Analysis of Template Update Strategies for Keystroke Dynamics IEEE Workshop on Computational Intelligence in Biometrics and Identity Management

Romain Giot* Bernadette Dorizzi[†] Christophe Rosenberger*

*GREYC - CNRS, ENSICAEN, Université de Caen [†]Institut Télécom; Télécom SudParis

April 14, 2011

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proposed Method

3 Results

3 🖌 🖌 3

三日 のへの

Contents

1

Introduction

- Keystroke Dynamics
- Template Stabilisation

2 Proposed Method

Conclusion

∃ → < ∃ →</p>

315

Behavioural modality

The aim is to recognize individuals on their way of using a keyboard

Two families

- Static: fixed string
- Dynamics: anything

Extracted features

- Duration of pressure of each key
- Interval between two keys

Recognition [de Magalhaes et al.2005]

Enrollment

- User provides several samples
- Compute the template with several samples
 - Multivariate modelisation of the distribution of the times
- Store the samples in the gallery
- Use the template to represent the user

Verification

- Claimant provides a query sample and a claimed identity
- Compute a distance with the query and the template
 - Verification if the query matches the model for most of its dimensions

Performance

around 15% of EER on big datasets

Problem with keystroke dynamics

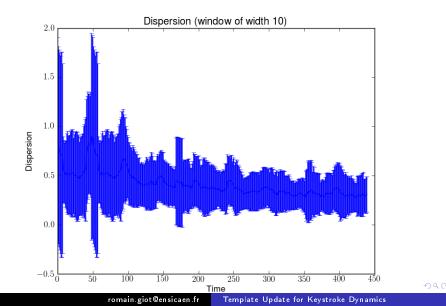
This modality is subject to an high variability

- It is a behavioral biometric, and way of typing change with time
- Various factors can greatly impact the typing
 - user happy
 - user stressed
 - user talking
 - user concentrated or not
- We cannot track enough variability during enrolment

Solutions

- Supervised template update works well
- Semi-supervised template has not been studied
 - This is one aim of this paper
- Capture more samples during enrollment

Template Behavior Through Time


To understand why supervised template works, we have computed the dispersion measure of the samples through time.Results are presented for a window of size 10.

Dispersion mesure

- We compute the mean vector of the samples in the window
- We compute the distance of each sample of the window against its mean vector
- We compute the mean value of these distances
- We slide the window of one simple (move in time)

→ < ■ > < ■ > < ■ ≥ < ■ ≥ < < ■ > < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < < ■ > < ■ > < < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < < ■ > < ■ > < < ■ > < < ■ > < <

Result

Interpretation

Dispersion's mean decreases with time

- \Rightarrow The dispersion value of each user decrease with time
- \Rightarrow Way of typing stabilize with time
 - Conclusion

As typing change regularly through time, until stabilisation, it is necessary to use template update schemes

Dispersion's standard deviation decrease with time

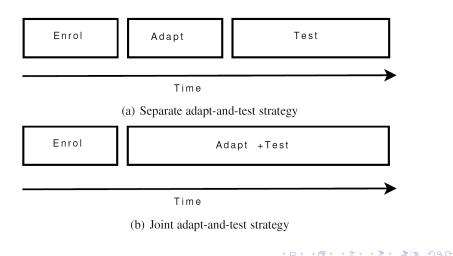
 \Rightarrow Same trend for most users

Contents

Introduction

2 Proposed Method

- Évaluation
- Dataset
- Template Update

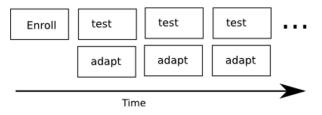

3 Results

Conclusion

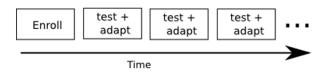
三日 のへで

()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 (
 ()
 (
 ()
 (
 (
 (
 (
 (
 (
 (
 (
 (
 (

Usually, datasets are separated in 2 or 3 parts [Poh et al.2009]


Usually, datasets are separated in 2 or 3 parts [Poh et al.2009]

Observation


- Proposition interesting for main modalities
 - which have not a variability through time due to a cognitive learning
- But, it is inadequate for behavioral biometrics or datasets on several sessions
 - It does not take into account the various sessions
 - In the literature, the time chronology is almost never respected (shuffling of samples)
 - This point is very important for behavioral biometrics
- That is why we propose an adaptation of these two schemes to fit our requirements

(令曰) (令曰) (令曰) (令曰)

Evolution of the scheme

(a) Separate adapt-and-test strategy

(b) Joint adapt-and-test strategy

000

Evaluation Procedure

- Template update is applied independently for each user
- We build a pool of queries for each user at each session
 - Samples are chronologically ordered
 - The frequency of impostor samples is chosen
 - Genuine or impostor samples are randomly chosen (based on the impostor frequency)

DSL2009 [Killourhy and Maxion2009]

- 51 users
- 8 sessions
- 50 samples per session \Rightarrow 400 samples per user
- 1 keyboard
- password: ".tie5Roanl"

∃ ► < ∃ ►</p>

3 3

Update Decision

Double thresholding

- Acceptance threshold
 - If distance lower to threshold, user is accepted

Update threshold

• If distance lower to threshold, new sample must be integrated in the template

(*) *) *) *)

Update Strategies

Growing window

- The new sample is added to the gallery
- The mathematical model is computed from scratch

Sliding window

- The oldest sample is removed from the gallery
- The mathematical model is computed from scratch

Fixed window

- The gallery is not updated
- The mathematical model does not change

A B A A B A

• = • • = •

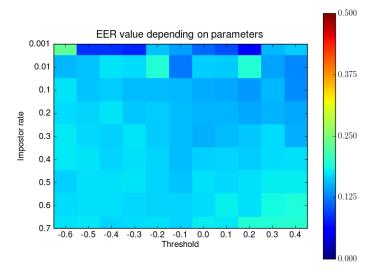
5 1 S Q Q

Contents

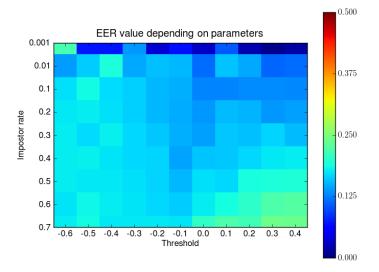
Introduction

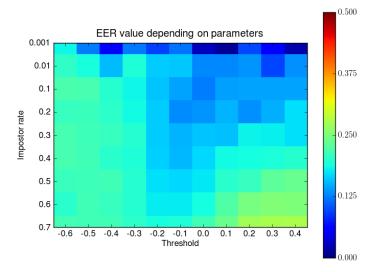
Proposed Method

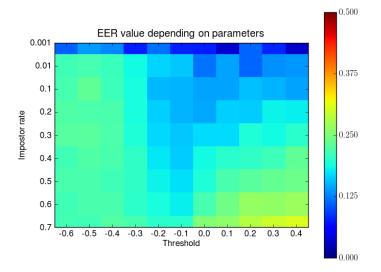
3 Results

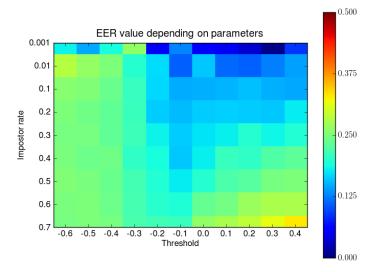

- EER evolution through time
- Performance evolution for one configuration

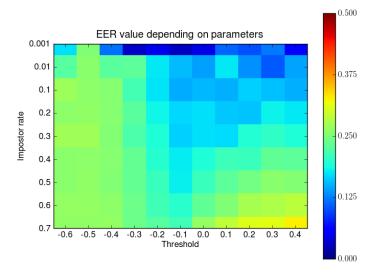
4 Conclusion


고 노

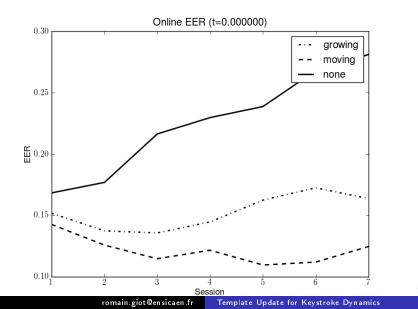

Configuration


- Variation of update threshold
- Variation of impostor rate
- Study of EER through sessions

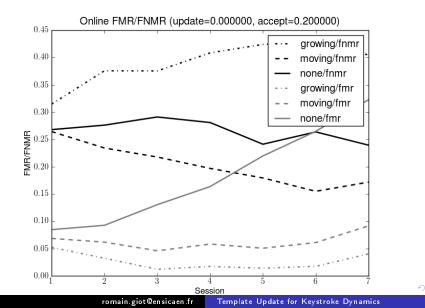



900

Interpretation


- The higher the percentage of attacks, the higher the EER increases (bottom of figures)
- A too high update threshold decreases the performance
 ⇒ addition of impostors to the template
- A too low update threshold decreases the performance
 - \Rightarrow not enough template update done

315


Interpretation of a particular configuration

- 20% of impostors
- Acceptation threshold at 0.2
- Update threshold at 0.0

EER

FAR/FRR

Interpretation

- False Reject Rate increases with growing window
- False Rejection Rate decreases with sliding window
- False Acceptance Rate increases with time when no update is done
- \Rightarrow These results depend on the configured thresholds

Contents

Introduction

Proposed Method

3 Results

Conclusion

三日 のへの

A B > A B >

Template update evaluation 1

Which are the best metrics ?

- Error Equal Rate ?
 - It is hard (impossible ?) to set the right thresholds in order to obtain it
- False Acceptance Rate/False Rejection Rate ?
 - Which threshold configuration to use ?

How often to compute the Errors ?

- One time at the end of the evaluation ?
- One time for each session ?
- $\Rightarrow\,$ It seems that last presentation of the session will answer this question ...

Introduction Proposed Method Results Conclusion

Discussion Conclusion

Template update evaluation II

Which dataset to use ?

• Almost no dataset contains enough data on an enough period to really track variability though time

3 🕨 🖌 🗄

Conclusion

- We have shown the evolution of the keystroke biometric data through time
- We have demonstrated the possiblity of using semi-supervised template update for keystroke dynamics
 - Littérature only treat
 - semi supervised techniques for morphological modalities
 - supervised techniques for keystroke dynamics
- We obtained interesting results
 - \Rightarrow Improvement of 50% with supervised techniques
 - \Rightarrow Improvement of 45% for semi supervised techniques

(*) *) *) *)

Thanks for your attention

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= のQC

Bibliography	Bibliography
--------------	--------------

${\sf Appendix}$

Bibliography

Bibliography

Contents

A B A A B A

三日 のへの

Bibliography Bibliography

Bibliography

de Magalhaes, T., Revett, K., and Santos, H. 2005. Password secured sites: stepping forward with keystroke dynamics.

In International Conference on Next Generation Web Services Practices.

Killourhy, K. S. and Maxion, R. A. 2009. Comparing anomaly-detection algorithms for keystroke dynamics.

In 39th Annual International Conference on Dependable Systems and Networks (DSN-2009), pages 125–134.

Poh, N., Wrong, R., Kittler, J., and Roli, F. 2009. Challenges and research directions for adaptive biometric recognition systems.

In Advances in Biometrics, pages 753-764.