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Motivated by a recent result which identifies in the special setting of the 2-adic group the Besov space Ḃ1,∞ 1 (Z 2 ) with BV (Z 2 ), the space of function of bounded variation, we study in this article some functional relationships between Besov spaces.

Introduction

The starting point of this article is given by the following inequality proved by A. Cohen, W. Dahmen, I. Daubechies & R. De Vore in [START_REF] Cohen | Harmonic Analysis of the space BV[END_REF]. For a function f :

R n -→ R such that f ∈ BV ∩ Ḃ-1,∞ ∞ we have f 2 L 2 ≤ C f BV f Ḃ-1,∞ ∞ (1) 
Here BV denotes the space of functions of bounded variation and Ḃ-1,∞ ∞ stands for an homogeneous Besov space. In the article [START_REF] Chamorro | A counterexample for Improved Sobolev Inequalities over the 2-adic group[END_REF], we proved that in the special setting of the 2-adic group Z 2 , the space BV (Z 2 ) can be identified to the Besov space Ḃ1,∞ 1 (Z 2 ) and therefore, inequality (1) becomes

f 2 L 2 ≤ C f Ḃ1,∞ 1 f Ḃ-1,∞ ∞ (2) 
Note that the previous estimate is false in Z 2 , see [START_REF] Chamorro | A counterexample for Improved Sobolev Inequalities over the 2-adic group[END_REF] for a counterexample. The identification between these two functional spaces and the consequences on the inequality (1) are very surprising in the sense that these estimates depend on the underlying group structure: compare the topological properties of R n to the totally discontinuous setting of Z 2 .

However, one may think that the Besov norm

• Ḃ1,∞ 1 
in the right hand side of ( 2) is too small to achieve the inequality. Thus, it is a natural question to study the validity of (2) if we replace this norm by a bigger one (just think on the inclusion of Besov spaces Ḃ1,q 1 ⊂ Ḃ1,∞ 1 valid for q ≥ 1). The answer to this question is given by the next result

Theorem 1 If f : Z 2 -→ R is a function such that f ∈ Ḃ1,q 1 ∩ Ḃ-1,∞ ∞ (Z 2
) with q > 2, then the following inequality is false:

f 2 L 2 ≤ C f Ḃ1,q 1 f Ḃ-1,∞ ∞ (3) 
This is the main theorem of this article and we will construct a counterexample in the section 4 below, but before, it would be interesting to compare inequality (3) to the general estimates given by the interpolation theory 1 .

Indeed, following this general theory, we can obtain inequalities of the form

f 2 L 2 ≤ C f Ḃs 0 ,q 0 p 0 f Ḃs 1 ,q 1 p 1 (4) 
for some special values of the real parameters s 0 , s 1 , p 0 , p 1 , q 0 , q 1 .

Perhaps the most popular case is given by the real method: set p 0 = p 1 = p, fix 0 < θ < 1 and suppose s 0 = s 1 with the relationship s = (1 -θ)s 0 + θs 1 . We obtain the following expression Ḃs 0 ,q 0 p , Ḃs 1 ,q 1 p θ,q = Ḃs,q p which gives us the estimate f Ḃs,q

p ≤ C f 1-θ Ḃs 0 ,q 0 p f θ Ḃs 1 ,q 1 p (5) 
It is very important to remark that in this particular case no relationship between q 0 , q 1 and q is asked. Obviously, inequality (3) can not be obtained from [START_REF] Gérard | Inégalités de Sobolev Précisées[END_REF], since p 0 = p 1 .

The case when p 0 = p 1 is more restrictive and following the complex method we have for 1 ≤ p 0 , q 0 ≤ +∞ and 1 ≤ p 1 , q 1 < +∞ the formula Ḃs 0 ,q 0 p 0 , Ḃs 1 ,q 1 p 1 θ = Ḃs,q p which gives us an estimate of the type (4) with s = (1 -θ)s 0 + θs 1 , 1 p = 1-θ p 0 + θ p 1 , and 1 q = 1-θ q 0 + θ q 1 . Note that we have in this case a relationship between q 0 , q 1 and q. Again, this method can not be applied to inequality [START_REF] Chamorro | A counterexample for Improved Sobolev Inequalities over the 2-adic group[END_REF].

It seems of course that inequality (3) cannot be obtained by an simple interplation argument -actually this inequality is false in R n -, but what it would make it plausible in the setting of Z 2 is the special relationship between inequalities (1) and ( 2) and this is the main reason why theorem 1 is relevant.

The plan of the article is the following. In section 2 we recall some properties of the p-adic spaces, in section 3 we give the definition of Besov spaces over the 2-adic group Z 2 and in section 4 we prove theorem 1.

p-adic groups

Our main reference here are the books [START_REF] Vladimirov | p-Adic Analysis and Mathematical Physics[END_REF], [START_REF] Koblitz | p-adic Numbers, p-adic Analysis and Zeta-functions[END_REF] and [START_REF] Amice | Les nombres p-adiques[END_REF] where more details concerning the topological structure of the p-adic groups can be found.

We write a|b when a divide b or, equivalently, when b is a multiple of a. Let p be any prime number, for 0 = x ∈ Z, we define the p-adic valuation of x by γ(x) = max{r : p r |x} ≥ 0 and, for any rational number x = a b ∈ Q, we write γ(x) = γ(a) -γ(b). Furthermore if x = 0, we agree to write γ(0) = +∞.

Let x ∈ Q and p be any prime number, with the p-adic valuation of x we can construct a norm by writing When a norm satisfy c) it is called a non-Archimedean norm and an interesting fact is that over Q all the possible norms are equivalent to | • | p for some p: this is the so-called Ostrowski theorem, see [START_REF] Amice | Les nombres p-adiques[END_REF] for a proof.

|x| p =    p -γ if x = 0 p -∞ = 0 if x = 0.
Definition 2.1 Let p be a any prime number. We define the field of p-adic numbers Q p as the completion of Q when using the norm | • | p .

We present in the following lines the algebraic structure of the set Q p . Every p-adic number x = 0 can be represented in a unique manner by the formula

x = p γ (x 0 + x 1 p + x 2 p 2 + ...), (7) 
where γ = γ(x) is the p-adic valuation of x and x j are integers such that x 0 > 0 and 0 ≤ x j ≤ p -1 for j = 1, 2, .... Remark that this canonical representation implies the identity |x| p = p -γ .

Let x, y ∈ Q p , using the formula [START_REF] Jang | Rim On p-adic bounded functions II[END_REF] we define the sum of x and y by x + y = p γ(x+y) (c 0 + c 1 p + c 2 p 2 + ...) with 0 ≤ c j ≤ p -1 and c 0 > 0, where γ(x + y) and c j are the unique solution of the equation

p γ(x) (x 0 + x 1 p + x 2 p 2 + ...) + p γ(y) (y 0 + y 1 p + y 2 p 2 + ...) = p γ(x+y) (c 0 + c 1 p + c 2 p 2 + ...).
Furthermore, for a, x ∈ Q p , the equation a + x = 0 has a unique solution in Q p given by x = -a. In the same way, the equation ax = 1 has a unique solution in Q p : x = 1/a.

We take now a closer look at the topological structure of

Q p . With the norm | • | p we construct a distance over Q p by writing d(x, y) = |x -y| p (8) 
and we define the balls B γ (x) = {y ∈ Q p : d(x, y) ≤ p γ } with γ ∈ Z. Remark that, from the properties of the p-adic valuation, this distance has the ultra-metric property (i.e. d(x, y) ≤ max{d(x, z), d(z, y)} ≤ |x| p + |y| p ).

We gather with the next proposition some important facts concerning the balls in Q p .

Proposition 2.1 Let γ be an integer, then we have 1) the ball B γ (x) is a open and a closed set for the distance (8).

2) every point of B γ (x) is its center.

3) Q p endowed with this distance is a complete Hausdorff metric space.

4) Q p is a locally compact set.

5) the p-adic group Q p is a totally discontinuous space.

Functional spaces

In this article, we will work with the subset Z 2 of Q 2 which is defined by Z 2 = {x ∈ Q 2 : |x| 2 ≤ 1}, and we will focus on real-valued functions over Z 2 . Since Z 2 is a locally compact commutative group, there exists a Haar measure dx which is translation invariant i.e.: d(x + a) = dx, furthermore we have the identity d(xa) = |a| 2 dx for a ∈ Z * 2 . We will normalize the measure dx by setting

{|x| 2 ≤1} dx = 1.
This measure is then unique and we will note |E| the measure for any subset E of Z 2 .

Lebesgue spaces L p (Z 2 ) are thus defined in a natural way:

f L p = Z 2 |f (x)| p dx 1/p for 1 ≤ p < +∞,
with the usual modifications when p = +∞.

Let us now introduce the Littlewood-Paley decomposition in Z 2 . We note F j the Boole algebra formed by the equivalence classes E ⊂ Z 2 modulo the sub-group 2 j Z 2 . Then, for any function f ∈ L 1 (Z 2 ), we call S j (f ) the conditionnal expectation of f with respect to F j :

S j (f )(x) = 1 |B j (x)| B j (x)
f (y)dy.

The dyadic blocks are thus defined by the formula ∆ j (f ) = S j+1 (f ) -S j (f ) and the Littlewood-Paley decomposition of a function f : Z 2 -→ R is given by

f = S 0 (f ) + +∞ j=0 ∆ j (f ) where S 0 (f ) = Z 2 f (x)dx. (9) 
We will need in the sequel some very special sets noted Q j,k . Here is the definition and some properties:

Proposition 3.1 Let j ∈ N and k = {0, 1, ..., 2 j -1}. Define the subset Q j,k of Z 2 by Q j,k = k + 2 j Z 2 . (10) 
Then 1) We have the identity

F j = 0≤k<2 j Q j,k , 
2) For k = {0, 1, ..., 2 j -1} the sets Q j,k are mutually disjoint,

3) |Q j,k | = 2 -j for all k, 4) the 2-adic valuation is constant over Q j,k .
The verifications are easy and left to the reader.

With the Littlewood-Paley decomposition given in [START_REF] Stein | Topics in Harmonic analysis[END_REF], we obtain the following equivalence for the Lebesgue spaces L p (Z 2 ) with 1 < p < +∞:

f L p ≃ S 0 (f ) L p + j∈N |∆ j f | 2 1/2 L p .
See the book [START_REF] Stein | Topics in Harmonic analysis[END_REF], chapter IV, for a general proof.

For Besov spaces we will define them by the norm

f B s,q p ≃ S 0 f L p +   j∈N 2 jsq ∆ j f q L p   1/q (11)
where s ∈ R, 1 ≤ p, q < +∞ with the necessary modifications when p, q = +∞.

Remark 1 For homogeneous functional spaces Ḃs,q p , we drop out the term S 0 f L p in (11).

Proof of the theorem 1

To begin the construction of the counterexample we consider 0 < j 0 < j 1 two integers and we fix α, β ∈ R such that

2 2j 0 ≤ β α . (12) 
Take now a decreasing sequence (ε j ) j∈N ∈ ℓ q (N) with q > 2 such that ε 0 = 1 and (ε j ) j∈N / ∈ ℓ 2 (N). Define N j in the following form

N j =      2 j if 0 < j < j 0 , 2 -j β α if j 0 ≤ j ≤ j 1 . (13) 
We construct a function f : Z 2 -→ R by considering his values over the dyadic blocs and we will use for this the sets Q j,k defined in [START_REF] Vladimirov | p-Adic Analysis and Mathematical Physics[END_REF]:

∆ j f (x) =                                ε j α2 j over Q j+1,0 , -ε j α2 j over Q j+1,1 , ε j α2 j over Q j+1,2 , -ε j α2 j over Q j+1,3 , . . . ε j α2 j over Q j+1,2N j -2 , -ε j α2 j over Q j+1,2N j -1 , 0 elsewhere. 
Remark that, with this definition of ∆ j f (x) we have the identities

• ∆ j f L ∞ = ε j α2 j , • ∆ j f L 1 = ε j αN j , • ∆ j f 2 L 2 = ε 2 j α 2 2 j N j .
From this quantities we construct the following norms (a) for the Besov space Ḃ-1,∞ ∞ we have

f Ḃ-1,∞ ∞ = sup j∈N 2 -j ∆ j f L ∞ = α, since the sequence (ε j ) j∈N is decreasing and ε 0 = 1.
(b) for the Besov space Ḃ1,q 1 we write

f q Ḃ1,q 1 = j 1 j=0 2 j ∆ j f L 1 q = j 1 j=0 2 jq ε q j α q N q j = α q   j 0 j=0 2 jq ε q j N q j + j 1 j>j 0 2 jq ε q j N q j  
We use now the values of N j given in (13) and the relationship (12) to obtain

= α q   j 0 j=0 2 2jq ε q j + j 1 j>j 0 ε q j β q α q   = β q   j 0 j=0 2 2jq α q β q ε q j + j 1 j>j 0 ε q j   ≃ β q   j 0 j=0
2 q(2j-2j 0 ) ε q j + j 1 j>j 0 ε q j   .

Then we have f Ḃ1,q

1 ≃ β   C 1 + j 1 j>j 0 ε q j   1/q .
(c) For the Lebesgue space L 2 we use the same arguments above to obtain

f 2 L 2 = j 1 j=0 ε 2 j α 2 2 j N j = α 2   j 0 j=0 2 2j ε 2 j + j 1 j>j 0 ε 2 j β α   ≃ αβ   C 2 + j 1 j>j 0 ε 2 j   .
Once these norms are computed, we go back to the inequality

f 2 L 2 ≤ C f Ḃ1,q 1 f Ḃ-1,∞ ∞
and we have

αβ   C 2 + j 1 j>j 0 ε 2 j   ≤ C × α × β   C 1 + j 1 j>j 0 ε q j   1/q .
But, by hypothesis, we have (ε j ) j∈N / ∈ ℓ 2 (N) and (ε j ) j∈N ∈ ℓ q (N), thus, for j 1 big enough it is impossible to find an universal constant C such that the above inequality is true.

( 6 )

 6 This expression satisfy the following properties a) |x| p ≥ 0, and |x| p = 0 ⇐⇒ x = 0; b) |xy| p = |x| p |y| p ; c) |x + y| p ≤ max{|x| p , |y| p }, with equality when |x| p = |y| p .

see the book[START_REF] Bergh | Interpolation Spaces. Grundlehren der mathematischen Wissenschaften[END_REF] for more details.