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ABSTRACT

We exploit our formula for the gravitational potential of finite size, power-law disks to derive a general expression linking the mass
of the black hole in active galactic nuclei (AGN), the mass of the surrounding disk, its surface density profile (through the power
index s), and the differential rotation law. We find that the global rotation curve v(R) of the disk in centrifugal balance does not
obey a power law of the cylindrical radius R (except in the confusing case s = −2 that mimics a Keplerian motion), and discuss
the local velocity index. This formula can help to understand how, from position-velocity diagrams, mass is shared between the disk
and the black hole. To this purpose, we checked the idea by generating a sample of synthetic data with different levels of Gaussian
noise, added in radius. It turns out that, when observations are spread over a large radial domain and exhibit low dispersion (standard
deviation σ � 10% typically), the disk properties (mass and s-parameter) and black hole mass can be deduced from a non linear fit of
kinematic data plotted on a (R,Rv2)-diagram. For σ � 10%, masses are estimated fairly well from a linear regression (corresponding
to the zeroth-order treatment of the formula), but the power index s is no longer accessible. We have applied the model to 7 AGN
disks whose rotation has already been probed through water maser emission. For NGC 3393 and UGC 3789, the masses seem well
constrained through the linear approach. For IC 1481, the power-law exponent s can even be deduced. Because the model is scale-free,
it applies to any kind of star/disk system. Extension to disks around young stars showing deviation from Keplerian motion is thus
straightforward.
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1. Introduction

The mass of astrophysical objects – except maybe for stars – is
generally difficult to determine with precision, mostly because
of inappropriate tracers, relatively low spatial resolution, and
a certain misunderstanding of the internal structure and physi-
cal processes involved. This is the case for giant disks orbiting
supermassive black holes in active galactic nuclei (AGN). For
some nearby objects, the cold gas rotating in the outermost re-
gions (the subparsec scale typically from the center) is detected
at radio wavelengths through water vapor emission (e.g. Miyoshi
et al. 1995; Braatz et al. 2009). The inner regions, not accessi-
ble yet to current instruments, could host the bulk of the mass
if the total surface density in the disk varies roughly with the
cylindrical radius R as R−2 or faster (Shakura & Sunyaev 1973;
Collin-Souffrin & Dumont 1990). Estimating the disk mass is a
complex task. It necessitates a global disk model capable of de-
scribing the dynamics of gas, its thermodynamics, its chemical
complexity, as well as its interaction with radiation (lines and
continuum). The disk mass is an important quantity in under-
standing the AGN phenomenon. Along with the accretion rate,
turbulent viscosity, and black hole mass, it helps to put con-
straints on the activity of the AGN in terms of stability, lifetime,
luminosity, and matter supplied from the host galaxy (Combes
2001; Collin & Zahn 2008).

The mass of disks can also be probed via the consequences
of their gravity. All the material contained within a disk exerts

gravitational forces on itself – the so-called “self-gravity” –
which influences or even strongly governs (like in galaxies)
internal orbital motions, sometimes up to instability (e.g. Mestel
1963; Binney & Tremaine 1987; Papaloizou & Lin 1995). Even
in the presence of a massive central object, self-gravity may
cause a slight deviation in Kepler’s law, which is interesting to
analyze and to quantify. Obviously, non-Keplerian rotation can
have other origins like pressure effects such as in slim/thick disks
(Abramowicz et al. 1988) or magnetic fields (Heyvaerts & Priest
1989). Here, we focus on self-gravity, which is expected to play a
role in geometrically thin disks (Shore & White 1982; Shlosman
& Begelman 1987).

There are many articles that aims to establish the relation be-
tween the dynamics (through gravitational potentials) and mass
density distribution, especially in the context of galactic dynam-
ics (Binney & Tremaine 1987). Existing potential/density pairs
do not however seem fully appropriate to gaseous disks sur-
rounding a central object, probably because star/disk systems
where the gas exhibit non-Keplerian motions are still marginal.
As models and theories suggest (e.g. Shakura & Sunyaev 1973;
Pringle 1981; Collin-Souffrin & Dumont 1990; Huré 1998),
gaseous disks in AGN are large and are expected to exhibit a
self-similar behavior over some radial range. Huré et al. (2008)
determined an accurate formula for the gravitational potential in
the midplane of a flat power-law disk with finite size and mass. It
is valid for a wide range of the power index for surface density.
In this article, we use this result to derive an algebraic relation
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between the orbital velocity of the gas, the disk parameters (sur-
face density profile, mass, size), and the mass of the central ob-
ject, assuming a pressure-less disk at centrifugal equilibrium, as
commonly done. This relation furnishes a simple method for de-
termining how the mass is shared between the disk and the cen-
tral object. As expected, the “modified” rotation law is not, in
this model, a power law of the radius as often considered in this
context (Herrnstein et al. 2005). Although this study is valid for
any kind of astrophysical star/disk system (like in circumstellar
environments), we focus on AGN disks whose kinematics have
been observed in VLBI through water-maser emission.

This article is organized as follows. In Sect. 2, we recall
the model of a pressure-less disk at centrifugal equilibrium sur-
rounding a central black hole. We introduce the formula for the
gravitational potential in the disk midplane by Huré et al. (2008),
and derive the general expression for the velocity of the orbit-
ing gas as a function of the disk mass, black hole mass, and
surface density profile through the power-law index. In Sect. 3,
we show how this expression (or its zero-order version) can be
used to estimate how the mass is shared between a central ob-
ject and its surrounding disk by analyzing observational data
in a “position-dynamical mass” diagram (instead of the clas-
sical position-velocity diagram). We first applied the method
to IC 1481, thereby refining the disk parameters reported in
Mamyoda et al. (2009). We discuss uncertainties in Sect. 4,
and show how dispersion naturally goes against the method.
Section 5 is devoted to applying the method to a sample of a
few well known AGN hosting a masing outer disk. We conclude
in Sect. 6.

2. The basic model

2.1. A pressure-less disk at centrifugal equilibrium

We consider a gaseous disk with inner edge ain and outer edge
aout � ain, orbiting a central black hole with mass MBH. This
disk is assumed to be axially symmetrical, flat (i.e. no vertical
thickness), pressure-less, and steady. At centrifugal equilibrium,
the rotation velocity v of material at cylindrical distance R in the
midplane of the disk, in the reference frame of the black hole, is
given by the standard relation:

v2(R) =
GMBH

R
+ R

dψd

dR
, (1)

where ψd is the gravitational potential of the disk. This latter
function critically depends on the surface density profile Σ(R)
through the Poisson integral. It is generally not easily accessed
by analytical means, even in the actual one-dimensional case.

There is a broad literature devoted to determining potential-
density pairs (ψd,Σ) for axially symmetric systems (e.g. Binney
& Tremaine 1987; Evans & Collett 1993). Here, we consider the
class of flat, power-law distributions where the surface density
varies according to

Σ =

{
Σout�

s if� ∈ [Δ, 1],
0 elsewhere,

(2)

where R = aout�, Δ = ain/aout is the axis ratio, Σout the surface
density at the outer edge, and s is a constant. Such a profile seems
well-suited for large, gaseous disks in AGN, at least in the frame-
work of geometrically thin disk models that predict s ≈ −1 typi-
cally (Shakura & Sunyaev 1973; Pringle 1981; Collin-Souffrin
& Dumont 1990; Huré 1998). Potential-density pairs for flat

power-law disks, including Mestel’s solution (s = −1), are sum-
marized in Evans & Read (1998). These correspond to infinite
disks (i.e. ain = 0 and aout → ∞) whose mass is infinite as soon
as s > −2. Conway (2000) has produced formal solutions corre-
sponding to finite disks and no inner edge (i.e. ain = 0), but for
even positive indexes (i.e. s = 0, 2, ...). Unfortunately, account-
ing for edges increases the mathematical difficulties. Huré et al.
(2008) have recently produced a reliable approximation for ψd
associated with Eq. (2), namely (see their Eq. (53))

−ψd(�)
ψout

≈ B�1+s +
1
�

�2+s − Δ2+s

2 + s
+

1 −�1+s

1 + s
, (3)

where1 ψout = 2πGΣoutaout and

B =
6C − π − 1

π
≈ 0.431, (4)

where C is the Catalan’s constant. This approximation is ac-
curate within a few percent, provided the disk is large enough
(Δ � 1) and −3 � s � 0. These conditions are probably met in
most astrophysical disks, especially in AGN disks (Shakura &
Sunyaev 1973; Pringle 1981; Collin-Souffrin & Dumont 1990;
Huré 1998), and others (e.g. Dubrulle 1992). Actually, we have
Δ ∼ 3RS/aout ≈ 10−5 for a 108 M
 AGN black hole accreting
a parsec size disk (RS being the Schwarzschild radius). Besides,
Eq. (3) does not suffer from the edge singularities expected when
considering sharp edges.

2.2. The dynamical mass

As Eq. (1) shows, a “good” variable to measure masses in this
model is (e.g. Yamauchi et al. 2004):

μ =
Rv2

G
≡ μ(�), (5)

and the disk makes its own contribution through ψd. In the case
of a spherical distribution (where R → r), this dynamical mass
would represent the enclosed mass at a given radius (Herrnstein
et al. 2005). Here, things are quite different since matter is gath-
ered in a plane. There is no obvious use of the Gauss theorem,
although the monopole approximation gives the right order of
magnitude. Inserting in Eq. (5) the velocity v given by Eq. (1),
and using Eq. (3) for the disk potential ψd, we finally get

μ(�) = MBH − Md
Δ2+s −�s+2P2(s)

1 − Δ2+s
, (6)

where Md is the disk mass (at aout), and

P2(s) = 1 − B(1 + s)(2 + s) (7)

is a second-order polynomial in s. It is displayed in Fig. 1. In
the range of interest, P2(s) is always positive and has a limited
range of variation, since 0.14 � P2(s) � 1.11. We also have
P2(−2) = P2(−1) = 1 and a mean value of ∼0.8.

From Eq. (6), we expect two extreme behaviors of the func-
tion μ(�) depending on the disk properties. If s ≤ −2 (the case
of “centrally peaked” distributions), we have

μ ∼ MBH + Md = const. (8)

In the absence of radial gradient of μ, it is not possible to separate
the disk and the central black hole, regardless of the disk mass.

1 This constant ψout has dimension of a potential, but it is not the value
at the outer edge.
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Fig. 1. P2(s) in the range of validity of Eq. (3).

A Keplerian rotation curve result from a massive disk (without
central object) or to a massive central object (with a light disk,
as often considered). If s > −2 (the bulk of the disk mass stands
in the outermost regions), we have

μ(�) ∼ MBH + Md�
s+2P2(s), (9)

which is essentially an increasing function of the radius (posi-
tive gradient). Disk rotation is therefore always super-Keplerian.
The larger the disk mass, the larger the deviation from Kepler’s
law.

We conclude that, if the disk mass is significant with respect
to the central mass, v2(R) is the sum of two power laws of the ra-
dius, and this sum is not a power law (see below). In other words,
fitting the global rotation curve of a system containing a massive
disk and a black hole with a single power law (e.g. v ∝ Rγ), can-
not give any quantitative information about the mass distribution
in the framework of Newtonian gravity. This approach is often
considered when a massive disk is suspected (see e.g. Herrnstein
et al. 2005; Kondratko et al. 2008; McCallum et al. 2009). See,
however, Appendix A for a short discussion of the velocity in-
dex γ.

For s = −1, Eq. (6) reads

μ(�) = MBH + Md
� − Δ
1 − Δ , (10)

which is to be compared to the case of a Mestel disk (Mestel
1963)

μMestel(�) = M′d(�), (11)

where M′d is the cumulative disk mass at the actual radius (linear
with the radius �). As already pointed out elsewhere (Binney
& Tremaine 1987), this equation “happens to give the same an-
swer” as what is deduced from the Gauss theorem for a spheri-
cally symmetric distribution. In contrast, Eq. (10) corresponds to
a Mestel disk truncated on both sides. It includes edge effects and
total disk mass, and explicitly contains the central point mass
(which is not part of Mestel’s disk model). In the limit Δ → 0,
we then recover Mestel’s solution.

3. AGN disk/black hole mass determination method.
The case of IC 1481

3.1. Position-dynamical mass diagram

We immediately see from above that, if the rotation curve of
the disk is partly known in the form of N observational points
{(Ri, vi)}, then some constraints can be set on the disk mass, black
hole mass, and surface density profile by fitting the data {(Ri, μi)}
through Eqs. (8) or (9). Obviously, this procedure does not guar-
antee that the triplet (MBH, Md, s) is physically meaningful given
the simplicity of our model and assumptions. Uncertainties in
data also fragilize the inversion. Thus, there are three different
possibilities.

A: Data points {(Ri, μi)}N show no noticeable variation around
a constant value, only a certain dispersion. The systems thus
appears in Keplerian rotation. We deduce that either there
is a light disk surrounding a massive black hole or the disk
is rather massive but the gas is distributed such that s ≤ −2.
The diagram only gives the quantity MBH+Md, which can be
identified with the so-called “binding mass” Mb (or enclosed
mass). There is no way to separate the black hole and the
disk in this analysis.

B: Data points show a significant variation, still with a cer-
tain dispersion (see Sect. 4). The gas rotates faster than
Keplerian. If μ increases faster than �, then s > −1, oth-
erwise s < −1. In either case, fitting the data points through
Eq. (9) can yield a triplet (MBH, Md, s).

C: Data cannot be fitted by Eq. (9), or inferred parameters
are non physical. In this case, our model is inappropriate.
Various reasons can be invoked (see Sect. 6).

3.2. Zeroth-order: disk mass and central mass

The zeroth-order treatment of the non linear formula is inter-
esting and instructive because it gives the orders of magnitude.
Actually, if we consider that astrophysical disks are character-
ized by s ≈ −1, we can expand Eq. (9) around s = −1. We find
(see also Eq. (10) with Δ→ 0)

μ ≈ MBH + Md� + Md(s + 1)� ln�,

≈ MBH + Md�. (12)

We conclude that, if observational data plotted on a position-
dynamical mass diagram are almost linearly distributed in a
position-dynamical mass diagram, then the slope is the disk
mass Md and the intercept is the black hole mass. In the fol-
lowing, we discuss both approaches in the context of AGN
disks whose rotation, for some of them, is known from maser
emission.

3.3. Scale-free formula. Scaling to AGN disks

Equation (9) is totally scale-free if we divide μ by the black hole
mass. Actually, if q = Md/MBH denotes the mass ratio in the
system, Eq. (9) writes

μ(�)
MBH

∼ 1 + q�s+2P2(s), (13)

so that the model applies to any kind of star/disk system. In the
context of AGN, black holes are supermassive (several million
solar masses), the central accretion disk typically has the parsec
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Fig. 2. Position-velocity data of maser spots in the disk of IC 1481 (top),
and corresponding position-dynamical mass diagram (bottom). A non
linear fit of the data (green curve) gives the disk mass, the black hole
mass and the s-parameter. The linear fit (black line) is also shown. Data
are from Mamyoda et al. (2009).

size, and rotational velocities are, at such distances, hundreds of
km s−1. With this scaling, the formula for the dynamical mass
becomes2

μi

107 M

≈ 0.232

(
Ri

1 pc

) (
vi

100 km s−1

)2

(15)

≡ μ̃i (16)

where vi is, following our model, the disk rotational velocity
measured relative to the systemic/receding velocity of the sys-
tem, and Ri relative to the rotation axis of the disk. In the follow-
ing, masses are expressed in units of 107 M
, and denoted M̃.
Then, Eq. (9) becomes

μ̃(�) = M̃BH + M̃d�
s+2P2(s), (17)

and its linear version is

μ̃(�) = M̃BH + M̃d�. (18)

3.4. An example: the case of IC 1481

The top panel in Fig. 2 shows the rotational velocity of maser
spots observed in the outer disk of the active nucleus in galaxy

2 For a circumstellar system, we would have, for instance,

μi

1 M

≈ 1.12

( Ri

100 AU

) (
vi

100 km s−1

)2

. (14)

Table 1. Results of non linear fit through Eq. (17) for IC 1481 (top), and
results for the linear fit (a least-square fit) through Eq. (18) (bottom).

AGN Points 〈μ̃i〉 M̃BH M̃d s Cor.
IC 1481 26 3.67 1.51 3.59 −0.88 0.89
IC 1481 26 3.67 1.30 3.55 (−1) 0.89

Notes. Last column is the correlation coefficient. Maser data are from
Mamyoda et al. (2009).

IC 1481 versus the distance from the center (Mamyoda et al.
2009). The radius of the outermost maser spot is set to aout (al-
though the gas disk can extend farther away3). The bottom panel
displays the same data once converted into a (�, μ)-diagram,
as well as the result of the fit by Eq. (17) (non-linear) and by
Eq. (18) (linear). For each point, the square of the radial devia-
tion between the data and the linear fit is shown (see below). The
parameters of the two fits are gathered in Table 1. These are in
good agreement, especially because the solution of the non linear
fit gives an s-parameter close to −1. In such a case, the curvature
is difficult to detect by eye. As announced in Mamyoda et al.
(2009)4, the disk mass is higher than the black hole mass by a
factor of 2−3.

4. Uncertainties and data dispersion

Position-velocity data deduced from observations generally suf-
fer from dispersion and uncertainties, which can have different
origins: physical (e.g. variability, non uniform dynamics, geom-
etry and deprojection) and instrumental (i.e. lack of resolution).
In particular, locating the position of emitters precisely is a crit-
ical point (e.g. Uscanga et al. 2007). In order to check whether
the method is “robust” enough to infer some reliable information
about masses, we generated a sample of N points {�i, μ̃i}, obey-
ing exactly Eq. (17) for a given reference triplet (M̃BH, M̃d, s)ref .
To these synthetic data, we added uncertainties on the radius
(without presuming their origin) with three different levels of
“noise”. We considered a Gaussian noise, with various standard
deviations σ. The perturbed radii �i were then all rescaled so
that finally �N = 1. Unfortunately, this rescaling procedure in-
troduce a slight bias by tending to overestimate both the black
hole mass mass and the disk mass.

Here, we report a typical experiment obtained for

– a massive disk configuration with (M̃BH, M̃d)ref = (1, 4) cor-
responding to mass ratio q = 4;

– a massive black hole configuration with (M̃BH, M̃d)ref =
(4, 1) corresponding to q = 1

4 ;

with sref = −1.5 and N = 20 points in both cases. Initially, data
were randomly spread over the range [0.5, 1], and we considered
3 levels of noise: σ = {0.03, 0.05, 0.1}. The synthetic (�, μ̃)-
diagram obtained for σ = 0.03, which is presumed to mimic
dispersed observationnal data, is shown in Fig. 3 with the exact
rotation law given by Eq. (17). We tried to determine the best
triplet (M̃BH, M̃d, s) in three ways:

– by the linear approach;

3 It can be shown that Eqs. (8) and (9) still hold if one uses a refer-
ence value a0 ≤ aout other than the outer radius aout since Md ∝ Rs+2.
Then Md refers to the cumulative disk mass up to this reference ra-
dius a0.
4 In Mamyoda et al. (2009), an extreme case without black hole was
considered.
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Fig. 3. Synthetic data set made with N = 20 points generated
from Eq. (17) with (M̃BH, M̃d, s)ref = (1, 4,−1.5) (top) and with
(M̃BH, M̃d, s)ref = (4, 1,−1.5) (bottom). Uncertainties corresponding to
a Gaussian noise with a standard deviation σ = 0.03 have been added
to all the radii. Data were rescaled in radius such that the outer point
has a normalized radius �N = 1.

– by the non linear approach, but forcing s = sref ;
– by the non linear approach.

The second case is only illustrative, as it can not be used in prac-
tice since s is not known a priori. For each configuration, the rel-
ative distance between the reference triplet and the one deduced
by fitting the synthetic noisy data is measured by the parame-
ter δ, with

δ2 =

⎛⎜⎜⎜⎜⎝1 − M̃BH

M̃ref
BH

⎞⎟⎟⎟⎟⎠
2

+

⎛⎜⎜⎜⎜⎝1 − M̃d

M̃ref
d

⎞⎟⎟⎟⎟⎠
2

+

(
1 − s

sref

)2
· (19)

As a result, δ → 0 when the method works, whereas δ � 1
when it fails (i.e. when the output and the input triplets differ
significantly5). Practically, the linear approach is performed
from a least-square procedure. The results are gathered in
Table 2. As expected, the lower the dispersion, the better the
method. For the massive disk configuration and σ = 0.03 (low
dispersion), we recover the disk mass within a few percent by
the non linear fit, while the error in the black hole mass is about
30%. By the linear approach, we get the disk mass within 30%,
while there is a factor 2−3 for the black hole mass. This is not
all that surprising since the curvature of the function μ̃(�) is no-
ticeable in this case, so the error on the intercept can be large. As
the dispersion increases, the linear approach becomes more and
more reliable for getting the disk mass (within a few percent),
but the black hole mass is still poorly determined (a factor 2
typically). Regarding the massive black hole configuration and
σ = 0.03 (low dispersion), the black hole mass and the disk mass
are deduced correctly within a few percent typically, especially

5 This norm can introduce a bias into the interpretation as, a relative
discrepancy of 60% in each direction suffices to produce δ = 1, but δ
can be large even if two of the three parameters are correct.

Table 2. Results for synthetic data generated from Eq. (17), for the mas-
sive disk configuration (top), and for the massive black hole configura-
tion (bottom).

Massive disk configuration (q = 4)
σ 0.03 0.05 0.1 comments
δ 1.79 1.67 1.24 linear approach

M̃BH 2.74 2.62 2.19 (s = −1)
M̃d 2.89 3.11 3.91

δ 0.33 0.61 1.57 non-linear
M̃BH 0.68 0.42 −0.49 approach
M̃d 4.43 4.75 5.89 (with s = −1.5)

δ 0.32 0.83 no solution non-linear
M̃BH 1.31 0.20 – approach
M̃d 3.88 4.95 –
s −1.41 −1.52 –

Massive black hole configuration (q = 1
4 )

σ 0.03 0.05 0.1 comments
δ 0.34 0.46 1.44 linear approach

M̃BH 4.28 4.06 3.38 (s = −1)
M̃d 0.96 1.31 2.39

δ 0.49 1.03 2.70 non-linear
M̃BH 3.59 3.13 1.71 approach
M̃d 1.48 2.01 3.64 (with s = −1.5)

δ 0.20 4.52 no solution non-linear
M̃BH 4.07 −0.45 – approach
M̃d 1.09 5.46 –
s −1.24 −1.83 –

Notes. Values in bold correspond to the best approach.

using the non linear method. As the dispersion increases, the un-
certainty in both two quantities rises, for the same reason as men-
tioned hereabove; however, the black hole mass is determined
with about 15%.

Since the errors on the radius propagate to the variable μ, we
made the same fit in the (R, v)-diagram and found very similar
results. In brief, we see that when the “global slope” is steep
(massive disk configuration), the disk mass is determined with
precision. Conversely, when the “global slope” is almost zero
(massive black hole configuration), the black hole mass (value
at the intercept) is well determined. When dispersion is too
large, the correlation becomes too weak for interpretation, and
the method fails to give the triplet, but it is important to note
that the linear approach always gives the value of the most mas-
sive component within a factor less than about 15%, and the less
massive by a factor 2−3.

5. Application to a few AGN masing disks

In the case where position-velocity diagrams are available in the
literature, we analyzed a few AGN masing disks to try to put con-
straints on masses. This is not a new problem regarding the mass
of black hole. The mass of disks is, however, much a subject of
debate, since there is almost no systematic or generic study like
the one presented here, except isolated attempts (see e.g. Huré
2002; Lodato & Bertin 2003; Herrnstein et al. 2005; Kondratko
et al. 2008; McCallum et al. 2009). Table 3 lists the systems con-
sidered here. Position-velocity data points were obtained by dig-
italizing graphs when published, without special treatment (in
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Table 3. List of AGN hosting a masing disk considered here, references for position-velocity data and associated disk/black hole parameters
reported by authors († model only).

AGN Reference M̃b M̃BH M̃d s
IC 1481 Mamyoda et al. (2009) − <1 4.3 −1.38 no black hole limit
UGC 3789 Reid et al. (2009) 1.1 1.1 −
NGC 3393 Kondratko et al. (2008) 3.1 at 0.36 pc 2.6 1.9
NGC 4258 Herrnstein et al. (2005) 3.8 3.8 0.089
NGC 1068 Greenhill & Gwinn (1997) 1.5 ? ?

† Lodato & Bertin (2003) 1.5 0.8 0.8 −1 thin disk solution
† Huré (2002) − 1.2 0.6 (0.8 at 1.5 pc) −1 thin disk solution

− 1.2 0.9 (1.1 at 1.3 pc) −1.05 thick disk solution
NGC 4945 Greenhill et al. (1997) 0.14 at 0.3 pc ? −
Circinus McCallum et al. (2009) − 0.17 −

(epoch 1)

Notes. Columns 3−5 gives values found by the authors. Masses are given in units of 107 M
; Mb is the binding mass as determined from spherically
symmetric models.

Table 4. Results of linear-fitting through Eq. (18).

AGN N 〈μ̃i〉 M̃BH M̃d Cor. Case∗ St. dev. σ Comment for non linear fitting
IC 1481 26 3.67 1.30 3.55 0.89 B 0.11 agreement

UGC 3789 39 1.09 0.81 0.62 0.89 B 0.07 (M̃BH, M̃d, s) ≈ (5.91,−2.13,−0.056)
NGC 3393 17 2.85 0.59 3.48 0.95 B 0.06 no solution
NGC 4258 50 3.78 3.63 0.16 0.37 AB 0.3 (M̃BH, M̃d, s) ≈ (3.20, 0.60,−1.97), cor. 0.38
NGC 1068 32 1.63 0.72 1.09 0.49 BC 0.2 (M̃BH, M̃d, s) ≈ (2.77,−0.89,−3.58)

NGC 4945 6 0.09 0.11 −0.02 −0.11 C 2 (M̃BH, M̃d, s) ≈ (0.025, 0.053, −3.38), cor. 0.14 (s < −2)
Circinus 21 0.12 0.04 0.14 0.37 C 0.6 no solution

Notes. Column 8 gives the standard deviation σ. (∗) For the classification, see Sect. 3.

particular, we fully trust in the analysis by the authors to furnish
deprojected position-velocity data in the reference frame of the
black hole). The table also contains masses previously proposed
for the black hole and disk, mostly through models of spherical
distributions. In each case listed in Table 3, we have tried to fit
the data by the linear formula and by the non linear formula as
well. Position-dynamical mass diagrams, together with the lin-
ear fit and averaged value, are displayed in Fig. 4. The results
are given in Table 4. In particular, from the linear regression,
we estimated the degree of dispersion by computing the stan-
dard deviationσ (Col. 8). From the simple analysis performed in
Sect. 4, we immediately expect no precise values for NGC 4945
and Circinus. For NGC 4258 and NGC 1068, the dispersion is
much weaker with σ ≈ 0.2−0.3. For these two objects, the linear
approach should give the mass of the most massive component
quite correctly (i.e. see Table 2). Finally, for IC 1481, UGC 3789
and NGC 3393, dispersion is less than ∼10%, so both mass com-
ponents should be obtained with “accuracy”.

It was not possible to derive a triplet (MBH, Md, s) for all
these systems through the non linear approach (negative mass or
non convergence of the fitting procedure), even for UGC 3789
and NGC 3393 whose data, like for IC 1481, are spread over a
large radial domain and little dispersed. In two cases (NGC 4945
and Circinus), the method is inappropriate: no correlation really
exists in the position-dynamical mass and inferred parameters
are non physical (in particular, Md < 0 for NGC 4945). We
are aware that some disks have been predicted to be geometri-
cally thick, so the model of flat disk used here should naturally
fail. In contrast, results obtained through the linear approach are
satisfactory for UGC 3786, NGC 3393, and NGC 1068 where
disk mass is similar to, or higher than the mass of the central

black hole. For these objects, the massive disk should be prone
to instabilities. For NGC 4258, the slope is very weak and a mass
ratio of about 0.05 is expected.

6. Concluding remarks

In this paper, we have reported a simple method to estimate the
mass of a disk surrounding a central black hole and assuming
a flat, pressure-less disk at centrifugal balance. This model ob-
viously applies to other kinds of systems containing a disk and
(possibly) a central star. Instead of the conventional position-
velocity diagram, the position-dynamical mass diagram makes
the measurement of possible deviations to Kepler’s law eas-
ier. Using recent calculations for the gravitational potential of
“truncated self-similar” disks, we have shown that i) the rotation
law is generally not a power law of the radius, and ii) such devia-
tions are, at zero order at least, directly related to the cumulative
disk mass.

It is clear that the disk model is very simple and can be
improved in several ways. At the same time, it is difficult to
make the method robust and universal, since position-velocity
data generally show a certain dispersion that can have several
origins like thickness effects, instabilities (warps), etc. Through
a simple analysis of uncertainties, we have shown that the linear
approach gives quite correctly the most massive component (typ-
ically with a few tens of percent) if data dispersion is large (stan-
dard deviation larger than 0.1). For weak dispersion, both the
disk mass and the black hole mass should be accessible through
non linear data fitting, as well as the surface density power in-
dex. Moreover, the systemic velocity plays a major role, and the
asymmetry often observed between the redshifted part and the
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Fig. 4. Position-dynamical mass diagram for each AGN listed in Table 3 (left) and deviation in radius with the linear fitting (right). Observational
data are circles, and the red dashed line is the averaged value of the {μ̃i} considered. The linear fit through Eq. (18) is the bold line (see Table 4).

blueshifted part of the rotation curve must be accounted for. This
method must therefore be seen as a first step in the analysis of
masses in star/disk systems based on gravity.
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Appendix A: Note on the power index
of the rotation curve

Let γ be the local index of the rotation velocity, namely

v =
√

GM0Rγ, (A.1)

where M0 is a reference mass. In the present model, it is not a
constant, but a function of the radius. We easily find from Eq. (5)

dln μ
dln�

= 1 + 2γ, (A.2)

with γ = − 1
2 for a Keplerian motion associated with a central

point mass M0. From Eq. (9), we also deduce

dln μ
dln�

=
Md

μ
P2(s)(s + 2)�s+2, (A.3)

and then γ can be written in the form:

γ = −1
2
+ δγkep., (A.4)

where

δγkep. =
Md

2μ
P2(s)(s + 2)�s+2 (A.5)

is the deviation to the Keplerian index. For s = −2, we have
δγkep. = 0: the rotation curve resembles a Keplerian curve due
to a point mass (see above). This result was already known. The
mean deviation is

〈δγkep.〉 = 1
1 − Δ

∫ 1

Δ

Md

2μ
P2(s)(s + 2)�s+2d�, (A.6)
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Fig. A.1. Relation between the mean index of the super-Keplerian rota-
tion law and the disk mass to black hole mass ratio for some values of
the s-parameter. To a given mean index 〈γ〉, it corresponds a minimum
mass ratio q (red). To a given mass ratio, it corresponds a maximal mean
index (blue).

where q = Md/MBH is the disk-to-black hole mass ratio. The
above expression can be integrated exactly for some values of
the s-parameter. For instance, with s = −1, we find 〈δγkep.〉 ≈
q
4 . It means that a deviation to Kepler’s law as low as 0.02 on
the velocity index (i.e. γ = −0.48) could imply a mass ratio
q = 10%. This value is, in magnitude, consistent (within a factor
∼2) with the monopole approximation that predicts a mass ratio
∼0.4. For systems containing a disk significantly less massive
than the central object (i.e. q � 1) and Δ� 1, we find

〈δγkep.〉 ≈ q
1 + q

× (s + 2)
2(s + 3)

P2(s). (A.7)

Figure A.1 displays the mean velocity index 〈γ〉 versus q for a
few values of the s-parameter. This plot enables either to predict

the maximum departure to Kepler’s law for a given mass or to
bound the disk mass given a mean velocity index. Practically, if
deviations remain of small amplitude for low-mass disks, these
may not be exploitable (data dispersion, thickness effects).
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