
HAL Id: hal-00587087
https://hal.science/hal-00587087

Submitted on 19 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On inference for fractional differential equations
Alexandra Chronopoulou, Samy Tindel

To cite this version:
Alexandra Chronopoulou, Samy Tindel. On inference for fractional differential equations. Statistical
Inference for Stochastic Processes, 2013, 16 (1), pp.29-61. �10.1007/s11203-013-9076-z�. �hal-00587087�

https://hal.science/hal-00587087
https://hal.archives-ouvertes.fr


ON INFERENCE FOR FRACTIONAL DIFFERENTIAL EQUATIONS

ALEXANDRA CHRONOPOULOU AND SAMY TINDEL

Abstract. Based on Malliavin calculus tools and approximation results, we show how
to compute a maximum likelihood type estimator for a rather general differential equation
driven by a fractional Brownian motion with Hurst parameter H > 1/2. Rates of
convergence for the approximation task are provided, and numerical experiments show
that our procedure leads to good results in terms of estimation.

1. Introduction

In this introduction, we first try to motivate our problem and outline our results. We
also argue that only a part of the question can be dealt with in a single paper. We briefly
sketch a possible program for the remaining tasks in a second part of the introduction.

1.1. Motivations and outline of the results. The inference problem for diffusion pro-
cesses is now a fairly well understood problem. In particular, during the last two decades,
several advances have allowed to tackle the problem of inference based on discretely ob-
served diffusions [10, 36, 40], which is of special practical interest.

More specifically, consider a family of stochastic differential equations of the form

Yt = a+

∫ t

0

µ(Ys; θ) ds+

d
∑

l=1

∫ t

0

σl(Ys; θ) dB
l
s, t ∈ [0, T ], (1)

where a ∈ R
m, µ(·; θ) : Rm → R

m and σ(·; θ) : Rm → R
m,d are smooth enough functions,

B is a d-dimensional Brownian motion and θ is a parameter varying in a subset Θ ⊂ R
q.

If one wishes to identify θ from a set of discrete observations of Y , most of the methods
which can be found in the literature are based on (or are closely linked to) the maximum
likelihood principle. Indeed, if B is a Brownian motion and Y is observed at some equally
distant instants ti = iτ for i = 0, . . . , n, then the log-likelihood of a sample (Yt1 , . . . , Ytn)
can be expressed as

ℓn(θ) =
n
∑

i=1

ln
(

p
(

τ, Yti−1
, Yti; θ

))

, (2)
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2 A. CHRONOPOULOU AND S. TINDEL

where p stands for the transition semi-group of the diffusion Y . If Y enjoys some ergodic
properties, with invariant measure νθ0 under Pθ0, then we get

a.s.− lim
n→∞

1

n
ℓn(θ) = Eθ0 [p (τ, Z1, Z2; θ)] , Jθ0(θ), (3)

where Z1 ∼ νθ0 and L(Z2|Z1) = p(τ, Z1, · ; θ). Furthermore, it can be shown in a general
context that θ 7→ Jθ0(θ) admits a maximum at θ = θ0. This opens the way to a MLE
analysis which is similar to the one performed in the case of i.i.d observations, at least
theoretically.

However, in many interesting cases, the transition semi-group p is not amenable to
explicit computations, and thus expression (2) has to be approximated in some sense.
The most common approach, advocated for instance in [36], is based on a linearization of
each p(τ, Yti−1

, Yti; θ), which transforms it into a Gaussian density

N
(

Yti−1
+ µ(Yti−1

; θ) τ, σσ∗(Yti−1
; θ) τ

)

.

This linearization procedure is equivalent to the approximation of equation (1) by an
Euler (first order) numerical scheme. Refinements of this procedure, based on Milstein
type discretizations, are proposed in [10].

Some special situations can be treated differently (and often more efficiently): for in-
stance, in case of a constant diffusion coefficient, the continuous time likelihood can be
computed explicitly by means of Girsanov’s theorem. When the dimension of the driving
Brownian motion B is d = 1, one can also apply Itô’s formula in order to be back to
an equation with constant diffusion coefficient, or use Doss-Sousman representation of
solutions to (1). Let us also mention that statistical inference for SDEs driven by Lévy
processes is currently intensively investigated, with financial motivations in mind.

The current article is concerned with the estimation problem for equations of the
form (1), when the driving process B is a fractional Brownian motion. Let us recall
that a fractional Brownian motion B with Hurst parameter H ∈ (0, 1), defined on a com-
plete probability space (Ω,F ,P), is a d-dimensional centered Gaussian process. Its law
is thus characterized by its covariance function, which is given by

E
[

Bi
tB

j
s

]

=
1

2

(

t2H + s2H − |t− s|2H
)

1(i=j), s, t ∈ R+.

The variance of the increments of B is then given by

E
[

(

Bi
t − Bi

s

)2
]

= |t− s|2H , s, t ∈ R+, i = 1, . . . , d,

and this implies that almost surely the fBm paths are γ-Hölder continuous for any γ < H .
Furthermore, for H = 1/2, fBm coincides with the usual Brownian motion, converting
the family {BH ; H ∈ (0, 1)} into the most natural generalization of this classical process.

In the last decade, some important advances have allowed to solve [33, 43] and un-
derstand [19, 34] differential systems driven by fBm for H ∈ (1/2, 1). The rough paths
machinery also allows to handle fBm with H ∈ (1/4, 1/2), as nicely explained in [11, 14,
27, 29]. However, the irregular situationH ∈ (1/4, 1/2) is not amenable to useful moments
estimates for the solution Y to (1) together with its Jacobian (that is the derivative with
respect to the initial condition). This is why we concentrate, in the sequel, on the simpler
case H > 1/2 for our estimation problem. In any case, many real world noisy systems are
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currently modeled by equations like (1) driven by fBm, and this is particularly present in
the Biophysics literature, as assessed by [25, 35], or for Finance oriented applications as
in [5, 13, 20, 21, 39, 42]. This leads to a demand for rigorous estimation procedures for
SDEs driven by fractional Brownian motion, which is the object of our paper.

Concerns about the inference problem for fractional diffusion processes started a decade
ago with the analysis of fractional Ornstein-Uhlenbeck processes [23]. Then a more recent
representative set of references on the topic includes [37, 41]. More specifically, [41] handles
the case of a one-dimensional equation of the form

Yt = a+ θ

∫ t

0

µ(Ys) ds+Bt, t ∈ [0, T ], (4)

where µ is regular enough, and where B is a fBm with H ∈ (0, 1). The simple dependence
on the parameter θ and the fact that an additive noise is considered enables the use of
Girsanov’s transform in order to get an exact expression for the MLE. Convergence of the
estimator is then obtained through an extensive use of Malliavin calculus.

As far as [37] is concerned, it is focused on the case of a polynomial equation, for
which the exact moments of the solution can be computed. The estimator relies then
on a generalization of the moment method, which tries to fit empirical moments of the
solution with their theoretical value. The range of application of this method is however
confined to specific situations, for the following reasons:

• It assumes that N independent runs of equation (1) can be obtained, which is
usually not the case.

• It hinges on multiple integrals computations, which are time consuming and are
avoided in most numerical schemes.

As can be seen from this brief review, parameter estimation for rough equations is still in
its infancy. We shall also argue that it is a hard problem.

Indeed, if one wishes to transpose the MLE methods used for diffusion processes to the
fBm context, an equivalent of the log-likelihood functions (2) should first be produced.
But the covariance structure of B is quite complex and the attempts to put the law of Y
defined by (1) into a semigroup setting are cumbersome, as illustrated by [1, 17, 31]. We
have thus decided to consider a highly simplified version of the log-likelihood. Namely,
still assuming that Y is observed at a discrete set of instants 0 < t1 < · · · < tn < ∞, set

ℓn(θ) =
n
∑

i=1

ln (f(ti, Yti; θ)) , (5)

where we suppose that under Pθ the random variable Yti admits a density z 7→ f(ti, z; θ).
Notice that in case of an elliptic diffusion coefficient σ the density f(ti, ·; θ) is strictly
positive, and thus expression (5) makes sense by a straightforward application of [11,
Proposition 19.6]. However, the successful replication of the strategy implemented for
Brownian diffusions (that we have tried to summarize above) relies on some highly non
trivial questions: existence of an invariant measure for equation (1), rate of convergence
to this invariant measure, convergence of expressions like (5), characterization of the limit
in terms of θ as in (3), to mention just a few. We shall come back to these considerations



4 A. CHRONOPOULOU AND S. TINDEL

in the next section, but let us insist at this point on the fact that all those questions would
fit into a research program over several years.

Our aim in this paper is in a sense simpler: we assume that quantities like (5) are
meaningful for estimation purposes. Then we shall implement a method which enables to
compute ℓn(θ) and optimize it in θ, producing thus a pseudo MLE estimator. We focused
first on this specific aspect of the problem for the following reasons:

(1) From a statistical point of view, it is obviously essential to obtain a computa-
tionally efficient estimation procedure. This will allow us for instance to evaluate
numerically the accuracy of our method.

(2) The procedure itself is nontrivial, and requires the use of advanced stochastic
analysis tools: probabilistic representation of the density, Malliavin type integra-
tion by parts, Stratonovich-Skorohod correction terms, discretization of systems
of pathwise stochastic differential equations for instance.

We have thus decided to tackle the implementation issues first. If it turns out to be
satisfying, we shall then try to proceed to a full justification of our method.

Let us also mention that it might not be clear to the reader that ℓn(θ) can be meaningful
in terms of statistical estimation, since it only involves evaluations at single points Yti .
However our numerical experiments indicate that this quantity behaves nicely for our
purposes. Moreover, it will become clear from the forthcoming computations that our
methodology can be extended to handle quantities like

ℓ̃n(θ) :=

n
∑

i=1

ln
(

f(ti, ti+1, Yti , Yti+1
; θ)
)

,

where f(s, t, x, z; θ) stands for the density of the couple (Ys, Yt). This kind of pseudo
log-likelihood is obviously closer in spirit to the diffusion case. Densities of tuples could
also be considered at the price of technical complications.

Let us now try to give a flavor of the kind of result we shall obtain in this article, in a
very loose form:

Theorem 1.1. Consider Equation (1) driven by a d-dimensional fractional Brownian
motion B with Hurst parameter H > 1/2. Assume µ and σ are smooth enough coefficients,
and that σσ∗ is strictly elliptic. For a sequence of times t0 < · · · < tn < ∞, let yti,
i = 1, . . . , n be the corresponding observations. Then:

(i) The gradient of the log-likelihood function admits the following probabilistic represen-

tation: ∇lℓn(θ) =
∑n

i=1
Vi(θ)
Wi(θ)

, with

Wi(θ) = E

[

1(Yti
(θ)>yti )

H(1,...,m)

(

Yti(θ)
)

]

(6)

where H(j1,...,jn)(Yti(θ)) is an expression involving Malliavin derivatives an Skorohod inte-
grals of Y (θ). A similar expression is also available for Vi(θ).

(ii) A computational procedure is constructed in order to obtain H(1,...,m)(Yti(θ)) in a suit-
able way.

(iii) When Yt is replaced by its Euler scheme approximation with step T/M and expected
values in (6) are approximated thanks to N Monte Carlo steps, we show that
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• N can be chosen in function of M in an optimal way (see Proposition 4.7).
• The corresponding approximation of ∇lℓn(θ) converges to the real one with rate
n−(2γ−1) for any 1/2 < γ < H.

All those results are stated in a more rigorous way in the remainder of the article.

Here is how our article is structured: we give some preliminaries and notations on Young
and Malliavin calculus for fractional Brownian motion at Section 2. The probabilistic
representation for the log-likelihood is given at Section 3. Discretization procedures are
designed at Section 4, and finally numerical examples are given at Section 5.

1.2. Remaining open problems. We emphasized above the fact that only a part of
the problem at stake was going to be solved in the current article. We now briefly sketch
the remaining tasks to be treated.

The most important obstacle in order to fully justify our methodology is to get a
suitable convergence theorem for ℓn(θ)/n, where ℓn(θ) is defined by (5). In a natural way,
this should be based on some strong ergodicity properties for Yt. After a glance at the
literature on ergodicity for fractional systems, one can distinguish two cases:

(i) When σ(·; θ) is constant, the convergence of L(Yt) as t → ∞ is established in [15],
with a (presumably non optimal) rate of convergence t−1/8.

(ii) For a general smooth and elliptic coefficient σ, only the uniqueness of the invariant
measure is shown in [17], with an interesting extension to the hypoelliptic case in [18].
Nothing is known about the convergence of L(Yt), not to mention rates.

This brief review already indicates that the convergence to invariant measures is still quite
mysterious for fractional differential equations, at least for a non constant coefficient
σ. Moreover, recall that if ν(θ) stands for the invariant measure corresponding to the
system with coefficients µ(·; θ), σ(·; θ), we also wish to retrieve some information on the
dependence θ 7→ ν(θ) (See [16] for some partial results in this direction).

Let us mention another concrete problem: even in the case of a constant σ, the conver-
gence of L(Yt) to an invariant measure ν(θ) is proven in [15] in the total variation sense.
In terms of the density p(t, x; θ) of Yt, it means that p(t, ·; θ) converges to the density of
ν in L1 topology. However, in order to get a limit for ℓn(θ)/n, one expects to use at least
a convergence in some Sobolev space W α,p for α, p large enough.

One possibility in order to get this sharper convergence is to bound first the density
p(t, ·; θ) in another Sobolev space W α′,p′ and then to use interpolation theory. It seems
thus sufficient to obtain Gaussian bounds on p(t, ·; θ), uniformly in t. In case of Brownian
diffusions, these Gaussian bounds are obtained by analytic tools, thanks to the Markov
property. This method being obviously not available for systems driven by fBm, a possible
inspiration is contained in the upper Gaussian bounds for the stochastic wave equation
which can be found in [6]. The latter technical results stem from an intensive use of Malli-
avin calculus, which should also be invoked in our case, and notice the recent efforts [2, 3]
in this direction.

Finally, let us mention that it seems possible to produce some reasonable convergent
parametric estimators for equations driven by fBm in a rather general context. Among
the methods which can be adapted from the diffusion case with the current stochastic
analysis techniques, let us mention the least square estimator of [22], as well as the local
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asymptotic normality property shown in [12]. However, it seems obvious that the road to
a complete picture of parameter estimation for stochastic equations driven by fBm is still
hard and long. We hope to complete it in some subsequent communications.

2. Preliminaries and notations

As mentioned in the introduction, we are concerned with equations driven by a d-
dimensional fractional Brownian motion B. We recall here some basic facts about the
way to solve those equations, and some Malliavin calculus tools which will be needed later
on. Let us introduce first some general notation for Hölder type spaces:

Notation 2.1. We will denote by Cα(V ) the set of V -valued α-Hölder functions for any
α ∈ (0, 1), and by Cn

b (U ;V ) the set of n times differentiable functions, bounded together
with all their derivatives, from U to V . In the previous notation, U and V stand for two
finite dimensional vector spaces. The state space V can be omitted for notational sake
when its value is non ambiguous. When we want to stress the fact that we are working on
a finite interval [0, T ], we write Cα

T (V ) for the space of α-Hölder functions f from [0, T ]
to V . The corresponding Hölder norms shall be denoted by ‖f‖α,T .

2.1. Differential equations driven by fBm. Recall that the equation we are interested
in is of the form (1). Before stating the assumptions on our coefficients we need an
additional notation:

Notation 2.2. For n, p ≥ 1, a function f ∈ Cp(Rn;R) and any tuple (i1, . . . ip) ∈
{1, . . . , d}p, we set ∂i1...ipf for ∂pf

∂xi1
...∂xip

. Similarly, consider a function gθ ∈ Cp(Θ;R), for

n, p ≥ 1 and a vector of parameters θ ∈ Θ ⊂ R
q. For any tuple (i1, . . . ip) ∈ {1, . . . , q}p,

we set ∇i1...ipg
i
θ for

∂pgi
θ

∂θi1 ...∂θip
, where i = 1, . . . , n.

Using this notation, we work under the following set of assumptions:

Hypothesis 2.3. For any θ ∈ Θ, we assume that µ(·; θ) : Rm → R
m and σ(·; θ) : Rm →

R
m,d are C2

b coefficients. Furthermore, we have

sup
θ∈Θ

2
∑

l=0

∑

1≤i1,...,il≤q

‖∇l
i1···il

µ(·; θ)‖∞ + ‖∇l
i1···il

σ(·; θ)‖∞ < ∞.

When equation (1) is driven by a fBm with Hurst parameter H > 1/2 it can be
solved, thanks to a fixed point argument, with the stochastic integral interpreted in the
(pathwise) Young sense (see e.g. [14]). Let us recall that Young’s integral can be defined
in the following way:

Proposition 2.4. Let f ∈ Cγ, g ∈ Cκ with γ + κ > 1, and 0 ≤ s ≤ t ≤ 1. Then
the integral

∫ t

s
gξ dfξ is well-defined as limit of Riemann sums along partitions of [s, t].

Moreover, the following estimation is fulfilled:
∣

∣

∣

∣

∫ t

s

gξ dfξ

∣

∣

∣

∣

≤ C‖f‖γ‖g‖κ|t− s|γ, (7)
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where the constant C only depends on γ and κ. A sharper estimate is also available:
∣

∣

∣

∣

∫ t

s

gξ dfξ

∣

∣

∣

∣

≤ |gs| ‖f‖γ|t− s|γ + cγ,κ‖f‖γ‖g‖κ|t− s|γ+κ. (8)

With this definition in mind and under assumptions 2.3, we can solve our differential
system of interest, and the following moments bounds are proven in [11, 19]:

Proposition 2.5. Consider a fBm B with Hurst parameter H > 1/2. Then:

(1) Under Hypothesis 2.3, equation (1) driven by B admits a unique β-Hölder continuous
solution Y , for any β < H.

(2) Furthermore,

‖Y ‖T,β ≤ |a|+ cf,T‖B‖1/ββ,T .

(3) If we denote by Y a the solution to (1) with initial condition a, then

‖Y b − Y a‖T,β ≤ |b− a| exp
(

cf,T‖B‖1/ββ,T

)

.

(4) If we only assume that f has linear growth, with ∇f,∇2f bounded, the following
estimate holds true:

supt∈[0,T ]|Yt| ≤ (1 + |a|) exp
(

cf,T‖B‖1/ββ,T

)

.

Remark 2.6. The framework of fractional integrals is used in [19] in order to define integrals
with respect to B. It is however easily seen to be equivalent to the Young setting we have
chosen to work with.

Some differential calculus rules for processes controlled by fBm will also be useful in
the sequel:

Proposition 2.7. Let B be a d-dimensional fBm with Hurst parameter H > 1/2. Con-

sider a, â ∈ R, b, b̂ ∈ Cα
T (R

d) with α+H > 1, and c, ĉ ∈ CT (R) (all these assumptions are
understood in the almost sure sense). Define two processes z, ẑ on [0, T ] by

zt = a +

d
∑

j=1

∫ t

0

bju dB
j
u +

∫ t

0

cu du, and ẑt = â +

d
∑

j=1

∫ t

0

b̂ju dB
j
u +

∫ t

0

ĉu du.

Then for t ∈ [0, T ], one can decompose the product ztẑt into

zt ẑt = a â+
n
∑

j=1

∫ t

0

[

ẑu b
j
u + zu b̂

j
u

]

dBj
u +

∫ t

0

[zu ĉu + ẑucu] du,

where all the integrals with respect to B are understood in the Young sense.

The proof of this elementary and classical result is omitted here. See [28, Proposi-
tion 2.8] for the proof of a similar rule.
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2.2. Malliavin calculus techniques. Our representation of the density for the solution
to (1) obviously relies on Malliavin calculus tools that we proceed now to recall. As already
mentioned in the introduction, on a finite interval [0, T ] and for some fixedH ∈ (1/2, 1), we
consider (Ω,F , P ) the canonical probability space associated with a fractional Brownian
motion with Hurst parameter H . That is, Ω = C0([0, T ];Rd) is the Banach space of
continuous functions vanishing at 0 equipped with the supremum norm, F is the Borel
sigma-algebra and P is the unique probability measure on Ω such that the canonical
process B = {Bt, t ∈ [0, T ]} is a d-dimensional fractional Brownian motion with Hurst
parameter H . Remind that this means that B has d independent coordinates, each one
being a centered Gaussian process with covariance RH(t, s) =

1
2
(s2H + t2H − |t− s|2H).

2.2.1. Functional spaces. Let E be the space of d-dimensional elementary functions on
[0, T ]:

E =
{

f = (f1, . . . , fd); fj =

nj−1
∑

i=0

aji1[tji ,t
j
i+1

) , 0 = t0 < tj1 < · · · < tjnj−1 < tjnj
= T,

for j = 1, . . . , d
}

. (9)

We call H the completion of E with respect to the semi-inner product

〈f, g〉H =
d
∑

i=1

〈fi, gi〉H0
, where 〈1[0,t], 1[0,s]〉H0

:= R(s, t), s, t ∈ [0, T ].

Then, one constructs an isometry K∗
H : H → L2([0, 1];Rd) such that

K∗
H

(

1[0,t1], . . . , 1[0,td]

)

=
(

1[0,t1]KH(t1, ·), . . . , 1[0,td]KH(td, ·)
)

,

where the kernel KH is given by

KH(t, s) = cHs
1

2
−H

∫ t

s

(u− s)H− 3

2uH− 1

2 du

and verifies that RH(t, s) =
∫ s∧t

0
KH(t, r)KH(s, r) dr, for some constant cH . Moreover, let

us observe that K∗
H can be represented in the following form: for ϕ = (ϕ1, . . . , ϕd) ∈ H,

we have K∗
Hϕ

K∗
Hϕ =

(

K∗
Hϕ

1, . . . , K∗
Hϕ

d
)

, where [K∗
Hϕ

i]t =

∫ 1

t

ϕi
r∂rKH(r, t) dr.

2.2.2. Malliavin derivatives. Let us start by defining the Wiener integral with respect to
B: for any element f in E whose expression is given as in (9), we define the Wiener
integral of f with respect to B as

B(f) :=
d
∑

j=1

nj−1
∑

i=0

aji (B
j

tji+1

− Bj

tji
) .

We also denote this integral as
∫ T

0
ftdBt, since it coincides with a pathwise integral with

respect to B.
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For θ : R → R, and j ∈ {1, . . . , d}, denote by θ[j] the function with values in R
d having

all the coordinates equal to zero except the j-th coordinate that equals to θ. It is readily
seen that

E
[

B
(

1
[j]
[0,s)

)

B
(

1
[k]
[0,t)

)]

= δj,kRs,t.

This definition can be extended by linearity and closure to elements of H, and we obtain
the relation

E [B(f)B(g)] = 〈f, g〉H,

valid for any couple of elements f, g ∈ H. In particular, B(·) defines an isometric map
from H into a subspace of L2(Ω).

We can now proceed to the definition of Malliavin derivatives. With this notation 2.2
in hand, let us consider S be the family of smooth functionals F of the form

F = f(B(h1), . . . , B(hn)), (10)

where h1, . . . , hn ∈ H, n ≥ 1, and f is a smooth function with polynomial growth,
together with all its derivatives. Then, the Malliavin derivative of such a functional F is
the H-valued random variable defined by

DF =
n
∑

i=1

∂if(B(h1), . . . , B(hn)) hi.

For all p > 1, it is known that the operator D is closable from Lp(Ω) into Lp(Ω;H) (see
e.g. [32, Section 1]). We will still denote by D the closure of this operator, whose domain
is usually denoted by D

1,p and is defined as the completion of S with respect to the norm

‖F‖1,p := (E(|F |p) + E(‖DF‖pH))
1

p .

It should also be noticed that partial Malliavin derivatives with respect to each component
Bj of B will be invoked: they are defined, for a functional F of the form (10) and
j = 1, . . . , d, as

DjF =
n
∑

i=1

∂if(B(h1), . . . , B(hn))h
[j]
i ,

and then extended by closure arguments again. We refer to [32, Section 1] for the definition
of higher derivatives and Sobolev spaces Dk,p for k > 1. Another essential object related
to those derivatives is the so-called Malliavin matrix of a R

m-valued random variable
F ∈ D

1,2, defined by

γF =

(

〈

DF i, DF j
〉

)

1≤i,j≤m

. (11)

2.2.3. Skorohod integrals. We will denote by δ the adjoint of the operator D (also referred
to as the divergence operator). This operator is closed and its domain, denoted by Dom(δ),
is the set of H-valued square integrable random variables u ∈ L2(Ω;H) such that

|E [〈DF, u〉H] | ≤ C ‖F‖2,

for all F ∈ D
1,2, where C is some constant depending on u. Moreover, for u ∈ Dom(δ),

δ(u) is the element of L2(Ω) characterized by the duality relationship:

E [Fδ(u)] = E [〈DF, u〉H] , for any F ∈ D
1,2. (12)
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The quantity δ(u) is usually called Skorohod integral of the process u.

Skorohod integrals are obviously analytic objects, not suitable for easy numerical im-
plementations. However, they can be related to the Young type integrals introduced at
Proposition 2.4. For this, we need to define another functional space as follows:

Notation 2.8. We call |H| the space of measurable functions ϕ : [0, T ] → R
d such that

‖ϕ‖2|H| := cH

∫ 1

0

∫ 1

0

|ϕr||ϕu||r − u|2H−2drdu < +∞,

where cH = H(2H − 1), and we denote by 〈·, ·〉|H| the associated inner product. We also
write D

k,p(|H|) for the space of Dk,p functionals with values in |H|.

The following proposition is then a slight extension of [32, Proposition 5.2.3]:

Proposition 2.9. Let {uij
t , t ∈ [0, 1]}, for i = 1, . . . , m and j = 1, . . . , d, be a stochastic

process in D
1,2(|H|) such that

d
∑

j=1

∫ 1

0

∫ 1

0

|Dj
su

ij
t | |t− s|2H−2dsdt < +∞ a.s. (13)

We also assume that almost surely, u has β-Hölder paths with β+H > 1. Then the Young

integral
∑d

j=1

∫ T

0
uij
t dBj

t exists and for all i = 1, . . . , m can be written as

d
∑

j=1

∫ T

0

uij
t dBj

t = δ(ui) +

d
∑

j=1

∫ T

0

∫ T

0

Dj
su

ij
t |t− s|2H−2dsdt,

where δ(u) stands for the Skorohod integral of u.

3. Probabilistic expression for the log-likelihood

Recall that we are focusing on equation (1) driven by a d-dimensional fBm B, and that
we have chosen to use expression (5) as a substitute to the log-likelihood function. We
have thus reduced the initial maximization problem to the solution of ∇lℓn(θ) = 0. This
will be performed numerically by means of a root approximation algorithm.

Observe first that in order to define (5), the density of Yt(θ) must exist for any t > 0.
Let us thus recall the classical setting (given in [19]) under which Yt admits a smooth
density:

Hypothesis 3.1. Let µ and σ be coefficients satisfying Hypothesis 2.3. For ξ ∈ R
m and

θ ∈ Θ, set α(ξ) = σ(ξ, θ)σ∗(ξ, θ). Then we assume that

(i) For any k ≥ 0 and j1, . . . , jk ∈ {1, . . . , m} we have

sup
θ∈Θ

2
∑

l=0

∑

1≤p1,...,pl≤q

‖∇l
p1···pl

∂k
j1,...,jk

µ(·; θ)‖∞ + ‖∇l
p1···pl

∂k
j1,...,jk

σ(·; θ)‖∞ ≤ ck,

for a strictly positive constant ck.

(ii) There exists a strictly positive constant ε such that 〈α(ξ; θ)η, η〉Rm ≥ ε|η|2
Rm for any

couple of vectors η, ξ ∈ R
m, uniformly in θ ∈ Θ.

Then the density result for Yt can be read as follows:
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Theorem 3.2. Consider the stochastic differential equation (1) with initial condition
a ∈ R

m. Assume Hypothesis 3.1 is satisfied. Then, for any t > 0 and θ ∈ Θ, the law of
Yt(θ) admits a C∞ density, denoted by f(t, ·; θ), with respect to Lebesgue’s measure.

In the sequel, we shall suppose that the density f(t, ·; θ) exists without further mention,
the aim of this section being to produce a probabilistic representation of f(t, ·; θ) for
computational purposes. To this aim, we shall first give the equations governing the
Malliavin derivatives of the processes Y (θ) and ∇Y (θ), and then use a stochastic analysis
formula in order to represent our log-likelihood. We separate these tasks in two different
subsections.

3.1. Some Malliavin derivatives. This section is devoted to a series of preliminary
lemmas which will enable to formulate our probabilistic representation of f(t, ·; θ). Let
us first introduce a notation which will prevail until the end of the paper:

Notation 3.3. For a set of indices or coordinates (k1, . . . , kr) of length r ≥ 1 and 1 ≤
j ≤ r, we denote by (k1, . . . , ǩj, . . . , kr) the set of indices or coordinates of length r − 1
where kj has been omitted.

We now give a general expression for the higher order derivatives of Yt, borrowed
from [34].

Lemma 3.4. Assume Hypothesis 2.3 and 3.1 hold true. For n ≥ 1 and (i1, . . . , in) ∈
{1, . . . , d}n, denote by Di1,...,inY i

t (θ) the nth Malliavin derivative of Y i
t (θ) with respect to

the coordinates Bi1 , . . . , Bin of B. Then Di1,...,inY i
t (θ), considered as an element of H⊗n,

satisfies the following linear equation: for t ≥ r1 ∨ · · · ∨ rn,

Di1,...,in
r1,...,rnY

i
t (θ) =

n
∑

p=1

αi
ip,i1...,̌ıp,...,in(rp; r1, . . . , řp, . . . , rn; θ)

+

∫ t

r1∨···∨rn

βi
i1,...,in

(s; r1, . . . , rn; θ) ds+
d
∑

l=1

∫ t

r1∨···∨rn

αi
l,i1,...,in

(s; r1, . . . , rn; θ) dB
l
s, (14)

where

αi
j,i1,...,in

(s; r1, . . . , rn; θ) =
∑

m
∑

k1,...,kν=1

∂ν
k1...kν

σij(Ys(θ); θ) D
i(I1)
r(I1)

Y k1
s (θ) . . .D

i(Iν)
r(Iν)

Y kν
s (θ)

βi
i1,...,in

(s; r1, . . . , rn; θ) =
∑

m
∑

k1,...,kν=1

∂ν
k1...kν

µi(Ys(θ); θ) D
i(I1)
r(I1)

Y k1
s (θ) . . .D

i(Iν)
r(Iν)

Y kν
s (θ).

In the expressions above, the first sums are extended to the set of all partitions I1, . . . , Iν of

{1, . . . , n} and for any subset K = {i1, . . . , iη} of {1, . . . , n} we set D
i(K)
r(K) for the derivative

operator D
i1,...,iη
r1,...,rη . Notice that Di1,...,in

r1,...,rnY
i
t (θ) = 0 whenever t < r1 ∨ · · · ∨ rn.

The formulas above might seem intricate. The following example illustrate their use in
a simple enough situation:
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Example 3.5. The second order derivative D1,3
r1,r2

Y 2
t (θ) can be computed as:

D1,3
r1,r2Y

2
t (θ) = α2

1,3(r1, r2; θ) + α2
3,1(r2, r1; θ)

+

∫ t

r1∨r2

β2
1,3(s, r1, r2; θ) ds+

d
∑

l=1

∫ t

r1∨r2

α2
l,1,3(s, r1, r2; θ)dB

l
s,

where

α2
1,3(r1, r2; θ) =

m
∑

k=1

∂kσ
21(Yr2(θ); θ) D

3
r2
Y k
r1
(θ),

α2
3,1(r2, r1; θ) =

m
∑

k=1

∂kσ
23(Yr1(θ); θ) D

1
r1
Y k
r2
(θ)

and

β2
1,3(s, r1, r2; θ) = ∂2

kkµ
2(Ys(θ); θ)D

1,3
r1,r2

Y k
s (θ) + ∂2

k1k2
µ2(Ys(θ); θ)D

1
r1
Y k1
s (θ)D3

r2
Y k2
s (θ),

α2
l,1,3(s, r1, r2; θ) = ∂2

kkσ
2l(Ys(θ); θ)D

1,3
r1,r2Y

k
s (θ) + ∂2

k1k2σ
2l(Ys(θ); θ)D

1
r1Y

k1
s (θ)D3

r2Y
k2
s (θ),

where we have used the convention of summation over repeated indices.

Our formula for the log-likelihood will also involve some derivatives of the process Y (θ)
with respect to the parameter θ. The existence of this derivative is assessed below:

Proposition 3.6. Under the same hypothesis as for Lemma 3.4, the random variable
Y i
t (θ) is a smooth function of θ for any t ≥ 0. We denote by ∇lY

i
t (θ) the derivative of

Y i
t (θ) with respect to the lth element of the vector of parameters θ. This process satisfies

the following SDE:

∇lY
i
t (θ) =

∫ t

0

[∂iµ
i(Yu(θ); θ)∇lY

i
u(θ) +∇lµ

i(Yu(θ); θ)]du

+

d
∑

j=1

∫ t

0

[∂σij(Yu(θ); θ)∇lY
i
u(θ) +∇lσ

ij(Yu(θ); θ)]dB
j
u.

Proof. The proof goes exactly along the same lines as for [34, Proposition 4], and the
details are left to the reader.

�

We shall also need some equations governing the Malliavin derivatives of ∇lY (θ). This
is the aim of the following lemma:

Lemma 3.7. For any l ∈ {1, . . . , q} and n ≥ 1, the process ∇lD
i1,...,inY (θ) is n-times

differentiable in the Malliavin calculus sense. Moreover, taking up the notations of Lem-
ma 3.4, the process ∇lD

i1,...,inY i
t (θ) satisfies the following linear equation: for t ≥ r1 ∨
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· · · ∨ rn,

∇lD
i1,...,in
r1,...,rnY

i
t (θ) =

n
∑

p=1

α̂i,l
ip,i1...,̌ıp,...,n

(rip , r1, . . . , řp, . . . , rn; θ)

+

∫ t

r1∨···∨rn

β̂i,l
i1,...,in

(s; r1, . . . , rn; θ) ds+
d
∑

l=1

∫ t

r1∨···∨rn

α̂i,l
l,i1,...,in

(s; r1, . . . , rn; θ) dB
l
s,

where α̂i,l
j,i1,...,in

= ∇lα
i
j,i1,...,in

and β̂i,l
j,i1,...,in

= ∇lβ
i
i1,...,in

. More specifically, β̂i,p
j,i1,...,in

is
defined recursively by

β̂i,p
i1,...,in

(s; r1, . . . , rn; θ)

=
∑

I1∪...∪Iν

m
∑

k1,...,kν=1

{

∇p[∂
ν
k1...kν

µi(Ys(θ); θ)] D
i(I1)
r(I1)

Y k1
s (θ) · · ·Di(Iν)

r(Iν)
Y kν
s (θ)

+ ∂ν
k1...kν

µi(Ys(θ); θ)
ν
∑

p=1

∇pD
i(Ip)

r(Ip)
Y kp
s (θ)D

i(I1)
r(I1)

Y k1
s (θ) · · ·D

ı̌(Ip)

ř(Ip)
Y ǩp
s (θ) · · ·Di(Iν)

r(Iν)
Y kν
s (θ)

}

,

where we have set

∇p[∂
ν
k1...kν

µi(Ys(θ); θ)] = ∇p∂
ν
k1...kν

µi(Ys(θ); θ) + ∂∂ν
k1...kν

µi(Ys(θ); θ)∇pYs(θ).

Notice that the same kind of equation (skipped here for sake of conciseness) holds true for

the coefficients α̂i,l
j,i1,...,in

.

The next object we need for our calculations is the inverse of the Malliavin matrix γYt(θ)

of Yt(θ). Recall that according to (11), the Malliavin matrix of Yt(θ) is defined by

γt(θ) := γYt(θ) =
(〈

D·Y
i
t (θ), D·Y

j
t (θ)

〉)

1≤i,j≤m
, (15)

where we have set γt(θ) := γYt(θ) for notational sake in the computations below. We shall
now compute γ−1

t (θ) as the solution to a SDE:

Proposition 3.8. The matrix valued process γ−1
t (θ) is the unique solution to the following

linear equation in η:

ηt(θ) = α̃−1
0 (Yt(θ); θ)−

d
∑

l=1

∫ t

0

[ηu(θ)α̃l(Yu(θ); θ) + α̃T
l (Yu(θ); θ)ηu]dB

l
u

−

∫ t

0

[ηu(θ)β̃(Yu(θ); θ) + β̃T (Yu(θ); θ)ηu(θ)]du, (16)

with

α̃0(Yt(θ); θ) =
m
∑

j=1

∫ t

0

∫ t

0

σij(Yr(θ); θ)σ
i′j(Yr′(θ); θ) |r − r′|2H−2dr dr′, i, i′ = 1, . . . , m

and where the other coefficients α̃ and β̃ are defined by

α̃l(Yu(θ); θ) =
(

∂kσ
i′l(Yu(θ); θ)

)

1≤i′,k≤m
and β̃(Yu(θ); θ) =

(

∂kµ
i′(Yu(θ); θ)

)

1≤i′,k≤m
.

(17)
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Proof. The proof of this fact is an adaptation of [19, Theorem 7] to the case of a SDE
with drift. We include it here for sake of completeness, and we drop the dependence of Y
on θ for notational sake in the computations below.

Let us start by invoking Proposition 2.7 and equation (14) in order to compute the
product of two first-order Malliavin derivatives:

Dj
rY

i
t Dj

r′Y
i′

t = σij(Yr)σ
i′j(Yr′) + (18)

+
m
∑

k=1

{

∫ t

0

d
∑

l=1

[

∂kσ
il(Yu) D

j
r′Y

i′

u Dj
rY

k
u + ∂kσ

i′l(Yu) D
j
rY

i
u Dj

r′Y
k
u

]

dBl
u

+

∫ t

0

[

∂kµ
i(Yu) D

j
r′Y

i′

u Dj
rY

k
u + ∂kµ

i′(Yu) D
j
rY

i
u Dj

r′Y
k
u du

]

}

.

Moreover, recall that γt is defined by (15). Thus, the covariance matrix becomes

γii′

t =

d
∑

j=1

〈

DjY i
t , D

jY i′

t

〉

H
= cH

d
∑

j=1

∫ t

0

∫ t

0

Dj
rY

i
t (θ) D

j
r′Y

i′

t (θ) |r − r′|2H−2 dr dr′.

Plugging (18) into this relation, we end up with the following equation for γii′:

γii′

t = α̃ii′

0 +

d
∑

l=1

∫ t

0

m
∑

k=1

[

∂kσ
i l(Yu) γ

i′k
u + ∂kσ

i′l(Yu) γ
ik
u

]

dBl
u

+

∫ t

0

m
∑

k=1

[

∂kµ
i(Yu) γ

i′k
u + ∂kµ

i′(Yu) γ
i k
u

]

du.

Using our notation (17) and matrix product rules, we obtain that γt is solution to:

γt =

d
∑

l=1

∫ t

0

(α̃l(Yu)γu + γuα̃
T
l (Yu))dB

l
u +

∫ t

0

(β̃(Yu)γu + γuβ̃
T (Yu))du.

Consider now η solution to (16). Applying again Proposition 2.7, it is readily checked
that γtηt = Id for any t ∈ [0, T ], which ends the proof.

�

Remark 3.9. Gathering equation (16) and Proposition 2.5, it is easily seen that for any
t > 0 and θ ∈ Θ, Yt(θ) is a non degenerate random variable in the sense given at [32,
Definition 2.1.2]: we have det(γ−1

t ) ∈ Lp(Ω) for any p > 1.

Now that we have derived an equation for η = γ−1, an equation for the Malliavin
derivative of η is also available:

Proposition 3.10. For any l ∈ {1, . . . , q} and n ≥ 1, the process ηt = γ−1
t is n-time

differentiable in the Malliavin calculus sense. Moreover, the process Di1,...,inηt satisfies the
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following equation: for t ≥ r1 ∨ · · · ∨ rn,

Di1,...,in
r1,...,rnη

ij
t (θ) = −

n
∑

k1=1

k1
∑

k2=1

(D
i1,...,ik2
r1,...,rk2

α̃−1
0 D

i1,i2,...,ik1−k2
r1,r2,...,rk1−k2

α̃0 D
i1,...,in−k1
r1,...,rn−k1

α̃−1
0 )ij

−
d
∑

ℓ=1

∫ t

r1∨...∨rn

C ij
ℓ,i1,...,in

(s; r1, . . . , rn; θ)dB
ℓ
s −

∫ t

r1∨...∨rn

Aij
i1,...,in

(s; r1, . . . , rn; θ)ds,

where

Aij
i1,...,in

(s; r1, . . . , rn; θ) =
∑

m
∑

k1,...,kν

m
∑

k=1
{

[∂ν
k1,...,kν(β̃(Yu(θ); θ))

kj D
i(I1)
r(I1)

ηiks (θ) . . .D
i(Iν)
r(Iν)

ηiks (θ) D
i(I1)
r(I1)

Y i
s (θ) . . .D

i(Iν)
r(Iν)

Y i
s (θ)]

+[∂ν
k1,...,kν

(β̃(Yu(θ); θ))
ik D

i(I1)
r(I1)

ηkjs (θ) . . .D
i(Iν)
r(Iν)

ηkjs (θ) D
i(I1)
r(I1)

Y j
s (θ) . . .D

i(Iν)
r(Iν)

Y j
s (θ)]

}

and the same kind of equation holds for C ij
l,i1,...,in

(s; r1, . . . , rn; θ), with the coefficients β
replaced by αl.

Proof. The proof of this proposition is based on Lemma 3.4 and the fact that
dA−1

λ

dλ
=

−A−1
λ

dAλ

dλ
A−1

λ .
�

Finally, one can also differentiate η with respect to our standing parameter θ, which
yields:

Lemma 3.11. The derivative of the inverse of the Malliavin matrix ηt with respect to θ
satisfies the following SDE

∇lηt(θ) = ∇lα̃
−1
0 −

d
∑

ℓ=1

∫ t

0

{∇lηu(θ)α̃ℓ(Yu(θ); θ) + ηu(θ)∇l[α̃ℓ(Yu(θ); θ)]

+∇l[α̃
T
ℓ (Yu(θ); θ)]ηu(θ) + α̃T

ℓ (Yu(θ); θ)∇lηu(θ)}dB
ℓ
u −

∫ t

0

{∇lηu(θ)β̃(Yu(θ); θ)

+ηu(θ)∇l[β̃(Yu(θ); θ)] +∇l[β̃
T (Yu(θ); θ)]ηu(θ) + β̃T (Yu(θ); θ)∇lηu(θ)}du,

where ∇l[β̃ℓ(Yu)] = ∂β̃ℓ(Yu)∇lYu +∇lβ̃ℓ(Yu) and ∇l[α̃ℓ(Yu)] = ∂α̃ℓ(Yu)∇lYu +∇lα̃ℓ(Yu).

3.2. Probabilistic representation of the likelihood. We have chosen to represent the
log-likelihood of our sample thanks to the following formula borrowed from the stochastic
analysis literature:

Proposition 3.12. Let F be a R
m-valued non degenerate random variable (see Re-

mark 3.9 for references on this concept), and let f be the density of F . For n ≥ 1
and (j1, . . . , jn) ∈ {1, . . . , m}n, let H(j1,...,jn)(F ) be defined recursively by H(j1)(F ) =
∑m

j=1 δ((γ
−1
F )j1jDF j) and

H(j1,...,jn)(F ) =
m
∑

j=1

δ
(

(

γ−1
F

)jnj
DF jH(j1,...,jn−1)(F )

)

, (19)
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where the Skorohod operator δ is defined at Section 2.2.3. Then one can write

f(x) = E
[

1(F>x)H(1,...,m)(F )
]

= E
[

(F − x)+H(1,...,m,1,...,m)(F )
]

, (20)

where 1(F>x) :=
∏m

i=1 1(F i>xi) and (F − x)+ :=
∏m

i=1(F
i − xi)+.

Proof. The first formula is a direct application of [32, Proposition 2.1.5]. The second one
is obtained along the same lines, integrating by parts m additional times with respect to
the first one.

�

The formula above can obviously be applied to Yt(θ) for any strictly positive t, since
we have noticed at Remark 3.9 that Yt(θ) is a non-degenerate random variable. However,
the expression of H(j1,...,jn)(Yt(θ)) given by (19) is written in terms of Skorohod integrals,
which are not amenable to numerical computations. We will thus recast this expression
in terms of Young integrals plus some correction terms:

Proposition 3.13. Under Hypothesis 2.3 and 3.1, let us define Qpji
st := (γ−1

s )pjDi
sY

j
t (θ)

for 0 ≤ s < t ≤ T , p, j ∈ {1, . . . , m} and i ∈ {1, . . . , d}. Consider p ∈ {1, . . . , m} and a
real valued random variable G which is smooth in the Malliavin calculus sense. Set

Up(G) =
m
∑

i=1

d
∑

j=1

G

∫ t

0

Qpji
st dBi

s − cH

m
∑

i=1

d
∑

j=1

∫ t

0

∫ t

0

Di
s

[

GQpji
rt

]

|r − s|2H−2drds, (21)

where the integral with respect to B is understood in the Young sense. Then the quantities
H(j1,...,jn)(Yt(θ)) defined at Proposition 3.12 can be expressed as

H(j1,...,jn)(Yt(θ)) =

m
∑

j=1

Ujn ◦ · · · ◦ Uj1

(

Y j
t (θ)

)

. (22)

Proof. It is an immediate consequence of Proposition 2.9, since we have noticed in our
Remark 3.9 that Yt(θ) is a non-degenerate random variable.

�

The previous proposition is still not sufficient to warranty an effective computation
of the log-likelihood. Indeed, the right hand side of (21) contains terms of the form
Ds[GQpji

rt ], which should be given in a more explicit form. This is the content of our next
proposition.

Proposition 3.14. Set H(j1,...,jn)(Yt(θ)) := Kj1...jn. Then the term Ds[Kj1...jnQ
pji
rt ] in (21)

can be computed inductively as follows:

(i) We have Ds[Kj1...jnQ
pji
rt ] = DsKj1...jn Q

pji
rt +Kj1...jn DsQ

pji
rt , and DsQ

pji
rt is computed by

invoking Proposition 3.10 for the derivative of γ−1
t and Lemma 3.4 for the derivative of

Yt(θ). We are thus left with the computation of DsKj1...jn.

(ii) Assume now that we can compute n− r Malliavin derivatives of Kj1...jr . Notice that
this condition is met for r = 0, since Yt(θ) itself can be differentiated n times in an
explicit way according to Lemma 3.4 again. Then for any j1, . . . , jr+1 and k ≤ n− r− 1,
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the quantity Kj1...jr+1
can be differentiated k times, with a Malliavin derivative given by

Di1,...,ik
ρ1...ρk

Kj1...jr+1
=

k
∑

ℓ=1

Di1,...,̌iℓ...,ik
ρ1...ρ̌ℓ...ρk

(Kj1...jr Q
pji
ρℓt
) +

d
∑

j=1

∫ t

0

Di1,...,ik
ρ1...ρk

(Kj1...jr Q
pji
st )dB

j
s

−cH

∫ t

0

∫ t

0

Dk+1
r1ρ1...ρk

(Kj1...jr Q
pji
r2t)|r1 − r2|

2H−2dr1dr2. (23)

Proof. We focus on the induction step (ii), the other one being straightforward: for a
smooth random variable W , one easily gets by induction that

Di1,...,ip
r1...rp δ(W ) =

p
∑

ℓ=1

D
i1,...,̌iℓ...,ip
r1...řℓ...rp

Wrℓ + δ(Di1,...,ip
r1...rp W ). (24)

Suppose we know the n− r Malliavin derivatives for Ujr ◦ · · · ◦ Uj1(F ) := Kj1...jr . Recall
moreover that

Kj1...jr+1
= Ujr+1

(Kjr...j1) = δ(Kjr...j1 Q·t)

Applying directly relation (24) we thus get, for k ≤ m− 1:

Di1,...,ik
ρ1...ρk

δ(Kjr...j1 Q·t) =
k
∑

ℓ=1

D
i1,...,̌iℓ,...,ik−1

ρ1...ρ̌ℓ...ρk
(Kjr ...j1 Qρℓt) + δ(Di1,...,ik

ρ1...ρk
(Kjr...j1 Q·t)).

Our formula (23) is now obtained by applying Proposition 2.9 to the Skorohod integral
δ(Dk

ρ1...ρk
(Kjr...j1 Q·t)) above.

�

Example 3.15. As an illustration of the proposition above, we compute U2 ◦ U1(F ) for
F = Y i

t , i ∈ {1, . . . , m} and our d-dimensional fBm B.

Write first U1(Y
i
t ) = δ(Y i

t (γ−1)1j1 Dj1Y i
t ), and since this quantity has to be expressed

in a suitable way for numerical approximations, we have

U1(Y
i
t ) =

d
∑

j1=1

Y i
t

∫ t

0

Q1ij1
ut dBj1

u − cH

d
∑

j1=1

∫ t

0

∫ t

0

Dj1
u1
[Y i

t Q
1ij1
u2t ]|u1 − u2|

2H−2du1du2,

where Q is defined at Proposition 3.13 and where the first integral in the right hand side is
understood in the Young sense. In order to compute the second one, we have to compute
Malliavin derivatives. This is done through Lemma 3.4 for Y and Proposition 3.10 for Q.

We now have to differentiate U1(Y
i
t ): the derivation rules for Skorohod integrals imme-

diately yield

Dj2
u2
[U1(Y

i
t )] =

d
∑

j2=1

Y i
t Q

2ij2
u2t +

d
∑

j2=1

δ(Dj2
u2
Y i
t Q

2ij2
·t ).
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Once again, the Skorohod integral above is not suitable for numerical approximations.
Write thus

Dj2
u2
[U1(Y

i
t )] =

d
∑

j2=1

Y i
t Q

2ij2
u2t +

d
∑

j2=1

∫ t

0

Dj2
u2
[Y i

t Q
2ij2
rt ]dBj2

r

− cH

d
∑

j2=1

∫ t

0

∫ t

0

Dj2
u2
Dj1

u1
[Y i

t Q
2ij2
u2t ]|u2 − u1|

2H−2du1du2,

and compute the Malliavin derivatives of the products Y Q thanks to Lemma 3.4 for Y
and Proposition 3.10 for Q. Once this is done, just write

U2(U1(Y
i
t )) = δ(U1(Y

i
t )Q

i
·t)

=
d
∑

j2=1

U1(Y
i
t )

∫ t

0

Q2ij2
ut dBj2

u − cH

d
∑

j2=1

∫ t

0

∫ t

0

Dj2
u2
[U1(Y

i
t )Q

2ij2
u1t ]|u2 − u1|

2H−2du1du2.

In order to give our formula for the derivative of the log-likelihood, we still need to
compute the derivative with respect to θ ofH(j1,...,jn)(Yt(θ)). For this we state the following
lemma

Lemma 3.16. The derivative with respect to θ of Up(Yt(θ)) can be written as

∇lUp(Y
i
t (θ)) =

d
∑

j=1

[∇lY
i
t (θ)

∫ t

0

Qpij
st (θ) dB

j
s + Y i

t (θ)

∫ t

0

∇l[Q
pij
st (θ)] dB

j
s ]

−cH

d
∑

j=1

∫ t

0

∫ t

0

∇l[D
j
sY

i
t (θ)Q

pij
rt (θ)]|r − s|2H−2drds,

where ∇lY
i
t (θ) is computed according to Proposition 3.6 and ∇l[D

j
sY

i
t ] is given by Lem-

ma 3.7. As far as ∇l[Q
pj
st (θ)] is concerned, it is obtained through the following equation:

∇l[Q
pj
st (θ)] = ∇lη

pj
s (θ) DsY

j
t (θ) + ηpjs (θ)∇l[DsY

j
t (θ)],

where the expression for ∇lη
pj
s (θ) is a consequence of Lemma 3.11.

We are now ready to state our probabilistic expression for the log-likelihood function (5).

Theorem 3.17. Assume Hypothesis 2.3 and 3.1 hold true. Let yti, i = 1, . . . , n be the
observation arriving at time ti. Let also Yti be the solution to the SDE (1) at time ti. Then,
the gradient of the log-likelihood function admits the following probabilistic representation:
∇lℓn(θ) =

∑n
i=1

Vi(θ)
Wi(θ)

, with

Wi(θ) = E

[

1(Yti
(θ)>yti )

H(1,...,m)

(

Yti(θ)
)

]

(25)
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and

Vi(θ) = E

[

∇lYti(θ) 1(Yti
(θ)>yti )

H(1,...,m,1,...,m)

(

Yti(θ)
)

+
(

Yti(θ)− yti

)

+
∇lH(1,...,m,1,...,m)

(

Yti(θ)
)

]

, (26)

where (i) H(j1,...,jn)(Yti(θ)) is given recursively by (22) and computed at Proposition 3.14
(ii) ∇lYti(θ) is given by Proposition 3.6 (iii) ∇lH(1,...,m,1,...,m) is obtained by applying Lem-
ma 3.16.

Proof. Recall that under Hypothesis 2.3 and 3.1, Yt(θ) admits a C∞ density f(t, ·; θ) for
any t > 0 and θ ∈ Θ. Moreover, we have defined ℓn(θ) as ℓn(θ) =

∑n
i=1 ln(f(ti, yti ; θ)).

Thus

∇lℓn(θ) =
n
∑

i=1

∇lf(ti, yti; θ)

f(ti, yti ; θ)
:=

n
∑

i=1

Vi(θ)

Wi(θ)
.

Now Wi(θ) can be expressed like (25) by a direct application of (20), first relation. As far
as Vi(θ) is concerned, write

f(ti, yti; θ) = E
[

(Yti(θ)− yti)+ H(1,...,m,1,...,m)(Yti(θ))
]

,

according to the second relation in (20). By using standard arguments, one is allowed to
differentiate this expression within the expectation, which directly yields (26).

�

4. Discretization of the log-likelihood

The expression of the log-likelihood that we derived in Proposition 3.17 is a fraction of
two expectations that do not have explicit formulas even in the one-dimensional case. In
addition, our goal is to find the root of this non-explicit expression, the ML estimator,
which is an even harder task. To solve this problem in practice we first use a stochastic
approximation algorithm in order to find the root of ∇lℓn(θ). In each iteration of the
algorithm we compute the value of the expression using Monte-Carlo (MC) simulations.
For each Monte-Carlo simulation, since we do not have available an exact way of simulating
the kernels of the expectation, we use an Euler approximation scheme. More specifically,
we simulate using Euler approximation terms such as Yt, DYt, which are solutions to
fractional stochastic differential equations.

Therefore, in our approach we have three types of error in the computation of the
MLE: the error of the stochastic approximation algorithm, the Monte-Carlo error and the
discretization bias introduced by the Euler approximation for the stochastic differential
equations. Our aim here is to combine the Monte Carlo and Euler approximations in an
optimal way in order to get a global error bound for the computation of ∇lℓn(θ).

4.1. Pathwise convergence of the Euler scheme. The Euler scheme is the main
source of error in our computations. There is always a trade-off between the number of
Euler steps and the number of simulations, but what is usually computationally costly is
the number of Euler steps. This is even worse when we deal with fractional SDEs, since
the rate of convergence depends on H and the closer the value of H to 1/2, the more
steps are required for the simulation.
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In this section, we compute the magnitude of the discretization error we introduce. We
measure the bias of the Euler scheme via the root mean square error. That is, we want to
estimate the quantity supτ∈[0,T ](E|Yτ(θ)− Ȳ M

τ (θ)|2)1/2, where Yt(θ) is the solution to the

SDE (1) and Ȳ M
τ (θ) is the Euler approximation of Yτ(θ) given on the grid {τk; k ≤ M}

by

Ȳ M
τk+1

(θ) = Ȳ M
τk

(θ) + µ(Ȳ M
τk

(θ); θ)(τk+1 − τk) +

d
∑

j=1

σj(Ȳ M
τk

(θ); θ)δBM,j
τkτk+1

, (27)

in which we denote δBM,j
τkτk+1

= BM,j
τk+1

− BM,j
τk

and τk = kT
M

for k = 0, . . . ,M − 1. Notice

that those estimates can be found in [8, 11, 30]. We include their proof here because it
is simple enough, and also because they can be easily generalized to the case of a linear
equation. This latter case is of special interest for us, since it corresponds to Malliavin
derivatives, and is not included in the aforementioned references.

Notation 4.1. For simplicity, in this section we write Y := Y (θ).

Proposition 4.2. Let T > 0 and recall that ¯Y M is defined by equation (27). Then, there
exists a random variable C with finite Lp moments such that for all γ < H and H > 1/2
we have

‖Yt − Ȳ ‖γ,T ≤ CT M1−2γ (28)

Consequently, we obtain that the MSE is of order O(M1−2γ).

Proof. In order to prove (28) we apply techniques of the classical numerical analysis for
the flow of an ordinary differential equation driven by a smooth path. Namely, the exact
flow of (1) is given by Φ(y; s, t) := Yt, where Yt is the unique solution of (1) when t ∈ [s, T ]
and the initial condition is Ys = y. Introduce also the numerical flow

Ψ(y; τk, τk+1) := y + µ(y)(τk+1 − τk) +

d
∑

j=1

σj(y)δBM,j
τkτk+1

, (29)

where τk = kT
M
, k = 0, . . . ,M − 1. Thus, we can write that

Ȳ M
τk+1

= Ψ
(

Ȳ M
τk

; τk, τk+1

)

, k = 0, . . . ,M − 1

Y M
0 = α.

For q > k we also have that

Ψ(y; τk, τq) := Ψ(·; τq−1, τq) ◦Ψ(·; τq−2, τq−1) ◦ . . . ◦Ψ(y; τk, τk+1).

The one-step error computes as

rk = Φ(y; τk, τk+1)−Ψ(y; τk, τk+1)

=

∫ τk+1

τk

[

µ(Ys)− µ(y)
]

ds+

∫ τk+1

τk

[

σ(Ys)− σ(y)
]

dBs (30)
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Furthermore, since Y ∈ Cγ and B ∈ Cγ for γ > 1/2, using (7) we have

∣

∣

∣

∫ τk+1

τk

[

σ(Ys)− σ(y)
]

dBs

∣

∣

∣
≤ cγ ‖∂σ‖∞‖Y ‖γ ‖B‖γ

∣

∣

∣

∣

T

M

∣

∣

∣

∣

2γ

≤ cγ,σ ‖∂σ‖∞ ‖B‖1/γγ ‖B‖γ

∣

∣

∣

∣

T

M

∣

∣

∣

∣

2γ

,

where we used the fact that ‖Y ‖γ ≤ cσ‖B‖1/γγ (see Proposition 2.5). Similarly, for the
drift part we have

∣

∣

∣

∫ τk+1

τk

[

µ(Ys)− µ(y)
]

ds
∣

∣

∣
≤ cγ ‖∂µ‖∞ ‖Y ‖γ

∣

∣

∣

∣

T

M

∣

∣

∣

∣

γ+1

≤ cγ,µ ‖∂µ‖∞ ‖B‖1/γγ

∣

∣

∣

∣

T

M

∣

∣

∣

∣

γ+1

.

Therefore, the one-step error (30) satisfies

|rk| ≤ cµ,σ ‖B‖1+1/γ
γ

∣

∣

∣

∣

T

M

∣

∣

∣

∣

2γ

. (31)

Now, we can write the classical decomposition of the error in terms of the exact and
numerical flow. Since Ȳ M

τk
= Φ(Ȳ M

τk
; τk, τk) and Yτk = Φ(Ȳ M

τ0
; τ0, τk) we have

Ȳ M
τq − Yτq = Φ(Ȳτ0 ; τ0, τk)− Φ(Ȳτq ; τq, τq) =

q−1
∑

k=0

(

Φ(Ȳ M
τk

; τk, τq)− Φ(Ȳτk+1
; τk+1, τq)

)

. (32)

Since Φ
(

Ȳ M
τk

; τk, τq

)

= Φ
(

Φ(Ȳ M
τk

; τk, τk+1); τk+1, τq

)

we obtain

∣

∣

∣
Φ(Ȳ M

τk
; τk, τq)− Φ(Ȳ M

τk+1
; τk+1, τq)

∣

∣

∣
=

∣

∣

∣
Φ
(

Φ(Ȳ M
τk

; τk, τq); τk+1, τq

)

− Φ(Ȳ M
τk+1

; τk+1, τq)
∣

∣

∣

≤ CT (‖B‖γ) |Φ(Ȳ
M
τk

; τk, τk+1)− Ȳ M
τk+1

|,

where we have used the fact that

|Φ(α; t, s)− Φ(β; t, s) ≤ CT (‖B‖γ)|α− β|,

where CT is a subexponential function (see Proposition 2.5 again). Moreover, owing to
relation (31),

|Φ(Ȳ M
τk

; τk, τq)− Ȳ M
τk+1

| = |rk| ≤ cµ,σ ‖B‖1+1/γ
γ

∣

∣

∣

∣

T

M

∣

∣

∣

∣

2γ

. (33)

Therefore, replacing (33) in (32) for any q ≤ n we obtain

|Ȳ M
τq − Yτq | ≤ cµ,σ ‖B‖1+1/γ

γ

q−1
∑

k=0

∣

∣

∣

∣

T

M

∣

∣

∣

∣

2γ
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Let us push forward this analysis to Hölder type norms on the grid 0 ≤ τ1 < . . . < τn = T .
We have for q ≥ p

δ
(

Y − Ȳ M
)

τpτq

=
(

Φ(Yτp ; τp, τq)− Yτp

)

−
(

Ψ(Ȳ M
τp ; τp, τq)− Ȳ n

τp

)

=
(

Φ(Yτp ; τp, τq)− Yτp

)

−
(

Φ(Ȳ M
τp ; τp, τq)− Ȳ M

τp

)

−
(

Ψ(Ȳ M
τp ; τp, τq)− Φ(Ȳ M

τp ; τp, τq)
)

=

(

(

Φ(Yτp; τp, τq)− Φ(Ȳ M
τp ; τp, τq)

)

−
(

Yτp − Ȳ M
τp

)

)

−
(

Ψ(Ȳ M
τp ; τp, τq)− Φ(Ȳ M

τp ; τp, τq)
)

.

Similar to the calculations leading to (33) we obtain

∣

∣

∣
Ψ(Ȳ M

τp ; τp, τq)− Φ(Ȳ M
τp ; τp, τq)

∣

∣

∣
≤ cµ,σ ‖B‖1+1/γ

γ

q−1
∑

k=p

∣

∣

∣

∣

T

M

∣

∣

∣

∣

2γ

.

Moreover, owing to Proposition 2.5 part (2), observe that
∣

∣

∣

(

Φ(Yτp; τp, τq)− Φ(Ȳ M
τp ; τp, τq)

)

−
(

Yτp − Ȳ M
τp

)

∣

∣

|τq − τp|γ
≤ c(‖B‖γ) |Yτp − Ȳ M

τp |.

Consequently, we have that for 0 ≤ p < q ≤ M

∣

∣

∣
δ
(

Y − Ȳ M
)

τpτq

∣

∣

∣
≤ c′(‖B‖1+1/γ

γ )
{

q−1
∑

k=p

∣

∣

∣

∣

T

M

∣

∣

∣

∣

2γ

+ |τq − τp|
γ

q
∑

k=0

∣

∣

∣

∣

T

M

∣

∣

∣

∣

2γ
}

which easily yields that

sup
p,q=0,1,...,M−1,p 6=q

∣

∣

∣
δ
(

Y − Ȳ M
)

τpτq

∣

∣

∣

|τp − τq|γ
≤ c(‖B‖γ) M

1−2 γ .

By “lifting” this error estimate to [0, T ] and since |t− s| ≤ T/M ,

‖Yt − Ȳ ‖γ,∞,T ≤ C M1−2 γ , (34)

which concludes the first part of the proof.
Regarding the order of the Mean Square Error, it suffices to note that the constant C

has finite Lp moments. �

As mentioned before, an elaboration of Proposition 4.2 is needed in the sequel. Indeed,
in the expression of the log-likelihood in Proposition 3.17 we need to discretize more
complicated quantities of the underlying process, such as (14) or (16). To this aim, let us
notice first that all those equations can be written under the following generic form:

Zt = α+

∫ t

0

ξ2uZudu+

∫ t

0

ξ1,ju ZtdB
j
u, (35)
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where ξ1, ξ2 are stochastic processes with bounded moments of any order. The corre-
sponding Euler discretization is

Z̄M
τk

= Z̄M
τk

+ ξ2τkZ̄
M
τk
(τk+1 − τk) +

d
∑

j=1

ξ1,jτk
Z̄τk δBj,M

τkτk+1
, (36)

and we give first an approximation result in this general context:

Proposition 4.3. Let T > 0, and consider the R
q-valued solution Z to equation (35),

where α ∈ R
q, ξ2, ξ1,j ∈ R

q,q and we suppose that ‖ξ2‖γ and ‖ξ1,j‖γ belong to Lp(Ω) for
any value of p ≥ 1. Let Z̄M be defined by equation (36). Then, there exists a random
variable C

′

with Lp finite moments, such that for all γ < H and H > 1/2 we have

‖Z − Z̄‖γ,T ≤ C
′

T M1−2γ (37)

Consequently, we obtain that the Mean Square Error is of order O(M1−2γ).

Proof. We follow a similar approach as in the previous proposition. Thus, the exact flow
is equal to Φ(ζ ; s, t) := Zt, where Zt is the unique solution of equation (35) when t ∈ [s, T ]
and the initial condition is Zs = ζ . Consider also the numerical flow

Ψ(ζ ; τk, τk+1) := ζ + ξ2uζ(τk+1 − τk) +

d
∑

j=1

ξ1,ju ζδBj,M
τkτk+1

,

where τk = kT/M , n = 0, . . . ,M − 1. Thus, we have

Z̄M
τk+1

= Ψ(Z̄M
τk
; τk+1, τk), k = 0, . . . ,M − 1

Z̄M
0 = α.

In this case, the one-step error can be written as

rk = Φ(ζ ; τk, τk+1)−Ψ(ζ ; τk, τk+1)

=

∫ τk+1

τk

ξ2u(Zs − ζ)du+

∫ τk+1

τk

ξ1u(Zs − ζ)dBu

We now treat each term separately. Therefore, using the fact that ‖Z‖γ ≤ exp(c‖B‖1/γγ ),
which is recalled at Proposition 2.5 point (4) in a slightly different context, we have that

∣

∣

∣

∫ τk+1

τk

ξ1s (Zs − ζ)dBs

∣

∣

∣
≤ cγ ‖Zξ1‖γ ‖B‖γ

∣

∣

∣

∣

T

M

∣

∣

∣

∣

2γ

≤ cγ ‖ exp(‖B‖1/γγ ) ‖B‖γ

∣

∣

∣

∣

T

M

∣

∣

∣

∣

2γ

.

Similarly, we also have

∣

∣

∣

∫ τk+1

τk

ξ2s (Zs − ζ)ds
∣

∣

∣
≤ cγ ‖Zξ2‖γ ‖B‖γ

∣

∣

∣

∣

T

M

∣

∣

∣

∣

2γ

≤ cγ ‖ exp(‖B‖1/γγ ) ‖B‖γ

∣

∣

∣

∣

T

M

∣

∣

∣

∣

2γ

.
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Therefore, the one-step error satisfies the following inequality

|rk| ≤ cγ exp(‖B‖1/γγ ) ‖B‖γ

∣

∣

∣

∣

T

M

∣

∣

∣

∣

2γ

.

Along the same lines as for Proposition 4.2, the decomposition of the error in terms of
the exact and numerical flow becomes

Z̄M
τq − Zτq = Φ(Z̄M

τq ; τq, τq)− Φ(Z̄M
τ0 ; τ0, τk) =

q−1
∑

k=0

(

Φ(Z̄M
τk+1

; τk+1, τq)− Φ(Z̄M
τk
; τk, τq)

)

,

and the same inequalities allowing to go from (32) to (33) yield

|Z̄τq − Zτq | ≤ cγ

∣

∣

∣

∣

T

M

∣

∣

∣

∣

2γ

.

The claim of the proposition follows now as in Proposition 4.2.
�

We now use the previous proposition in order to approximate the kernels of the expec-
tations in ∇lℓn(θ). Let us first introduce the following notation:

Notation 4.4. Let Wi(θ), Vi(θ) as in (25) and (26) respectively and define wi(θ) and
vi(θ) as

wi(θ) = 1(Yti
(θ)>yti )

H(1,...,m)

(

Yti(θ)
)

(38)

vi(θ) = ∇lYti(θ) 1(Yti
(θ)>yti )

H(1,.,m,1,.,m) +
(

Yti(θ)− yti

)

+
∇lH(1,.,m,1,.,m). (39)

Let also w̄M
i and v̄Mi to be the Euler discretized versions of (38) and (39) using 4.3, and

set W̄M
i (θ) = E[w̄M

i ] and V̄ M
i (θ) = E[v̄Mi ].

Our convergence result for ∇lℓn(θ) can be read as follows:

Theorem 4.5. Recall from Theorem 3.17 that ∇lℓn(θ) can be decomposed as ∇lℓn(θ) =
∑n

i=1
Vi(θ)
Wi(θ)

. Then the following approximation result holds true:

∣

∣Vi(θ)− V̄ M
i (θ)

∣

∣ +
∣

∣Wi(θ)− W̄M
i (θ)

∣

∣ ≤
c

M2γ−1
,

for a strictly positive constant c.

Proof. We focus on the bound for |Vi(θ) − V̄ M
i (θ)|, the other one being very similar.

Now, applying Proposition 4.3 to the particular case of the equations governing Malliavin
derivatives, we easily get

‖vt − v̄‖γ,T ≤ C2M
1−2γ ,

for an integrable random variable C2. The proof is now easily finished by invoking the
inequality

∣

∣Vi(θ)− V̄ M
i (θ)

∣

∣ ≤ E [‖vt − v̄‖γ,T ] .

�
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Remark 4.6. We have given two separate approximations for Vi(θ) and Wi(θ). In order
to fully estimate (Vi(θ)/Wi(θ)) − (V̄ M

i (θ)/W̄M
i (θ)), one should also prove that Wi(θ) is

bounded away from 0. This requires a lower bound for densities of differential equations
driven by fractional Broawnian motion, which are out of the scope of the current article.

4.2. Efficiency of the Monte Carlo simulation. In this section we aim to study the
computational tradeoff between the length of a time period in the Euler discretization
(i.e. 1/M) and the number of Monte Carlo simulations of the sample path (i.e. N). In
order to do so we consider w̄M

i and v̄Mi as above.
Recall that, given t units of computer time, the Monte-Carlo estimators for Wi(θ) and

Vi(θ) can be written as

1

c1(t,
1
M
)

c1(t,
1

M
)

∑

k=1

wM
i,k,

1

c2(t,
1
M
)

c2(t,
1

M
)

∑

k=1

vMi,k

where {wM
i,ℓ ; ℓ ≥ 1} (resp. {vMi,ℓ ; ℓ ≥ 1}) is a sequence of i.i.d. copies of wM

i (resp. of vMi ),

and c1(t,
1
M
), c2(t,

1
M
) are the maximal number of runs one is allowed to consider with t

units of computer time. Using the result by [10] we can state the following proposition:

Proposition 4.7. Let N be the number of Monte Carlo simulations and M the number
of steps of the Euler scheme, then the tradeoff between N and M for computing Wi(θ)
(and similarly Vi(θ)) is

N ≍ M
γ̃

2γ−1
−3,

for all 1/2 < γ < H and γ̃ = Tm(d + 1), where T is the time horizon, m the dimension
of the observed process and d the dimension of the noise process.

Proof. We discuss the proof only forWi, by following exactly the same steps we can obtain
the same result for Vi.

We only need to check that our process w satisfies the conditions of Theorem 1 in [10].

(i) We can easily see that the discretized w̄M
ti

converges uniformly to wti .

(ii) In addition, we have bounded moments of wti , thus E[W̄
2
ti
] → E[w2

ti
].

(iii) From Proposition 4.5 we have that the rate of convergence of the Euler scheme of
w̄M

ti
is M1−2γ , for 1/2 < γ < H .

(iv) The computer time required to generate w̄M
ti

is given by τ(1/M), which satisfies:

τ(1/M) = Tm(d+ 1)M = γ̃M

where T is the length of the time period, m is the dimension of the SDE, d is the
dimension of the fBm and M is the number of Euler steps.

By applying Theorem 1 (by [10]) the optimal rule for choosing the number of Monte-
Carlo simulations and the number of Euler steps is chosen such that the asymptotic error
is minimized. Therefore, for t the total budget of computer time, as t increases, then the
Euler step should converge to zero with order 1−2γ

γ̃+2−4γ
or equivalently:

1

M
≍ t

1−2γ
γ̃+2−4γ thus t ≍ M− γ̃+2−4γ

1−2γ .

But the number of operations needed for an arbitrary Monte Carlo simulation t0 is equal

to γ̃MN . Thus, we finally obtain that N ≍ M− γ̃+2−4γ
1−2γ

−1. �
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4.3. Discretization of the score function. Consider the following discretized version
of the score function, i.e. ∇lℓn(θ):

∇̂lℓn(θ) =
V̂i

Ŵi

:=
1
N

∑N
k=1 v̄

M
i,k

1
N

∑N
k=1 w̄

M
i,k

, (40)

where w̄M
1,k, w̄

M
2,k, . . . and v̄M1,k, v̄

M
2,k, . . . are iid copies of w̄M

i and v̄Mi respectively. Our aim in
this section is to give a global bound for the mean square error obtained by approximating
∇lℓn(θ) by ∇̂lℓn(θ).

Proposition 4.8. The discretized score function ∇̂lℓn(θ) converges to the continuous
score function ∇lℓn(θ) with rate of convergence of order M−(2γ−1), where 1/2 < γ < H
and M is the number of Euler steps used in the discretization.

Proof. We discuss the idea of the proof for the Wi term first:

E
(

Ŵi −Wi

)2

= E

(

1

N

N
∑

k=1

w̄M
i,k −E[wi(θ)]

)2

= E

(

1

N

N
∑

k=1

w̄M
i,k −

1

N

N
∑

k=1

wi,k +
1

N

N
∑

k=1

wi,k −E[wi(θ)]

)2

.

Thanks now to the independence property between Monte Carlo runs, we get

E
(

Ŵi −Wi

)2

≤
2

N

N
∑

k=1

E(w̄M
i,k − wi,k)

2 + 2E

(

1

N

N
∑

k=1

wi,k −E[wi(θ)]

)2

=
1

N

N
∑

k=1

(Euler MSE)2 + (Monte Carlo MSE)2 ≍ (M1−2γ)2 +
1

N
,

and thus

MSE
(

Ŵi −Wi

)

≍

√

(M1−2γ)2 +
1

N
.

Now, if we use Proposition 4.7, i.e. N ≍ M− γ̃+2−4γ
1−2γ

−1, for all 1/2 < γ < H , and
γ̃ = Tm(d + 1), where T is the time horizon, m the dimension of the observed process
and d the dimension of the noise process, we have

MSE
(

Ŵi −Wi

)

≍

√

M2−4γ +M
γ̃

1−2γ
+3 ≍ M1−2γ ,

since the first is the dominant term above.
Following the same procedure, we can show that MSE(V̂i − Vi) ≍ M1−2γ and thus the

claim of the proposition follows easily.
�

Remark 4.9. In Proposition 4.8 the rate of convergence is independent of the dimension
of the problem, i.e. it is independent of the parameter γ̃ = Tm(d+ 1).
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5. Numerical Examples

In this section our aim is to investigate the performance of the suggested maximum like-
lihood method in practice. We study the one-dimensional fractional Ornstein-Uhlenbeck
process, a linear two-dimensional system of fractional SDEs and then some real data given
by a financial time series. Before presenting our results, we first discuss some technical
issues raised by the algorithmic implementation of our method.

The goal is to find the root of the quantity ∇lℓn(θ) with respect to θ. We can divide this
procedure in two parts. The first part consists in computing the root of the log-likelihood
using a stochastic approximation algorithm. This is a stochastic optimization technique
firstly introduced by Robbins and Monro (1951) that is used when only noisy observations
of the function are available. In our case it is appropriate, since we want to solve

∇lℓn(θ) = 0,

where ∇lℓn(θ) is given by Theorem 3.17 and has to be approximated by ∇̂lℓn(θ). Thus,
the recursive procedure is of the following form

θ̂k+1 = θ̂k − ak∇̂lℓn(θ̂k). (41)

where ∇̂lℓn is the estimate of ∇lℓn at the k-th iteration based on the observations and
ak is a sequence of real numbers such that

∑∞
k=1 ak = ∞ and

∑∞
k=1 a

2
k < ∞. Under

appropriate conditions (see for example [4]), the iteration in (41) converges to θ almost
surely. The step sizes satisfy ak > 0 and the way that we choose them can be found
in [26].

The second part consists of the computation of ∇̂lℓn(θ̂k) at each step of the stochas-
tic approximation algorithm. Thus, for a given value of θk (the one computed at the

k-th iteration) we want to compute ∇̂lℓn(θk) when we are given n discrete observations
of the process: yti , i = 1, . . . , n. Here, we describe the main idea of the algorithm we
use for only one step. Thus, assume that we are at [ti−1, ti], and at time ti we obtain
the i-th observation. We want to compute Wi(θ) and Vi(θ) according to expressions (25)
and (26) respectively. To compute the expectations we use simple Monte-Carlo simula-
tions.Therefore, we discretize the time interval into N steps

ti−1 = s0 < s1 < · · · < sN = ti.

From each simulated path (apart from that of fBm) we only need to keep the terminal
value which is the value of the process at time ti. The algorithm is the following

(1) Simulate N values of fBm in the interval [ti−1, ti] using for example the circulant
matrix method (any exact -preferably- simulation technique can be used).

(2) Using the simulated values from step 1 and an Euler scheme for the SDE (1),
simulate the value of the process at time ti. For example, for k = 0, . . . , N

Ȳ M
sk

= Ȳ M
sk−1

+ µ(Ȳ M
sk

)(sk − sk−1) +
d
∑

j=1

σ(j)(Ȳ M
sk−1

)(B(j)
sk

− B(j)
sk−1

).

(3) Using step 2 and the observation at time ti, compute the indicator function
1(Yti

(θ)>yti )
.
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(4) Using step 1 and an Euler scheme simulate DtiY
i
τ , as given in Lemma 3.3 for n = 1

-first Malliavin derivative-.
(5) Using step 1 and an Euler scheme simulate ηkjti , k, j = 1, . . . , m, as given in Propo-

sition 3.7.
(6) Steps 4 and 5 are used to compute Qpj

sti , p ∈ {1, . . . , m}, j ∈ {1, . . . , d} as defined
in Propositions 3.12 and 3.14.

(7) Simulate the Malliavin derivative of the product Ds[YtQ
pj
rt ].

(8) Using the previous steps, numerical integration for the double integral and nu-
merical integration for the stochastic integral we compute Up(Yti(θ)) as defined in
Proposition 3.12.

(9) Recursively compute H(1,...,m)(Yti(θ)) as given in (19).
(10) Combine steps 3 and 9 to obtain the kernel Wi(θ).
(11) We repeat steps 1 through 10 N times and we average these values to obtain an

estimate for the expectation Wi(θ).

Using a similar procedure we can obtain an estimate for the expectation Vi(θ). Finally,
for each i = 1, . . . , n we compute Vi(θ)/Wi(θ) and sum over i to obtain the desired value
of the log-likelihood at θk.

We have completed the study of our numerical approximation of the log-likelihood, and
are now ready for the analysis of some numerical examples.

5.1. Fractional Ornstein-Uhlenbeck process. Though our method can be applied to
highly nonlinear contexts, we focus here on some linear situations, which allow easier
comparisons with existing methods or exact computations. Let us first study the one-
dimensional fractional Ornstein-Uhlenbeck process, i.e.

dYt = −λYtdt + dBt, (42)

where the solution is given Yt(λ) =
∫ t

0
e−λ(t−s)dBs (notice the existence of an explicit

solution here). In this case our methodology is quite simplified. The log-likelihood can
be written as follows:

∂λℓ(λ; y) =
n
∑

i=1

E

[

∂λYt(λ) 1(Yt(λ)>y) H(1,1)(λ) +
(

Yt(λ)− y
)

+
∂λH(1,1)(λ)

]

E

[

1(Yt(λ)>y) H(1)

(

Yt(λ), 1
)

] .

The Malliavin derivative of Yt(λ) satisfies the following ODE

DsYt(λ) = 1− λ

∫ t

s

DsYu(λ)du,

with solution DsYt(λ) = e−λ t 1{s≤t}. The corresponding norm is

‖D·Yt(λ)‖
2 = cH

∫ t

s

∫ t

s

e−λ(u+v)|u− v|2H−2dudv.

The higher order derivatives of Yt(λ) are equal to zero. Therefore,

H(1)

(

Yt(λ)
)

=
1

‖D·Yt(λ)‖
2

∫ t

s

e−λudBu
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and thus

H(1,1)(λ) =
1

‖D·Yt(λ)‖
4

∫ t

s

∫ t

s

e−λ(u+v)dBudBv − cH ‖D·Yt(λ)‖
−2 .

The derivative with respect to the unknown parameter λ satisfies

∂λYt(λ) = −

∫ t

0

Ys(λ)− λ∂λYs(λ)ds

with solution ∂λYt(λ) =
∫ t

0
(t− s)e−λ(t−s)dBs. The last term we need to compute is:

∂λH(1,1)(λ) =
1

‖D·Yt(λ)‖8

[

‖D·Yt(λ)‖
4

∫ t

s

∫ t

r

−(u+ v)e−λ(u+v)dBudBv

−2cH‖D·Yt(λ)‖
2

∫ t

s

∫ t

r

−(u+ v)e−λ(u+v)|u− v|2H−2dudv

]

−
c2H
∫ t

s

∫ t

r
−(u+ v)e−λ(u+v)|u− v|2H−2dudv

‖D·Yt(λ)‖4
.

Now, we compute the MLE following the algorithm we described above. The results
we obtained are summarized in the following table:

True λ MLE λ̂ Standard Error

0.5 0.497 0.00369
4 3.861 0.00127

Remark 5.1. The value of H used for the simulation of the process is 0.6. The number of
observations is n = 50, the number of Euler steps is M = 500, the number of stochastic
approximation steps is K = 50 and the number of MC simulations N = 500.

5.2. Two-dimensional fractional SDE. In this section we study the following system
of fractional OU processes:

dY
(1)
t = −αY

(2)
t dt + βdB

(1)
t

dY
(2)
t = −βY

(1)
t dt + βdB

(2)
t . (43)

In this case, the computations are more involved even though the SDEs are linear functions
of Y . Furthermore, the parameter we want to estimate is two-dimensional as well (θ =
(α, β)T ), which complicated the optimization procedure. Therefore, instead of computing
only one derivative, we need to compute both derivatives with respect to α and β and
then compute the solution of the system of two equations

∇αℓ(α, β; y) = 0, ∇βℓ(α, β; y) = 0,

where

∇lℓ(α, β; y) =
n
∑

i=1

[E[1(Yt(α,β)>y) H(1,2)(Yt(α, β))]
−1

× {E[∇lYt(α, β) 1(Yt(α,β)>y) H(1,2,1,2)(α, β) + (Yt(α, β)− y)+∇lH(1,2,1,2)(α, β)]}
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and l = α or β. The Malliavin derivative of Yt computes as follows:

DsY
(1)
t = β − α

∫ t

s

DsY
(2)
u du DsY

(2)
t = β − β

∫ t

s

DsY
(1)
u du.

The covariance matrix γt is given by (〈D·Y
i
t , D·Y

j
t 〉)1≤i,j≤2. The inverse of the covariance

matrix satisfies the following SDE

γ−1
t = −

∫ t

0

[γ−1
u M +MTγ−1

u ]du,

where

M =

[

0 α
β 0

]

Now, it remains to compute the quantities H(1,2) and H(1,2,1,2). This can be done using
the recursive formulas in Proposition 3.12, but we need to keep in mind that higher order
derivatives of Y are equal to zero, thus they will be simplified. Indeed,

H(1)(Yt) =

2
∑

j=1

Yt

∫ t

0

(γ−1
s )1jDsY

j
t dB

j
s − cH

∫ t

0

∫ t

0

DsY
j
t Qrt|r − s|2H−2drds.

Moreover, we can easily see that

H(1,2)(Yt) = H(1)(Yt)

∫ t

0

QstdBs − cH

∫ t

0

∫ t

0

DsH(1)(Yt)Qrt|r − s|2H−2drds

H(1,2,1,2)(Yt) = H(1,2,1)(Yt)

∫ t

0

QstdBs − cH

∫ t

0

∫ t

0

DsH(1,2,1)(Yt)Qrt|r − s|2H−2drds

Of course, recall that Qpj
st = (γ−1

s )pjDsY
j
t . In practice, these quantities are computed re-

cursively. The last step is to compute the derivative of H(1,2,1,2)(Yt) with respect to α and
β, which in this case is not as complicated and compute the MLEs using the algorithm
discussed in the previous section. The table below summarizes our results, and we have
plotted the corresponding histograms in Figure 1.

Parameter True Value MLE Standard Error

α 2 2.003 0.0518
β 4 3.987 0.0157

Remark 5.2. The value of H used for the simulation of the process is 0.6. The number of
observations is n = 50, the number of Euler steps is N = 500, the number of stochastic
approximation steps is K = 50 and the number of MC simulations M = 500.

5.3. Application to financial data. One of the most popular applications of fractional
SDEs is in finance. Hu and Oksendal, [20], introduced the fractional Black-Scholes model
in order to account for inconsistencies of the existing models in practice. More specifically,
the stock price is described therein by a fractional geometric Brownian motion with Hurst
parameter 1/2 < H < 1. The choice of this model is based on empirical studies that
displayed the presence of long-range dependence on stock prices, for example in Willinger,
Taqqu and Teverovsky, [42].
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Figure 1. Empirical Distribution of the estimators for α and β.

However, the presence of fractional Brownian motion in the model allows for arbitrage
in the general setting. It has been shown that arbitrage opportunities can be avoided in a
number of ways, for example the reader can refer to Rogers [39], Dasgupta and Kallianpur
[7] and Cheridito [5]. We choose to model the stock price as as follows:

dSt = µStdt+ σdBt, (44)

where B is a fractional Brownian motion with Hurst index 1/2 < H < 1. For this SDE
(as well as for a more general class of fractional SDEs) Guasoni, [13], proved that there
is no arbitrage when transaction costs are present.

Our goal is to estimate the unknown parameters µ and σ based on daily observations of
the S&P 500 index (data from June 2010 until December 2010). Since the Hurst parameter
is piece-wise constant, we devide the data in three groups (of 50 daily observations each)
and we compute for each one the Hurst index using the Rescaled-Range (R/S) statistic.

We obtain that for the first group of data Ĥ1 = 0.59, for the second Ĥ2 = 0.63 and for
the third one Ĥ3 = 0.61. For the different groups, we apply our maximum likelihood
approach in order to estimate µ and σ. The estimates are summarized in the following
table:

Estim. Parameters Group 1: Ĥ1 = 0.59 Group 2: Ĥ2 = 0.63 Group 3: Ĥ3 = 0.61

µ̂ 0.015 (0.0123) 0.019 (0.0144) 0.011 (0.0214)
σ̂ 0.352 (0.058) 0.339 (0.046) 0.341 (0.024)

Remark 5.3. The volatility is computed in years. In addition, during this period of time
the historical volatility is around 0.38, which is coherent with our own estimation.
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