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Abstract

Motivated by a recent result which identifies in the special setting of the 2-adic group the Besov

space Ḃ1,∞

1
(Z2) with BV (Z2), the space of function of bounded variation, we study in this article

some functional relationships between Besov spaces.
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1 Introduction

The starting point of this article is given by the following inequality proved by A. Cohen, W. Dahmen, I.
Daubechies & R. De Vore in [4]. For a function f : Rn −→ R such that f ∈ BV ∩ Ḃ−1,∞

∞ we have

‖f‖2L2 ≤ C‖f‖BV ‖f‖Ḃ−1,∞
∞

(1)

Here BV denotes the space of functions of bounded variation and Ḃ−1,∞
∞ stands for an homogeneous Besov

space. In the article [3], we proved that in the special setting of the 2-adic group Z2, the space BV (Z2) can
be identified to the Besov space Ḃ1,∞

1 (Z2) and therefore, inequality (1) becomes

‖f‖2L2 ≤ C‖f‖
Ḃ1,∞

1

‖f‖
Ḃ−1,∞

∞

(2)

Note that the previous estimate is false in Z2, see [3] for a counterexample. The identification between these
two functional spaces and the consequences on the inequality (1) are very surprising in the sense that these
estimates depend on the underlying group structure: compare the topological properties of Rn to the totally
discontinuous setting of Z2.

However, one may think that the Besov norm ‖·‖
Ḃ1,∞

1

in the right hand side of (2) is too small to achieve

the inequality. Thus, it is a natural question to study the validity of (2) if we replace this norm by a bigger
one (just think on the inclusion of Besov spaces Ḃ1,q

1 ⊂ Ḃ1,∞
1 valid for q ≥ 1). The answer to this question

is given by the next result

Theorem 1 If f : Z2 −→ R is a function such that f ∈ Ḃ1,q
1 ∩ Ḃ−1,∞

∞ (Z2) with q > 2, then the following
inequality is false:

‖f‖2L2 ≤ C‖f‖Ḃ1,q
1

‖f‖Ḃ−1,∞
∞

(3)

This is the main theorem of this article and we will construct a counterexample in the section 4 below, but
before, it would be interesting to compare inequality (3) to the general estimates given by the interpolation
theory1.

1see the book [2] for more details.
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Indeed, following this general theory, we can obtain inequalities of the form

‖f‖2L2 ≤ C‖f‖Ḃs0,q0
p0

‖f‖Ḃs1,q1
p1

(4)

for some special values of the real parameters s0, s1, p0, p1, q0, q1.

Perhaps the most popular case is given by the real method: set p0 = p1 = p, fix 0 < θ < 1 and suppose
s0 6= s1 with the relationship s = (1− θ)s0 + θs1. We obtain the following expression

(

Ḃs0,q0
p , Ḃs1,q1

p

)

θ,q
= Ḃs,q

p

which gives us the estimate
‖f‖Ḃs,q

p
≤ C‖f‖1−θ

Ḃ
s0,q0
p

‖f‖θ
Ḃ

s1,q1
p

(5)

It is very important to remark that in this particular case no relationship between q0, q1 and q is asked.
Obviously, inequality (3) can not be obtained from (5), since p0 6= p1.

The case when p0 6= p1 is more restrictive and following the complex method we have for 1 ≤ p0, q0 ≤ +∞
and 1 ≤ p1, q1 < +∞ the formula

[

Ḃs0,q0
p0 , Ḃs1,q1

p1

]

θ
= Ḃs,q

p

which gives us an estimate of the type (4) with s = (1− θ)s0 + θs1,
1
p = 1−θ

p0
+ θ

p1
, and 1

q = 1−θ
q0

+ θ
q1
. Note

that we have in this case a relationship between q0, q1 and q. Again, this method can not be applied to
inequality (3).

It seems of course that inequality (3) cannot be obtained by an simple interplation argument -actually
this inequality is false in Rn-, but what it would make it plausible in the setting of Z2 is the special rela-
tionship between inequalities (1) and (2) and this is the main reason why theorem 1 is relevant.

The plan of the article is the following. In section 2 we recall some properties of the p-adic spaces, in
section 3 we give the definition of Besov spaces over the 2-adic group Z2 and in section 4 we prove theorem
1.

2 p-adic groups

Our main reference here are the books [10], [8] and [1] where more details concerning the topological struc-
ture of the p-adic groups can be found.

We write a|b when a divide b or, equivalently, when b is a multiple of a. Let p be any prime number, for
0 6= x ∈ Z, we define the p-adic valuation of x by γ(x) = max{r : pr|x} ≥ 0 and, for any rational number
x = a

b ∈ Q, we write γ(x) = γ(a)− γ(b). Furthermore if x = 0, we agree to write γ(0) = +∞.

Let x ∈ Q and p be any prime number, with the p-adic valuation of x we can construct a norm by writing

|x|p =







p−γ if x 6= 0

p−∞ = 0 if x = 0.

(6)

This expression satisfy the following properties

a) |x|p ≥ 0, and |x|p = 0 ⇐⇒ x = 0;

b) |xy|p = |x|p|y|p;

c) |x+ y|p ≤ max{|x|p, |y|p}, with equality when |x|p 6= |y|p.
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When a norm satisfy c) it is called a non-Archimedean norm and an interesting fact is that over Q all the
possible norms are equivalent to | · |p for some p: this is the so-called Ostrowski theorem, see [1] for a proof.

Definition 2.1 Let p be a any prime number. We define the field of p-adic numbers Qp as the completion
of Q when using the norm | · |p.

We present in the following lines the algebraic structure of the set Qp. Every p-adic number x 6= 0 can be
represented in a unique manner by the formula

x = pγ(x0 + x1p+ x2p
2 + ...), (7)

where γ = γ(x) is the p-adic valuation of x and xj are integers such that x0 > 0 and 0 ≤ xj ≤ p − 1 for
j = 1, 2, .... Remark that this canonical representation implies the identity |x|p = p−γ .

Let x, y ∈ Qp, using the formula (7) we define the sum of x and y by x+ y = pγ(x+y)(c0+ c1p+ c2p
2+ ...)

with 0 ≤ cj ≤ p− 1 and c0 > 0, where γ(x+ y) and cj are the unique solution of the equation

pγ(x)(x0 + x1p+ x2p
2 + ...) + pγ(y)(y0 + y1p+ y2p

2 + ...) = pγ(x+y)(c0 + c1p+ c2p
2 + ...).

Furthermore, for a, x ∈ Qp, the equation a + x = 0 has a unique solution in Qp given by x = −a. In the
same way, the equation ax = 1 has a unique solution in Qp: x = 1/a.

We take now a closer look at the topological structure of Qp. With the norm | · |p we construct a distance
over Qp by writing

d(x, y) = |x− y|p (8)

and we define the balls Bγ(x) = {y ∈ Qp : d(x, y) ≤ pγ} with γ ∈ Z. Remark that, from the properties
of the p-adic valuation, this distance has the ultra-metric property (i.e. d(x, y) ≤ max{d(x, z), d(z, y)} ≤
|x|p + |y|p).

We gather with the next proposition some important facts concerning the balls in Qp.

Proposition 2.1 Let γ be an integer, then we have

1) the ball Bγ(x) is a open and a closed set for the distance (8).

2) every point of Bγ(x) is its center.

3) Qp endowed with this distance is a complete Hausdorff metric space.

4) Qp is a locally compact set.

5) the p-adic group Qp is a totally discontinuous space.

3 Functional spaces

In this article, we will work with the subset Z2 of Q2 which is defined by Z2 = {x ∈ Q2 : |x|2 ≤ 1}, and we
will focus on real-valued functions over Z2. Since Z2 is a locally compact commutative group, there exists
a Haar measure dx which is translation invariant i.e.: d(x + a) = dx, furthermore we have the identity
d(xa) = |a|2dx for a ∈ Z∗

2. We will normalize the measure dx by setting

∫

{|x|2≤1}
dx = 1.

This measure is then unique and we will note |E| the measure for any subset E of Z2.
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Lebesgue spaces Lp(Z2) are thus defined in a natural way: ‖f‖Lp =

(∫

Z2

|f(x)|pdx

)1/p

for 1 ≤ p < +∞,

with the usual modifications when p = +∞.

Let us now introduce the Littlewood-Paley decomposition in Z2. We note Fj the Boole algebra formed
by the equivalence classes E ⊂ Z2 modulo the sub-group 2jZ2. Then, for any function f ∈ L1(Z2), we call
Sj(f) the conditionnal expectation of f with respect to Fj :

Sj(f)(x) =
1

|Bj(x)|

∫

Bj(x)
f(y)dy.

The dyadic blocks are thus defined by the formula ∆j(f) = Sj+1(f) − Sj(f) and the Littlewood-Paley
decomposition of a function f : Z2 −→ R is given by

f = S0(f) +

+∞
∑

j=0

∆j(f) where S0(f) =

∫

Z2

f(x)dx. (9)

We will need in the sequel some very special sets noted Qj,k. Here is the definition and some properties:

Proposition 3.1 Let j ∈ N and k = {0, 1, ..., 2j − 1}. Define the subset Qj,k of Z2 by

Qj,k =
{

k + 2jZ2

}

. (10)

Then

1) We have the identity Fj =
⋃

0≤k<2j
Qj,k,

2) For k = {0, 1, ..., 2j − 1} the sets Qj,k are mutually disjoint,

3) |Qj,k| = 2−j for all k,

4) the 2-adic valuation is constant over Qj,k.

The verifications are easy and left to the reader.

With the Littlewood-Paley decomposition given in (9), we obtain the following equivalence for the
Lebesgue spaces Lp(Z2) with 1 < p < +∞:

‖f‖Lp ≃ ‖S0(f)‖Lp +

∥

∥

∥

∥

∥

∥

(

∑

j∈N

|∆jf |
2

)1/2
∥

∥

∥

∥

∥

∥

Lp

.

See the book [9], chapter IV, for a general proof.

For Besov spaces we will define them by the norm

‖f‖Bs,q
p

≃ ‖S0f‖Lp +





∑

j∈N

2jsq‖∆jf‖
q
Lp





1/q

(11)

where s ∈ R, 1 ≤ p, q < +∞ with the necessary modifications when p, q = +∞.

Remark 1 For homogeneous functional spaces Ḃs,q
p , we drop out the term ‖S0f‖Lp in (11).
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4 Proof of the theorem 1

To begin the construction of the counterexample we consider 0 < j0 < j1 two integers and we fix α, β ∈ R

such that

22j0 ≤
β

α
. (12)

Take now a decreasing sequence (εj)j∈N ∈ ℓq(N) with q > 2 such that ε0 = 1 and (εj)j∈N /∈ ℓ2(N).
Define Nj in the following form

Nj =











2j if 0 < j < j0,

2−j β
α if j0 ≤ j ≤ j1.

(13)

We construct a function f : Z2 −→ R by considering his values over the dyadic blocs and we will use for
this the sets Qj,k defined in (10):

∆jf(x) =































































εjα2
j over Qj+1,0,

−εjα2
j over Qj+1,1,

εjα2
j over Qj+1,2,

−εjα2
j over Qj+1,3,

...

εjα2
j over Qj+1,2Nj−2,

−εjα2
j over Qj+1,2Nj−1,

0 elsewhere.

Remark that, with this definition of ∆jf(x) we have the identities

• ‖∆jf‖L∞ = εjα2
j ,

• ‖∆jf‖L1 = εjαNj ,

• ‖∆jf‖
2
L2 = ε2jα

22jNj .

From this quantities we construct the following norms

(a) for the Besov space Ḃ−1,∞
∞ we have

‖f‖
Ḃ−1,∞

∞

= sup
j∈N

2−j‖∆jf‖L∞ = α, since the sequence (εj)j∈N is decreasing and ε0 = 1.

(b) for the Besov space Ḃ1,q
1 we write

‖f‖q
Ḃ1,q

1

=

j1
∑

j=0

(

2j‖∆jf‖L1

)q
=

j1
∑

j=0

2jqεqjα
qN q

j = αq





j0
∑

j=0

2jqεqjN
q
j +

j1
∑

j>j0

2jqεqjN
q
j





We use now the values of Nj given in (13) and the relationship (12) to obtain

= αq





j0
∑

j=0

22jqεqj +

j1
∑

j>j0

εqj
βq

αq



 = βq





j0
∑

j=0

22jq
αq

βq
εqj +

j1
∑

j>j0

εqj



 ≃ βq





j0
∑

j=0

2q(2j−2j0)εqj +

j1
∑

j>j0

εqj



 .

Then we have ‖f‖Ḃ1,q
1

≃ β



C1 +

j1
∑

j>j0

εqj





1/q

.
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(c) For the Lebesgue space L2 we use the same arguments above to obtain

‖f‖2L2 =

j1
∑

j=0

ε2jα
22jNj = α2





j0
∑

j=0

22jε2j +

j1
∑

j>j0

ε2j
β

α



 ≃ αβ



C2 +

j1
∑

j>j0

ε2j



.

Once these norms are computed, we go back to the inequality

‖f‖2L2 ≤ C‖f‖Ḃ1,q
1

‖f‖Ḃ−1,∞
∞

and we have

αβ



C2 +

j1
∑

j>j0

ε2j



 ≤ C × α× β



C1 +

j1
∑

j>j0

εqj





1/q

.

But, by hypothesis, we have (εj)j∈N /∈ ℓ2(N) and (εj)j∈N ∈ ℓq(N), thus, for j1 big enough it is impossible to
find an universal constant C such that the above inequality is true.

�
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