contradiction.

Then, even if the empirical probability can be selected like correct model, a probability of a
model Y θ2

n where one changes only a little this probability is also correct.
It would be thus astonishing that a model as special as the empirical model Y θ1

n satisfies ef-
fectively that, if Y θ1

n is correct, an approximate model Y θ2
n will be it also and that an unspecified

model does not check this implication. In particular, it would be astonishing for models with con-
tinuous density and coefficient of Lipschitz not too large. It would be even astonishing for models
with unspecified coefficient of lipschitz, i.e. in the general case. Of course astonishing means that
this is intuitive.

5.6.2 Presentation of the intuition

In fact, this intuition is based on the following reasoning: if Y θ1
n is a correct model for the sequence

yn, that means that the event ”the sequence yn is the result of a choice at random of ω where
yn = Y θ1

n (ω)” is an event which has reasonable probability to be carried out. Then, it is not
understood what can prevent that yn = Y θ2

n (ω) is a realization equally probable if one changes
only a little the probabilities (except in the case studied in section 5.8).

The only cases where they could have problem seem those of the probability concentrated close
to some points like the empirical probability. But one has just understood that even in this case,
it is still true.

One thus understands well what leads to think that, in all the cases, one will not be able to
differentiate Y θ1

n and Y θ2
n .
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5.7 Value of ǫ

To get an idea of the value of ǫ, the best is to return to the definition using tests.
Because P{(Y θ

1
, ...., Y θ

N ) ∈ Bo} = P{(Y θ0
1 , ...., Y θ0

N ) ∈ Bo}[1+Ob(1)ǫ] implies that P{g(Y θ
1

, ...., Y θ
N )

∈ Bo′} = P{g(Y θ0
1 , ...., Y θ0

N ) ∈ Bo′}[1 + Ob(1)ǫ], we can consider that all tests defined by a func-
tion of type g, will produce results not very different if ǫ is small enough. Then, one can choose
ǫ = 1/10, 1/100 ou 1/1000, ...... Now, if we wanted to avoid any doubt, intuition would dictate
that we choose ǫ as a function of N. Intuitively, one might therefore wish to impose ǫ = 1/N .
But this is probably exaggerated and there is nothing which justifies this intuition. Moreover, in
theorem 3, it already imposed ǫ = K0N2q/m. The idea of choosing ǫ as a function of N is already
realized

5.8 A problem

5.8.1 The problem

But it is necessary to add something to these assertions. If the model Y θ1
n is correct and that the

model Y θ2
n is also correct, a model Y θ3

n equivalent with a margin of ǫ to Y θ2
n would be it also correct

with the relation P{(Y θ3
1

, ...., Y θ3

N ) ∈ Bo} = P{(Y θ1
1 , ...., Y θ1

N ) ∈ Bo}[1 + 2Ob(1)ǫ]? A priori not
inevitably!

If it is admitted, one would manage to find that the models Y
θp
n checking P{(Y θp

1
, ...., Y

θp

N ) ∈
Bo} = P{(Y θ1

1 , ...., Y θ1

N ) ∈ Bo}[1 + pOb(1)ǫ] would be also correct. One would end up finding
models which would not be correct.

Therefore, there is no reason that Y θ3
n is also correct. It cannot be differentiated of Y θ2

n , but
not of Y θ1

n . In other words, this relation is not transitive.

5.8.2 IID Case

That thus poses a problem because if one uses for example a realization yn of the IID model, and
that if one takes for sequence Y θ1

n a model checking P{(Y θ1
1

, ...., Y θ1

N ) ∈ Bo} = L(Bo)[1+Ob(1)ǫ1]
where ǫ1 is small enough but not very small, there are no reasons a priori that Y θ2

n is a correct
model. Indeed, in order that Y θ2

n is not correct, it is enough that Y θ1
n is in extreme cases of the

correct models, i.e. it is enough that ǫ1 is in extreme cases of the possible values of the ǫ’s such
that P{(Y θ

1
, ...., Y θ

N ) ∈ Bo} = L(Bo)[1 + Ob(1)ǫ], supBo(Ob(1)) = 1, imply that Y θ
n is a correct

model.

5.8.3 What we want

But what interests us is that there exists correct models Y θ1
n such that all models close Y θ

n , i.e.
checking P{(Y θ

1
, ...., Y θ

N ) ∈ Bo} = P{(Y θ1
1 , ...., Y θ1

N ) ∈ Bo}[1 + Ob(1)ǫ] would be also correct. But
we need that ǫ is small but not too, i.e. of the order of what we saw : ǫ = 1/10, 1/100 or at worst
ǫ = 1/N if need be (cf section 5.7)

5.8.4 Case of a known model

To understand that this is the case, suppose first that we have an sequence xn, sample of an
IID sequence Xn and that it is a good realization of Xn. So we know that models checking
P{(Xθ

1 , ...., Xθ
N ) ∈ Bo} = L(Bo)[1 + Ob(1)ǫ] will also correct models. In this case, we can admit

that there is a model (the IID model) such as all close models are correct models.
If we are not in the IID case but in any case and if one knows the model : it is the same matter.
However we can always accept that a sequence yn is the realization of a given model Y 1

n : this
is indeed the usual hypothesis in Statistics. The model Y 1

n will be thus ”at the center of some
models close” : P{(Y θ

1 , ...., Y θ
N ) ∈ Bo} = P{(Y 1

1 , ...., Y 1
N ) ∈ Bo}[1 + Ob(1)ǫ] implies that Y θ

n will
be also a correct model.
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Intuitively, one feels that it is general : there are many correct models, Y θ
n of a sequence yn,

n=1,2,...,N, such that models close with a margin of ǫ are also correct.

5.8.5 Use of estimates

Suppose we take the IID example of section 5.2 : P{Xǫ
n ∈ [1/2, 1]} = 0, 5[1 + ǫ] when ǫ = 0, 001.

Suppose that the sample xn is a good sample. It is then clear that there are many correct models
close to the model Xǫ

n if ǫ is small enough.
But it is possible that there are other such models. Thus, we can choose for correct model, the

IID model X2
n such that P{X2

n ∈ [0, 1/2[} = pe, the empirical probablity of [0,1/2[.
In this case, it is clear that there are many close models which are correct. For example,

consider as a model P{X3
n ∈ [0, 1/2[} = pe(1 + 0.0003). It is also a correct model and the close

models P{(Xθ
1 , ...., Xθ

N ) ∈ Bo} = P{(X3
1 , ...., X3

N ) ∈ Bo}[1 + Ob(1)ǫ] will be also correct models
if ǫ is small.

More generally, we know that it should exist estimates of models (these estimates are easier
to calculate in some cases as texts). Then, we can choose as model Y θ1

n , the model provided
by these estimates. If these estimates are correct, then it is clear that all close models checking
P{(Y θ2

1
, ...., Y θ2

N ) ∈ Bo} = P{(Y θ1
1 , ...., Y θ1

N ) ∈ Bo}[1 + Ob(1)ǫ] will be also correct models.

5.9 Exact IID model

Then if Y θ
n is a correct model such as Tq(Y

θ
n ) cannot be differentiated with the IID model, one

will be able to choose another correct model Y θ0
n close to Y θ

n and such that Tq(Y
θ0
n ) is exactly the

IID model.

Proposition 5.1 One assumes that m is large enough. Let Y θc
n be a correct model of the sequence

yn. One assumes that there exists ǫY > 0 such that if Y θ
n is a model satisfying, for all Borel set

Bo, P
{
(Y θ

1 , ......, Y θ
N ) ∈ Bo

}
= P

{
(Y θc

1 , ......, Y θc

N ) ∈ Bo
}
[1 + Ob(1)ǫY ], then Y θ

n is a correct model
of yn.

One assumes also that, for all (k1, ...., kN ),

P
{
{Tq(Y

θc
1 ) = k1/2q} ∩ ...... ∩ {Tq(Y

θc

N ) = kN/2q}
}

=
1

2qN
[1 + ǫk1,....,kN

(q)]

where supk1,....,kN
|ǫk1,....,kN

(q)| = ǫX(q). One assumes that ǫX(q) is increasing, that ǫX(1) << ǫY

and that there exists q1 ∈ N
∗ such that ǫX(q1) is small enough.

Then, there exists q0 ∈ N
∗ and a correct model Y θ0

n of the sequence {yn}n=1,...,N such that, for
all (k1, ...., kN ),

P
{
{Tq0

(Y θ0
1 ) = k1/2q} ∩ ...... ∩ {Tq0

(Y θ0

N ) = kN/2q}
}

=
1

2q0N
.

Proof There exists q0 ≤ q1 such that ǫX(q0) ≤ (1/2)ǫY . Then, one uses the model Y θ0
n such

that, for all (k1, ...., kN ),

P
{
(Y θ0

1 , ......, Y θ0

N ) = (y′
1, ......., y

′
N )

}
=

P
{
(Y θc

1 , ......, Y θc

N ) = (y′
1, ......., y

′
N )

}

1 + ǫk1,....,kN
(q0)

for all y′
1 ∈ T−1

q0
(k1/2q0), ........., y′

N ∈ T−1
q0

(kN/2q0). It ckecks

P
{
{Tq0(Y

θ0
1 ) = k1/2q0} ∩ ...... ∩ {Tq0(Y

θ0

N ) = kN/2q0}
}

=
1

2q0N
.

It ckecks also : for all (y′
1, ......., y

′
N ),

P
{
(Y θ0

1 , ......, Y θ0

N ) = (y′
1, ......., y

′
N )

}
= P

{
(Y θc

1 , ......, Y θc

N ) = (y′
1, ......., y

′
N )

}
[1 + Ob(1)ǫ′Y ]
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where |ǫ′Y | ≤ C0 ≈ ǫX(q0). Then, |ǫ′Y | < ǫY . Then, for all Borel sets Bo,

P
{
(Y θ0

1 , ......, Y θ0

N ) ∈ Bo
}

= P
{
(Y θc

1 , ......, Y θc

N ) ∈ Bo
}
[1 + Ob(1)ǫ′Y ] .

Then, Y θ0
n is a correct model of yn. Moreover Tq0

(Y θ0
n ) is the IID model. �

Now, generally, by theorem 3 one can find models correct Y θc
n such that P{(Xθc

1
, ..., Xθc

N ) ∈
Bo} = L(Bo)[1 + Ob(1)ǫ′] where ǫ′ is increasingly small if q decreases when K0 is not too large.

Then, we shall understand in section 10 that it is possible to build in practical terms a such
sequence yn, i.e. a sequence yn such that the model IID is a correct model of xn.

6 Approximation theorem

6.1 Theorem

In this section, we assume that T is a Fibonacci congruence and we use Fibonacci function Tq in
order to build IID sequences.

Notations 6.1 Let Yn ∈ {0/m, 1/m, ...., (m − 1)/m}, n=1,2,...,N, be a sequence of random
variables defined on a probability space (Ω,A, P ). We define the sequence Xn, n=1,2,...,N, by
Xn = Tq(Yn)

Now we define a measure equivalent to the Borel measure in the discrete case.

Notations 6.2 For all p ∈ N
∗, let L be the measure defined on {0/2q, 1/2q, ...., (2q − 1)/2q}p by

L(Bo) = Card(Θ)
2pq when Bo = ∪(k1,...,kp)∈Θ{(k1/2q, ..., kp/2q)}.

For example, if p=1, and if I = {k/2q, (k + 1)/2q, ....., (k′ − 1)/2q}, L(I) = (k′ − k)/2q the length
of interval [k/2q, k′/2q[.

Because Yn is a sequence with values in a discrete space, it always admits a density with respect
to the discrete uniform measure.

Notations 6.3 We denote by µm the uniform measure defined on {0/m, 1/m, ...., (m− 1)/m} by
µm(k/m) = 1/m for all k ∈ {0, 1, ...,m − 1}.

For all permutation φ of {1, 2, ..., N}, for all n ∈ {1, 2, ..., N}, we denote by fn,φ(.|y′
1, y

′
2, ....)

the conditional density with respect to µm of Yφ(n) given Yφ(n−1) = y′
1, Yφ(n−2) = y′

2, ......

Since Yn is discrete, we can also assume that fn,φ(.|y′
1, y

′
2, ....) has a finite Lipschitz coefficient.

Notations 6.4 We denote by K0 a constant such that, for all permutation φ of {1, 2, ..., N}, for
all n ∈ {1, 2, ..., N}, |fn,φ(y|y′

1, y
′
2, ...) − fn,φ(y′|y′

1, y
′
2, ...)| ≤ K0|y − y′|. In order to simplify the

proofs we suppose K0 > 1.

Under these conditions, if m and q are well chosen, Xn is approximately the IID sequence :
for all Borel set Bo ⊂ {0/2q, 1/2q, ...., (2q −1)/2q}N , P

{
(X1, ...., XN ) ∈ Bo

}
= L(Bo)[1+Ob(1)ǫ],

where ǫ ≈ 0.

Theorem 3 Let γ(m) = [2 + ϕ(m)]. We assume γ(m)NK02
q/m ≈ 0 and m/K0 >> 1. Then,

for all Borel set Bo,

P
{
(X1, ...., XN ) ∈ Bo

}
= L(Bo)

[
1 +

γ(m)Ob′(1)NK0

m/2q

]
.

where |Ob′(1)| is increased by a number close to 1.

If K0 is not too large, there is no difficulty to choose m and q in such a way that ǫ ≤
γ(m)2qNK0/m is small enough. Therefore, P

{
(X1, ...., XN ) ∈ Bo

}
= L(Bo)

[
1 + Ob′(1)ǫ

]
.
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6.2 First proposition

In order to prove theorem 3, we shall use the following proposition.

Proposition 6.1 Let hN be the probability density function of Y ∈ {0/m, 1/m, ......, (m− 1)/m},
with respect to µm :

∫ 1

0
hN (u)µm(du) = 1. Let h′

N = (1/c0)hN such that
∫ 1

0
h′

N (u)du = 1.
Let K0 ∈ R+ such that |hN (r) − hN (r′)| ≤ K0|r′ − r| and |h′

N (r) − h′
N (r′)| ≤ K0|r′ − r| when

r, r′ ∈ [0, 1]. One supposes 2q/m ≈ 0, and m/K0 >> 1 .
Then, the following equality holds :

P{T (mY )/m ∈ Ik} = L(Ik)
[
1 +

γ(m)Ob′(1)K0

m/2q

]
,

where Ik = [k/2q, (k + 1)/2q[, L(Ik) = 1/2q.

Proof The proof of this proposition is simple : the points of T
−1

(mIk) are well distributed in

{0, 1, ....,m−1}. Thus in figure 7, it is easy to understand that the sum of points of h′
N (T

−1
(mIk))

will be close card
(
mIk ∩ {0, 1, ....,m − 1}

)
/m because

∫ 1

0
h′

N (u)du = 1.
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Figure 7: Points of h′
N [T

−1
(mIk)] when h′

N (t) = sin(4πt) + 1

Now in order to prove mathematicaly this proposition, we need the following lemmas.

Lemma 6.1 Let N(Ik) be the number of t/m ∈ {0/m, 1/m, ...., (m − 1)/m} such that k/2q ≤
t/m < (k + 1)/dq. Then, N(Ik) = m/2q + Ob(1).

Proof We define the interval [ck/m, c′k/m[ with ck, c′k ∈ {0, 1, ....,m − 1} by

[ck/m, c′k/m[∩{0/m, 1/m, ...., (m − 1)/m} = [k/2q, (k + 1)/2q[∩{0/m, 1/m, ...., (m − 1)/m}.

Then, (ck − 1)/m < k/2q ≤ ck/m and (c′k − 1)/m < (k + 1)/2q ≤ c′k/m.
Let m/2q = h0+e where 0 ≤ e < 1 and h0 ∈ N. Then, N(Ik) = c′k−ck = h0 or N(Ik) = h0+1.
By our definition h0 ≤ m/2q ≤ (h0 + 1). Then, N(Ik) = m/2q + Ob(1). �

Lemma 6.2 The following equality holds :

c0 = 1 +
Ob′(1)K0

m
.

Proof The following equalities hold :

1 =
∑

t

∫ (t+1)/m

t/m

h′
N (u)du =

∑

t

∫ (t+1)/m

t/m

[
h′

N (t/m) + Ob(1)K0/m
]
du
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=
1

m

∑

t

h′
N (t/m) +

Ob(1)K0

m
=

∫ 1

0

h′
N (u)µm(du) +

Ob(1)K0

m
.

Then,
∫ 1

0
h′

N (u)µm(du) = 1 + Ob(1)K0

m . Therefore,

1 =

∫ 1

0

hN (u)µm(du) = c0

∫ 1

0

h′
N (u)µm(du) = c0

[
1 +

Ob(1)K0

m

]
. �

Lemma 6.3 The following equality holds : 1
N(Ik)

∑
r hN (r/N(Ik)) = 1 + Ob′(1)K0

N(Ik) .

Proof The following equalities hold :

1 =
∑

r

∫ (r+1)/N(Ik)

r/N(Ik)

h′
N (u)du =

∑

r

∫ (r+1)/N(Ik)

r/N(Ik)

[
h′

N (r/N(Ik)) + Ob(1)K0/N(Ik)
]
du

=
1

N(Ik)

∑

r

h′
N (r/N(Ik)) +

Ob(1)K0

N(Ik)
.

Therefore c0 = 1
N(Ik)

∑
r hN (r/N(Ik)) + Ob(1)c0K0

N(Ik) .

Therefore, by lemma 6.2,

c0 = 1 +
Ob′(1)K0

m
=

1

N(Ik)

∑

r

hN (r/N(Ik)) +
Ob(1)[1 + Ob′(1)K0

m ]K0

N(Ik)
.

Because K0/m ≈ 0 and N(Ik)/m ≈ 0, we deduce the lemma. �

Lemma 6.4 Let gN (k) = hN

(
T

−1
(k)/m

)
. The following approximation holds

1

N(Ik)

c′k−1∑

k=ck

gN (k) = 1 +
[1 + ϕ(m)]Ob(1)K0

N(Ik)
.

Proof Let kn, n = 1, 2, .., c′k − ck, be a permutation of {ck/m, (c+1)/m, ..., (c′k −1)/m} such that

T
−1

(k1) < T
−1

(k2) < T
−1

(k3) < ...... < T
−1

(kc′k−ck). Then, by definition of section 2.3,

|T−1
(kr)/m − r/N(Ik)| ≤ ϕ(m)/N(Ik) .

We deduce that |gN (kr) − hN (r/N(Ik))| ≤ K0ϕ(m)/N(Ik).

Therefore, by lemma 6.3,

1

N(Ik)

c′k−1∑

k=ck

gN (k) =
1

N(Ik)

∑

r

gN (kr)

=
1

N(Ik)

∑

r

hN (r/N(Ik)) +
1

N(Ik)

∑

r

[
gN (kr) − hN (r/N(Ik))

]
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=
1

N(Ik)

∑

r

hN (r/N(Ik)) +
Ob(1)ϕ(m)K0

N(Ik)
= 1 +

Ob′(1)K0

N(Ik)
+

Ob(1)ϕ(m)K0

N(Ik)
. �

Proof of proposition 6.1 By the previous equalities,

P{T (Y )/m ∈ Ik} =
1

m

∑

k

gN (k) =
N(Ik)

m

[
1 +

[1 + ϕ(m)]Ob′(1)K0

N(Ik)

]

=
[
L(Ik) +

Ob(1)

m

][
1 +

[1 + ϕ(m)]Ob′(1)K0

N(Ik)

]
= L(Ik)

[
1 +

Ob(1)

mL(Ik)

][
1 +

[1 + ϕ(m)]Ob′(1)K0

N(Ik)

]

= L(Ik)
[
1 +

2qOb(1)

m

][
1 +

[1 + ϕ(m)]Ob′(1)K0

m/2q + Ob(1)

]

= L(Ik)
[
1 +

2qOb(1)

m

][
1 +

2q[1 + ϕ(m)]Ob′(1)K0

m[1 + Ob(1)2q/m]

]

= L(Ik)
[
1 +

2q[2 + ϕ(m)]Ob′(1)K0

m

]
. �

6.3 Other propositions

Proposition 6.2 Let Xn, n=1,2,...,N, be a sequence of random variables. Assume that, for all
p ∈ N∗, for all sequence xs, s=1,...,p, for all n ∈ N∗, for all sequence of intervals, Js, s=1,2,..,p,
for all injective sequence js, s=1,2,...,p, such that j1 = 0 and js + n ∈ {1, 2, ..., N},

P
{
Xn+j1 ∈ Js|Xn+j2 = x2, ...., Xn+jp = xp

}
= L(J1) + Ob(1)ǫ .

Then, for all injective sequence js ∈ Z such that j1 = 0 ,

P
{
{Xn+j1 ∈ J1} ∩ ...... ∩ {Xn+jp ∈ Jp}

}
=

[
L(J1) + Ob(1)ǫ

]
......

[
L(Jp) + Ob(1)ǫ

]
.

Proof Let Q be the distribution of (Xn+j1 , Xn+j2 , ...., Xn+jp
) and let Q− be the distribution

of (Xn+j2 , ...., Xn+jp
). Let Q(.|x2, ...., xp) be the distribution of Xn+j1 given Xn+js

= xs, for
s=1,2,...,p.

Then,

P
{
{Xn+j1 ∈ J1} ∩ ...... ∩ {Xn+jp

∈ Jp}
}

=

∫
1J1

(x1)......1Jp
(xp)Q(dx1, ..., dxp)

=

∫ ( ∫
1J1(x1)Q(dx1|x2, ...., xp)

)
1J2(x2)......1Jp(xp)Q

−(dx2, ..., dxp)

=

∫
P

{
Xn+j1 ∈ J1|Xn+j2 = x2, ...., Xn+jp

= xp

}
1J2

(x2)......1Jp
(xp)Q

−(dx2, ..., dxp)

= L(J1)

∫
1J2

(x2)......1Jp
(xp)Q

−(dx2, ..., dxp) +

∫
Ob(1)ǫ1J2

(x2)......1Jp
(xp)Q

−(dx2, ..., dxp)

=
(
L(J1) + Ob(1)ǫ

)
P

{
{Xn+j2 ∈ J2} ∩ ...... ∩ {Xn+jp

∈ Jp}
}

.

Then, we prove the proposition by recurence. �
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Proposition 6.3 Let Yn ∈ {0/m, 1/m, ...., (m− 1)/m} be a sequence of random variables defined
on a probability space (Ω,A, P ) and let Xn = Tq(Yn). Then, for all Borel set Bo,

P{Xn ∈ Bo | Xn−s = xs, s = 1, 2, ..., p}

=
∑

ys1
∈T−1

q (x1)

....
∑

ysp∈T−1
q (xp)

ηys1
,...,ysp

P{Xn ∈ Bo|Yn−j = ysj , j = 1, 2, ..., p}

where ∑

ys1
∈T−1

q (x1)

....
∑

ysp∈T−1
q (xp)

ηys1
,...,ysp

= 1 .

Proof We have :
P{Xn ∈ Bo|Xn−s = xs, s = 1, 2, ..., p}

=
P

{
{Xn ∈ Bo} ∩ {Xn−1 = x1} ∩ .... ∩ {Xn−p = xp}

}

P
{
{Xn−1 = x1} ∩ .... ∩ {Xn−p = xp}

}

=
P

{
{Xn ∈ Bo} ∩

{
∪ys1

{Yn−1 = ys1}
}
∩ .... ∩

{
∪ysp

{Yn−p = ysp}
}}

P
{{

∪ys1
{Yn−1 = ys1

}
}
∩ .... ∩

{
∪ysp

{Yn−p = ysp
}
}}

where ∪yst
{Yn−t = yst} = ∪yst∈T−1

q (xt)
{Yn−t = yst}.

Then,

P{Xn ∈ Bo|Xn−s = xs, s = 1, 2, ..., p}

=
P

{
∪ys1

.... ∪ysp
{Xn ∈ Bo} ∩ {Yn−1 = ys1

} ∩ .... ∩ {Yn−p = ysp
}
}

P
{
∪ys1

.... ∪ysp
{Yn−1 = ys1

} ∩ .... ∩ {Yn−p = ysp
}
}

=

∑
ys1

....
∑

ysp
P

{
{Xn ∈ Bo} ∩ {Yn−1 = ys1

} ∩ .... ∩ {Yn−p = ysp
}
}

∑
ys1

....
∑

ysp
P

{
{Yn−1 = ys1} ∩ .... ∩ {Yn−p = ysp}

}

=
∑

ys1

....
∑

ysp

ηys1
,...,ysp

P
{
{Xn ∈ Bo} ∩ {Yn−1 = ys1} ∩ .... ∩ {Yn−p = ysp}

}

P
{
{Yn−1 = ys1

} ∩ .... ∩ {Yn−p = ysp
}
}

where

ηys1
,...,ysp

=
P

{
{Yn−1 = ys1} ∩ .... ∩ {Yn−p = ysp}

}

∑
ys1

....
∑

ysp
P

{
{Yn−1 = ys1

} ∩ .... ∩ {Yn−p = ysp
}
} .

Of course, ∑

ys1

....
∑

ysp

ηys1 ,...,ysp
= 1 . �
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6.4 Proof of theorem 3

We apply proposition 6.1 when Y has for distribution the distribution of the conditional probability
of Yφ(n) given Yφ(n−1) = y′

1, Yφ(n−2) = y′
2, ...... Let K ′

0 which satisfies the condition of Lipschitz
coefficient of proposition 6.1. By lemma 6.2, K ′

0 = Ob′(1)K0. Then, we have

P
{
T (mY )/m ∈ Ik} = P

{
Tq(Y ) = k/2q}

= P
{
Xφ(n) = k/2q

∣∣ Yφ(n−1) = y′
1, Yφ(n−2) = y′

2, ....
}

= P
{
Xφ(n) ∈ Ik

∣∣ Yφ(n−1) = y′
1, Yφ(n−2) = y′

2, ....
}

= L(Ik)
[
1 +

γ(m)Ob′(1)K ′
0

m/2q

]

= L(Ik)
[
1 +

γ(m)Ob′(1)K0

m/2q

]
,

where L(Ik) = 1/2q.

By applying proposition 6.3 to the sequence Yφ(n−s),

P
{
Xφ(n) ∈ Ik

∣∣ Xφ(n−1) = x′
1, Xφ(n−2) = x′

2, ....
}

=
∑

y′

s1
∈T−1

q (x′

1)

.........
∑

y′

sN−1
∈T−1

q (x′

N−1)

ηy′

s1
,...,y′

sN−1
P

{
Xφ(n) ∈ Ik

∣∣ Yφ(n−1) = y′
s1

, Yφ(n−2) = y′
s2

, ....
}

=
∑

y′

s1
∈T−1

q (x′

1)

.........
∑

y′

sN−1
∈T−1

q (x′

N−1)

ηy′

s1
,...,y′

sN−1
L(Ik)

[
1 +

γ(m)Ob′(1)K0

m/2q

]

= L(Ik)
[
1 +

γ(m)Ob′(1)K0

m/2q

]
.

Then, by proposition 6.2 used with ǫ = L(Ik)ǫ, for all Ik1
⊗ ...... ⊗ IkN

,

P
{
(X1, ...., XN ) ∈ Ik1

⊗ ...... ⊗ IkN

}
=

N∏

s=1

(
L(Iks

)[1 + Ob(1)ǫ]
)

,

where |ǫ| ≤ γ(m)|Ob′(1)|K0

m/2q . Because γ(m)NK02
q/m ≈ 0, we deduce that

P
{
(Xθ

1 , ...., Xθ
N ) ∈ Ik1

⊗ ...... ⊗ IkN

}
=

1

2Nq

[
1 +

γ(m)Ob′(1)NK0

m/2q

]
.

Now, we study the Borel sets of {0/2q, , ...., (2q−1)/2q}N : Bo = ∪(k1,...,kN )∈Θ{(k1/2q, ..., kN/2q)}.
Then, L(Bo) = Card(Θ)/2Nq. We deduce, that, for all Borel set Bo

P
{
(X1, ...., XN ) ∈ Bo

}
= L(Bo)

[
1 +

γ(m)Ob′(1)NK0

m/2q

]
. �

Then, by using results of section 5, because γ(m)NK02
q/m ≈ 0, Xn cannot be differentiated

with the IID model.
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7 Use of text witten backward

There exists noises yn such that K0 is not too large and m large enough. In order to obtain these
noises, one can use texts. This choice is justified because it is easier to study their properties
logically (cf section 10.3 of [9]) : For example asymptotical independence holds. Of course, one
could use other random noises, for example, noises provided by machines. One could also use rap
music as Marsaglia but its properties are more difficult to study logically.

7.1 Use of texts

Now, we suppose that we use sequences yn obtained from texts. As a matter of fact, in this section
we define yn by the following way.

We choose two consecutive elements a and m of the Fibonacci sequence : m can be chosen
with respect to N, the size of the sample. Then, we choose r1 such that a < 32r1 ≤ m.

It is supposed that one has a sequence of data a(j) obtained from texts and translated in num-
ber: a(j), j = 1, 2, ...., N3, a(j) ∈ {0, 1, ..., 255}. Let N0 = ⌊N3/r1⌋, the integer part of N3/r1.
a) We set c(j) = a(j) mod κ = 32 5.
b) We set d(n) =

∑r1

r=1 c(r1(n − 1) + r)κr−1 for j = 1, 2, ...., N0.
c) We set y′

n =
⌊
d(n)m/κr1

⌋
/m for j = 1, 2, ...., N0.

7.2 Use of a pseudo-random sequence

Moreover, a pseudo-random sequence rand0(n) is added to used texts : yn = my′(n) + rand0(n)/m.
That makes possible to have sequences yn which have a good randomness (cf [15], or chapter 3 of
[9]).

Now, it is necessary that a priori all the possible values of {0/m, 1/m, ...., (m − 1)/m} can
exist in a sample. It is reasonably the case when one adds modulo m a pseudo-random sequence
rand0(n) of period m. Normally any value k/m has a chance reasonable to be realized a priori.
There is no reason that can not occur. Moreover, a priori all k/m has about as much chance to be
an image than any other k/m. Therefore, a priori, ” P{Y ′

n = y} is not too different from 1/m ” is
a reasonable assumption. Now if we use simulations, they confirm this result. While, it is always
possible that this is not the case. But it has a weak probability to happen.

Recall also that, for the texts, as soon as one takes as sequence y′
n a sequence of group of Q=10

or 20 letters for example, one finds the Q-dependence statistically (chapter 10 of [9]).
Now, we suppose that (rand0(n), rand0(n + 1)) has a distribution close to indepen-

dence. So, normally this will be the case also for (my′(n) + rand0(n) , my′(n + 1) + rand0(n + 1)).
This can be understood by simulation. But a priori, it is always possible that this is not checked
with, it seems, a very weak probability 6.

In this case, a two-dimensional model (Yn, Yn+1) with a continuous density and a Lipschitz
coefficient not too big will be a good model. By the same way, P{Yn = y|Yn−1 = y1} will have a
continuous density with a coefficient of Lipschitz Ky1

checking Ky1
≤ K”0 for y1 = 0, 1, ....,m− 1

where K”0 is small . Therefore, P{Yn = y|Yn−1 = y1} is not too different of P{Yn = y} which is
not too different from 1/m. Then, it is normal to accept this hypothesis for sequences Yn

7.

5There are only 26 letters. But it is necessary to add the capital letters, the ”:” , ”;” , etc. Also, we will write
these numbers in base 32 so that each number has a reasonable probability to appear.

6If one wants to build random numbers, one can always check if this hypothesis holds. If this is not the case,
we choose other generators or other texts

7Of course, if we want to be sure from it, we can confirm it by tests.
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7.3 Text written backward

In an obvious way, the texts are realizations of sequences of random variables: for example, one
can take as model, the set of the possible texts provided with the uniform probability. In this
model, if one knows a text until the letter ”n-1”, there are a large number of alternatives for the r
following letters as soon as r is rather large. That means indeed that the conditional probability
of Yn knowing the past, is not concentrated in a too small number of points.

However there is a problem for some subsequences y′
φ(n) : if one knows a text until the letter

”n-1” and the text after the letter ”n+r”, (for example r=18), there will be much less possibilities
for the r letters ranging between the two parts of texts than if only the past is known. To answer
this point, we will add modulo m a text and a text written backward.

But that seems exaggerated because it is not known a priori that we are in an English text
if one has only a few texts 8. Moreover, a priori all the words possible of the English language
are not known : one cannot thus predict them. That does not prevent from concluding : if the
conditional probabilities of the texts are not concentrated in some points in a model of English
text, a fortiori, it is also the case if it is not known that one is in a English text.

Now, it is encore easier to prove that the conditional probability of Yn knowing the past, is not
concentrated in a too small number of points if yn = [my′(n) + rand0(n) + my”(n) + rand1(n)]/m
where y”(n) represent a text written backward independent of y′

n and randj(n) pseudo-random
sequences for j=0,1 (which have good empirical independence assumptions for p successive pseudo
random numbers with p ≥ 3). In this case, one can show that this condition is correct.

7.4 Theorem

Indeed, now we suppose that the sequences xn and yn represent two independent texts at which
one adds to each one a good pseudo-random sequences. Let Yn and Xn be two correct models.
One is interested to the sequence Xn+s + Yn−s , s = 0,±1,±2, ..... As matter of fact, one adds a
text to a text written backward

Then, we will understand that the probability that Xn + Yn = a0 given Xn+s + Yn−s = as for
s=1,-1, will be about that of Xn + Yn = a0 given Xn−1 = b1 and Yn−1 = c1.

At first, we have the following theorem

Theorem 4 Let Yn and Xn be two independent sequences of random variables defined on a prob-
ability space (Ω,A, P ) such that Xn, Yn ∈ {0/m, 1/m, ...., (m − 1)/m}. Then,

P{Xn + Yn ≡ a0 | Xn−1 + Yn+1 ≡ a1, Xn+1 + Yn−1 ≡ a2}
=

∑

x1,y1

ηx1,y1
αx1,y1

P
{
Xn + Yn ≡ a0

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
,

where

αx1,y1
=

P
{
Xn−1 = x1, Yn−1 = y1

∣∣ Xn + Yn ≡ a0, Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}

P
{
Xn−1 = x1, Yn−1 = y1

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

} ,

ηx1,y1 =
P

{
{Xn−1 = x1} ∩ {Xn+1 ≡ a2 − y1}

}
P

{
{Yn+1 ≡ a1 − x1} ∩ {Yn−1 = y1}

}
∑

x1,y1
P

{
{Xn−1 = x1} ∩ {Xn+1 ≡ a2 − y1}

}
P

{
{Yn+1 ≡ a1 − x1} ∩ {Yn−1 = y1}

} ,

∑
x1,y1

=
∑

(x1,y1)∈{0/m,1/m,....,(m−1)/m}2 ,
∑

x1,y1
ηx1,y1

= 1.

8Let us recall difficulties in order to discover the meaning of certain languages in archeology : all are not identifed.
Let us recall also the hieroglyphs on the Rosetta Stone whose one had however 3 translations.
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Proof We have

P{Xn + Yn ≡ a0 | Xn−1 + Yn+1 ≡ a1, Xn+1 + Yn−1 ≡ a2}

=
P

{
{Xn + Yn ≡ a0} ∩ {Xn−1 + Yn+1 ≡ a1} ∩ {Xn+1 + Yn−1 ≡ a2}

}

P
{
{Xn−1 + Yn+1 ≡ a1} ∩ {Xn+1 + Yn−1 ≡ a2}

}

=

P



{Xn + Yn ≡ a0} ∩
n

∪x1 {Xn−1 = x1} ∩ {Xn−1 + Yn+1 ≡ a1}
o

∩
n

∪y1 {Yn−1 = y1} ∩ {Xn+1 + Yn−1 ≡ a2}
o

ff

P



n

∪x1 {Xn−1 = x1} ∩ {Xn−1 + Yn+1 ≡ a1}
o

∩
n

∪y1 {Yn−1 = y1} ∩ {Xn+1 + Yn−1 ≡ a2}
o

ff

=
X

x1,y1

P



{Xn + Yn ≡ a0} ∩
n

{Xn−1 = x1} ∩ {Xn−1 + Yn+1 ≡ a1}
o

∩
n

{Yn−1 = y1} ∩ {Xn+1 + Yn−1 ≡ a2}
o

ff

P

x1,y1
P



n

{Xn−1 = x1} ∩ {Xn−1 + Yn+1 ≡ a1}
o

∩
n

{Yn−1 = y1} ∩ {Xn+1 + Yn−1 ≡ a2}
o

ff

=
X

x1,y1

P



n

{Xn−1 = x1} ∩ {Xn−1 + Yn+1 ≡ a1}
o

∩
n

{Yn−1 = y1} ∩ {Xn+1 + Yn−1 ≡ a2}
o

ff

P

x1,y1
P



n

{Xn−1 = x1} ∩ {Xn−1 + Yn+1 ≡ a1}
o

∩
n

{Yn−1 = y1} ∩ {Xn+1 + Yn−1 ≡ a2}
o

ff

P



{Xn + Yn ≡ a0} ∩
n

{Xn−1 = x1} ∩ {Xn−1 + Yn+1 ≡ a1}
o

∩
n

{Yn−1 = y1} ∩ {Xn+1 + Yn−1 ≡ a2}
o

ff

P



n

{Xn−1 = x1} ∩ {Xn−1 + Yn+1 ≡ a1}
o

∩
n

{Yn−1 = y1} ∩ {Xn+1 + Yn−1 ≡ a2}
o

ff

=
X

x1,y1

ηx1,y1

P



{Xn + Yn ≡ a0} ∩
n

{Xn−1 = x1} ∩ {Yn+1 ≡ a1 − x1}
o

∩
n

{Yn−1 = y1} ∩ {Xn+1 ≡ a2 − y1}
o

ff

P



n

{Xn−1 = x1} ∩ {Yn+1 ≡ a1 − x1}
o

∩
n

{Yn−1 = y1} ∩ {Xn+1 ≡ a2 − y1}
o

ff

=
X

x1,y1

ηx1,y1P



Xn + Yn ≡ a0

˛

˛

˛

˛

Xn−1 = x1, Yn+1 ≡ a1 − x1, Yn−1 = y1, Xn+1 ≡ a2 − y1

ff

.

On the other hand,

P
{

Xn + Yn ≡ a0

∣∣∣ Xn−1 = x1, Yn+1 ≡ a1 − x1, Yn−1 = y1, Xn+1 ≡ a2 − y1

}

= Cx1, y1P
{
Xn + Yn ≡ a0

∣∣Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
,

where

cx1,y1
=

P
{

Xn + Yn ≡ a0

∣∣∣ Xn−1 = x1, Yn+1 ≡ a1 − x1, Yn−1 = y1, Xn+1 ≡ a2 − y1

}

P
{

Xn + Yn ≡ a0

∣∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}

=

P

{
{Xn+Yn≡a0}∩

{
{Xn−1=x1}∩{Yn+1≡a1−x1}

}
∩
{
{Yn−1=y1}∩{Xn+1≡a2−y1}

}}

P

{{
{Xn−1=x1}∩{Yn+1≡a1−x1}

}
∩
{
{Yn−1=y1}∩{Xn+1≡a2−y1}

}}

P
{
{Xn+Yn≡a0}∩{Yn+1≡a1−x1}∩{Xn+1≡a2−y1}

}

P
{
{Yn+1≡a1−x1}∩{Xn+1≡a2−y1}

}
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=

P

{
{Xn+Yn≡a0}∩

{
{Xn−1=x1}∩{Yn+1≡a1−x1}

}
∩
{
{Yn−1=y1}∩{Xn+1≡a2−y1}

}}

P
{
{Xn+Yn≡a0}∩{Yn+1≡a1−x1}∩{Xn+1≡a2−y1}

}

P

{{
{Xn−1=x1}∩{Yn+1≡a1−x1}

}
∩
{
{Yn−1=y1}∩{Xn+1≡a2−y1}

}}

P
{
{Yn+1≡a1−x1}∩{Xn+1≡a2−y1}

}

=
P

{
Xn−1 = x1, Yn−1 = y1

∣∣∣ Xn + Yn ≡ a0, Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}

P
{

Xn−1 = x1, Yn−1 = y1

∣∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

} . �

7.5 Application

Let us suppose again that the sequences xn and yn represents texts at which one adds to each one
a good pseudo-random sequence. It is supposed that Yn and Xn are two correct models. One is
interested by Xn+s + Yn−s , s = 0,±1,±2, .... : one adds a text and a text written backward.

Study of P
{
Xn + Yn ≡ a0

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
We know that P

{
Xn + Yn ≡

a0

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
is the conditional probability that Xn + Yn ≡ a0 given the

futures Yn+1 and Xn+1.
There will be thus a probability which will not be more concentrated that of a text knowing the

future. But it is an increase: the probability of the sum Xn + Yn knowing the future Yn+1 ≡ a1−x1

and Xn+1 ≡ a2−y1 is probably less concentrated than, for example, the probability of Xn knowing
the future Xn+1 ≡ a2 − y1.

In fact, the conditional probability will be much less concentrated than that: it is not known
that one is in a text. Moreover, because a good pseudo-random generator is added, this probability
will be rather close to that of independence : P

{
Xn + Yn ≡ a0

∣∣ Yn+1 ≡ a1 −x1, Xn+1 ≡ a2 − y1

}

is not too distant from P
{
Xn + Yn ≡ a0

}
which is not too distant from 1/m.

Therefore, the probability of the sum Xn + Yn knowing the future is not concentrated close to
some points. That means that there will be no points where it is close to 0, and not points where
it is close to 1. That means that, in the case of models with continuous density, the coefficient of
Lipschitz will not be too large.

Study of P{Xn−1 = x1, Yn−1 = y1 | Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1}. Now considering the
independence of texts Xn and Yn, P

{
Xn−1 = x1, Yn−1 = y1

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
=

P
{
Xn−1 = x1

∣∣ Xn+1 ≡ a2 − y1

}
P

{
Yn−1 = y1

∣∣ Yn+1 ≡ a1 − x1

}
.

Therefore, P
{

Xn−1 = x1, Yn−1 = y1

∣∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
≈ 1/m2 if m is large

enough.
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Study of P
{
Xn−1 = x1, Yn−1 = y1

∣∣ Xn + Yn ≡ a0, Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
. One

understands, by simulation, that P
{
Xn−1 = x1, Yn−1 = y1

∣∣ Xn+Yn ≡ a0, Yn+1 ≡ a1−x1, Xn+1 ≡
a2 − y1

}
is not too different from P

{
Xn−1 = x1, Yn−1 = y1

∣∣ Xn + Yn ≡ a0

}
.

It is not astonishing: Xn−1 is almost independent of Xn+1. Therefore, P
{
Xn−1 = x1, Yn−1 =

y1

∣∣ Xn + Yn ≡ a0, Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
depends especially on Xn + Yn

9.

One can also understand it because of following relations

P
{
Xn−1 = x1, Yn−1 = y1

∣∣ Xn + Yn ≡ a0, Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}

=
P

n

{Xn−1 = x1} ∩ {Yn−1 = y1} ∩ {Xn + Yn ≡ a0} ∩ {Yn+1 ≡ a1 − x1} ∩ {Xn+1 ≡ a2 − y1}
o

P
n

{Xn + Yn ≡ a0} ∩ {Yn+1 ≡ a1 − x1} ∩ {Xn+1 ≡ a2 − y1}
o

=
P

n

{Xn−1 = x1} ∩ {Yn−1 = y1} ∩
n

∪x0 {Xn = x0} ∩ {Xn + Yn ≡ a0

o

∩ {Yn+1 ≡ a1 − x1} ∩ {Xn+1 ≡ a2 − y1}
o

P
nn

∪x0 {Xn = x0} ∩ {Xn + Yn ≡ a0

o

∩ {Yn+1 ≡ a1 − x1} ∩ {Xn+1 ≡ a2 − y1}
o

=
X

x0

P
n

{Xn−1 = x1} ∩ {Yn−1 = y1} ∩
n

{Xn = x0} ∩ {Yn ≡ a0 − x0}
o

∩ {Yn+1 ≡ a1 − x1} ∩ {Xn+1 ≡ a2 − y1}
o

P

x0
P

nn

{Xn = x0} ∩ {Yn ≡ a0 − x0}
o

∩ {Yn+1 ≡ a1 − x1} ∩ {Xn+1 ≡ a2 − y1}
o

=
X

x0

P
n

{Xn−1 = x1} ∩ {Xn = x0} ∩ {Xn+1 ≡ a2 − y1}
o

P
n

{Yn−1 = y1} ∩ {Yn ≡ a0 − x0} ∩ {Yn+1 ≡ a1 − x1}
o

P

x0
P

n

{Xn = x0} ∩ {Xn+1 ≡ a2 − y1}
o

P
n

{Yn ≡ a0 − x0} ∩ {Yn+1 ≡ a1 − x1}
o

=
X

x0

βx0

P
n

{Xn−1 = x1} ∩ {Xn = x0} ∩ {Xn+1 ≡ a2 − y1}
o

P
n

{Yn−1 = y1} ∩ {Yn ≡ a0 − x0} ∩ {Yn+1 ≡ a1 − x1}
o

P
n

{Xn = x0} ∩ {Xn+1 ≡ a2 − y1}
o

P
n

{Yn ≡ a0 − x0} ∩ {Yn+1 ≡ a1 − x1}
o

=
∑

x0

βx0P
{
Xn−1 = x1|Xn = x0, Xn+1 ≡ a2 − y1

}
P

{
Yn−1 = y1|Yn ≡ a0 − x0, Yn+1 ≡ a1 − x1

}

where
∑

x0
βx0

= 1.

It is not too difficult to understand, that, for example, P{Xn−1 = x1|Xn = x0, Xn+1 ≡ a2−y1

}

is hardly more concentrated than P{Xn−1 = x1|Xn = x0

}
if xn represents only texts. It is even

truer if xn represents a text to which one adds a good pseudo random sequence, and it is even
truer in the case which interests us considering than one summons on all the x0.

Then, it is not astonishing that P
{
Xn−1 = x1, Yn−1 = y1

∣∣ Xn + Yn ≡ a0, Yn+1 ≡ a1 −
x1, Xn+1 ≡ a2 − y1

}
is not too different from P

{
Xn−1 = x1, Yn−1 = y1

∣∣ Xn + Yn ≡ a0

}
.

Now, P{Xn + Yn ≡ a0} ≈ 1/m because one adds a pseudo random sequence to text (cf pages
199-202 of [9]). Therefore,

P
{
Xn−1 = x1, Yn−1 = y1

∣∣ Xn + Yn ≡ a0

}
=

P{Xn−1 = x1, Yn−1 = y1, Xn + Yn ≡ a0}
P{Xn + Yn ≡ a0}

≈ m.P
{
Xn−1 = x1, Yn−1 = y1

}P
{
Xn−1 = x1, Yn−1 = y1, Xn + Yn ≡ a0

}

P
{
Xn−1 = x1, Yn−1 = y1,

}

9In the general case, that could be false : e.g. cf the properties of higher order correlation coefficients (cf [6])
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= m.P
{
Xn−1 = x1

}
P

{
Yn−1 = y1

}
P

{
Xn + Yn ≡ a0

∣∣Xn−1 = x1, Yn−1 = y1,
}

≈ (1/m)P
{
Xn + Yn ≡ a0

∣∣Xn−1 = x1, Yn−1 = y1,
}

.

Of course, P
{
Xn + Yn ≡ a0

∣∣Xn−1 = x1, Yn−1 = y1,
}

is, this time, the conditional probability

knowing the past. There are thus about the same results that above for P
{
Xn +Yn ≡ a0

∣∣ Yn+1 ≡
a1 − x1, Xn+1 ≡ a2 − y1

}
. Therefore, P

{
Xn + Yn ≡ a0

∣∣Xn−1 = x1, Yn−1 = y1,
}

will be not too
different from 1/m.

Conclusion By joining together all these results, one understands that

αx1,y1P
{
Xn + Yn ≡ a0

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}

will be not too different from 1/m.

Now,

ηx1,y1 =
P

{
{Xn−1 = x1} ∩ {Xn+1 ≡ a2 − y1}

}
P

{
{Yn+1 ≡ a1 − x1} ∩ {Yn−1 = y1}

}
∑

x1,y1
P

{
{Xn−1 = x1} ∩ {Xn+1 ≡ a2 − y1}

}
P

{
{Yn+1 ≡ a1 − x1} ∩ {Yn−1 = y1}

}

≈ P{Xn−1 = x1}P{Xn+1 ≡ a2 − y1}P{Yn+1 ≡ a1 − x1}P{Yn−1 = y1}∑
x1,y1

P{Xn−1 = x1}P{Xn+1 ≡ a2 − y1}P{Yn+1 ≡ a1 − x1}P{Yn−1 = y1}

≈ 1/m4

∑
x1,y1

(1/m4)
≈ 1/m2 .

Therefore,

∑

x1,y1

ηx1,y1
αx1,y1

P
{
Xn + Yn ≡ a0

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}

is not too different from

(1/m2)
∑

x1,y1

P
{
Xn + Yn ≡ a0

∣∣ Yn+1 ≡ a1 − x1, Xn+1 ≡ a2 − y1

}
.

However in general, to make a sum on x1, y1 standardizes the probabilities (it is true as soon
as one can consider that they are randomly selected cf section 6.1.2 of of [10]). Therefore, in most
case, P{Xn + Yn ≡ a0 | Xn−1 + Yn+1 ≡ a1, Xn+1 + Yn−1 ≡ a2} will be even more close to (1/m)
that the previous reasonings which is carry out without the sums

∑
x1,y1

did not let it suppose.

Finally, all this confirms that P{Xn + Yn ≡ a0 | Xn−1 + Yn+1 ≡ a1, Xn+1 + Yn−1 ≡ a2} is not
too different from 1/m. One deduces from it that the coefficient of Lipschitz will not be too large.
Then, it is enough to apply Tq in order to have sequences proved IID.

7.6 Increase of K0

Similar results can be obtained for P{Xn + Yn ≡ a0 | Xn−1 + Yn+1 ≡ a1, Xn−2 + Yn+2 ≡
a2, , ...., Xn+1 + Yn−1 ≡ b1, Xn+2 + Yn−2 ≡ b2, ......}.

This is not surprising because when one tests the sequences of groups of letters y′
n, we under-

stand that models Y ′
n behave like Q-dependent sequences and also like Markov chain as soons as

r1 ≥ 20. Of course, that is even more true for sequences Yn.
This leads to the conclusion that we can increase the Lipschitz coefficient of this conditional

probability by a K0 which is not too large.
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7.7 Important remark

One might wonder if the sequence built (by adding text, a text written backward and pseudo-
random sequences) is not an lID sequence. It is a similar hypothesis which Marsaglia does by
building its CD-Rom. It is a such tendency that matches the result of [15]. But in fact, nothing
is proved.

One might then wonder if you can not apply to these sequences, the same technique as that
used for sequences Tq(Yn) and to prove P

{
(X1, ...., XN ) ∈ Bo

}
= L(Bo)

[
1+Ob(1)ǫ

]
. But it seems

very difficult to prove in a sure way.
Finally, it is much easier to apply the functions Tq : in this case, it requires only that K0

the Lipschitz coefficient is not too big. It’s an hypothesis much simpler to be verified and it does
not require many efforts in some cases. That is why we choose to build IID sequences using this
technique

8 Use of Central limit theorem

There exists other noises yn such that K0 is not too large and m large enough. For example, one
can use software programs noises provided by machines and chips, etc..

In these cases, on can use the CLT (Central Limit theorem). That is a possibility which
is natural when one wants to increase reliably Lipschitz coefficient of conditional probabilities.
Moreover, this technique has the advantage of giving a clear idea of K0 since the conditional
densities are so close to Gaussian densities and since convergence is quick (e.g. cf [9]). On the
other hand, CLT holds under hypotheses rather weak if we use the following decomposition.

Notations 8.1 We denote by κ(n) ∈ N, an increasing sequence such that κ(1) = 0, κ(n) ≤ n and
κ(n)/n → 0 . We define the sequences u(n) and t(n) by : u(1)=1, u(n) = max

{
m ∈ N

∗
∣∣2m +

κ(m) ≤ n
}
, and t(1)=0, t(n) = n-2u(n) if n ≥ 2. Let σ(u)2 = E{(X1 +X2 + .........+Xu)2}. One

sets Su = X1+X2+.........+Xu

σ(u) , ξu = Xu+1+Xu+2+.........+Xu+t

σ(u) and S′
u = Xu+t+1+Xu+t+2+.........+Xu+t+u

σ(u) .

Then, one can define assumptions of asymptotic independence.

Notations 8.2 : Let k ∈ N
∗. We define conditions HmS(k) and HmI(k) by the following way :

HmS(k) : ∀p ∈ N , p < k + 1 , E
{
(Su)p

}
− E

{
(S′

u)p
}
→ 0 as n → ∞.

HmI(2k) : ∀(p, q) ∈ (N∗)2 , p + q < k + 1 , E
{
(Su)p(S′

u)q
}
−E

{
(Su)p

}
E

{
(S′

u)q
}
→ 0 as n → ∞.

Notations 8.3 : Let Ik,j =
[
j.4−k, (j+1)4−k

[}
. Let Ak,j =

{
Su ∈ Ik,j

}
and Bk,j =

{
S′

u ∈ Ik,j

}
.

Then, we define condition HS and HI by the following way :
HS : ∀k ∈ N,∀j ∈ N, P{Ak,j} − P{Bk,j} → 0 as n → ∞ ,
HI : ∀k ∈ N,∀(j, j′) ∈ N

2, P{Ak,j ∩ Bk,j′} − P{Ak,j}P{Bk,j′} → 0 as n → ∞ .

Then, if HmS(∞) and HmI(∞) the CLT holds and an equivalent condition holds for HI and
HS cf ([7], [8]). For example, the following theorem holds.

Theorem 5 We assume that HS , HI , HmS(4) and HmI(4) hold. We assume also that E{(Su)2}−
E{(S′

u)2} → 0 and E{ξ2
u} → 0 as n → ∞ . Then, Sn

D→ N(0, 1) .

We can then apply these results to random sequences obtained from machines, chips, various
electronic files which have a certain asymptotic independence. More if one adds modulo m a good
pseudo random, tests show that the conditions HmS(∞) and HS(∞) are checked.

We therefore use lines of noises yi,n ∈ {0, 1, ....,m− 1} which we sum : yn =
∑S

i=1 yi,n/m and
we apply Tq. Indeed, in this case, the conditional densities are approximately Gaussian. We can
then increase K0 by estimating the coefficients of linear correlation. Thus we obtain coefficient
K0 whose we are sure and which are in general not too large.
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Then, by applying Tq and choosing good parameters depending on N, we obtain sequences xn

which we can consider as a sample of an IID sequence of random variables

Now if we sum the random variables modulo m : yn =
∑S

i=1 yi,n/m, we get even a better result
because in this case, the Yn are asymptotically independent (cf section 5.2 of [9]). This improves
again, if it was necessary, the quality of the increase of K0.

9 Building of random sequence

9.1 Choice of m and q

We are interested in the choice of parameters in the building of IID sequences.
We consider the case of texts yn = [my′

n + rand0(n) + my”n + rand1(n)]/m defined in section

8. Then, we shall impose that the sample size N0 satisfies γ(m)N0K0

m/2q = 1/1000 (cf theorem 3 ).

We could take γ(m)N0K0

m/2q = 1/10 or 1/100 without problem. We choose 1/1000 in order to be sure

that there will be absolutely no mistake.
Likewise, because the yn are obtained using the method described in section 8, we chooseK0 =

1000 although the calculations made in section 8 shows that we can probably choose it much
smaller.

So finally, we choose m and q so that 2q/m = 1
γ(m)N0106 .

Then, the particular choices of m and, therefore also of q, depends on questions of convenience.
For example, is that the computer has a program to perform multiplication and division of num-
bers which have more than 30 digits? In this case, we can choose m of order of 1030 if the other
conditions permit.

If we use the CLT, we proceed in exactly the same way except that we may normally choose
K0 smallest : K0 ≤ 10.

9.2 Example

By using this technique, we have created sequences xn which admit the IID model for correct
model. We have used dictionary, encyclopedia, and Bible. As a matter of fact, we combine both
methods : we are made sums of 10 lines including 5 written backwards 10. We have estimated
K0 = 0.01. In order to avoid any error we have choose K0 = 104 in the building of xn.

One can download these real random sequences written in Matlab files in [13].

We have tested this sequence xn. We have used the classical Diehard tests (cf [1], [2]), and the
higher order correlation coefficients (cf [6]). Results are in accordance with what we waited : the
hypothesis ”randomness” is accepted by all these tests.

For example, we have used the Coupon collector’s Test. We keep the notations of [1] page 64.
We choose d=3,4,5,6,7,8 (with the notations of [1] ). Then, one uses chi squared statistics : we
denote them by χ2

N1
. We use various t (with the notations of [1] ). We choose t as a function of

d. We lump a few categories of low probability together.
We use samples with various sizes N1. We are interested in the maximum of these various χ2

N1
.

The following table is that of the maxima of χ2
N1

obtained for each d.

d 3 4 5 6 7 8
max(χ2

N1
) 11.02 13.59 18.08 16.73 20.08 22.84

α5 11.07 12.59 14.07 15.51 16.92 18.31

10It’s probably too much. But in [9], we demonstrated theorems less performing about the increase of conditional
empirical probabilities. We obtained only P{Yφ(n) ∈ Ik|Yφ(n−1) = y′

1, Yφ(n−2) = y′

2, .....} = L(Ik) + Ob(1)ǫ. This
means that the method employed in order to obtain these sequences is still much safer than what we assumed at
this time.

35



For this test, we took many different samples (more than 100). It is not surprising that maxi-
mum are close to α5.

We have carried out 100 tests in each category of other tests with significance level 5/100. We
denote by nr

tp and nr
tf , the number of tests passed or failed. Then, we have the following results.

nr
tp nr

tf

Equidistribution Test 96 4
Serial Test 94 6
Poker Test 92 8
Coupon collectors Test 95 5
Run Test 97 3
Maximum-of-t Test 95 5
Collision Test 98 2
Birthday spacings Test 96 4
Serial Correlation Test 92 8
Higher order correlation coefficient Test 96 4

10 Conclusion

By theorem 3 one can find models correct Y θ
n such that P{(Xθ

1
, ..., Xθ

N ) ∈ Bo} = L(Bo)[1+Ob(1)ǫ]
where ǫ is small and it is possible to build such sequences concretely.

Now, K0 increases very little when r1 increases. Even, in some cases, it seems that it decreases.
It seems to be the case as soon as there is asymptotic independence. Then, at most 2q/m decreases
much more quickly than K0 increases.

So by taking m large enough and by choosing well q, we found ǫ small enough in a way that
there exists correct models which checks the conditions of proposition 5.1. Then, there exists a
correct model Y θ0

n of {yn} such that Tq(Y
θ0
n ) is the IID model.

Then, this result show that one can build sequences xn such that the model IID is a

correct model of xn.

That means that xn behaves like any IID sample : a priori, xn can check not the properties
which one awaits from a IID sample like certain tests, but that occurs only with a probability
equal to that of any IID sample.

By this method, we therefore have a mean to value the technique used by Marsaglia to create its
CD-ROM. We arrive in fact to prove mathematically that the sequence obtained can be regarded
a priori as random, what Marsaglia did not.
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