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Abstract 

We address a control problem for a production line which produces one 

product to stock and faces random demand. During stockouts, the system 

quotes a fixed response time for each arriving order, and the customers place 

their orders only if the response time promised meets their deadlines. Customer 

orders are filled on a first come, first served basis. A penalty cost is incurred 

whenever a customer is served later than promised. A two-parameter 

admission/inventory control policy is implemented that maintains a bounded 

backlog and a constant inventory position (total inventory minus backlog) in 

the system. For production lines with exponential processing times and Poisson 

demand, the mean profit rate of the system is computed analytically using 

closed queueing network formulas. For systems with general processing or 

interarrival time distributions, the profit rate is estimated via simulation. 

Simple properties are established which ensure that the profit maximizing 

control parameters can be determined in finite time using exhaustive search. 

Numerical results show that the proposed policy performs better than the 

make-to-order/zero-inventory and the lost-sales/make-to-stock policies.  

 

Keywords: Production lines, admission control, inventory control, balking, quoted 

lead time, closed queueing networks, simulation. 
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1. Introduction 

Production control involves decisions concerning when and how much to produce 

and when to accept incoming orders. Such decisions have significant effects on a 

number of operational indices such as throughput, mean inventory and backlog 

levels, and quality of service. These operational indices affect the mean profit rate 

of the system, which comprises profit from sales and the costs associated with 

inventory, backlog, delays in filling orders, possible loss of sales during stockout 

periods and so on (see, e.g., Porteus 1990, Section 3.7, p. 615). In the literature of 

production control there is a rich collection of policies that minimize the inventory 

and backlog costs. 

 A simple and often effective inventory control policy is one that specifies a 

target value for the stock level, called base stock (Zipkin 2000, Buzacott and 

Shanthikumar 1993); the manufacturing facility produces as long as the number of 

finished items is smaller than the base stock and idles otherwise. 

 In order to handle incoming orders during stockout periods, many systems 

apply a lost sales (LS - all incoming orders rejected) or a complete backordering 

(CB - all incoming orders accepted) policy. When applying LS, there is no cost of 

delay in filling orders but the loss of sales to competition during stockouts makes 

it mandatory to keep a high stock level. On the contrary, facilities under CB 

appear to have vast backlog queues and long delays in filling orders which, apart 

from high backlogging costs, could also lead to potential loss of sales due to 

customer impatience. 

 An admission control policy which is analogous to the base stock policy and 

generalizes LS and CB, balancing between loss of sales and long delays, is the 

base backlog policy (Naor 1969). This policy admits incoming orders during 

stockouts as long as the backlog level is less than a certain threshold called base 

backlog and rejects them otherwise. When a base backlog is applied to systems 

with zero stock level, the policy is called make-to-order (MTO). 

 In this paper, we consider a production line producing one product to meet 

random demand from impatient customers. We adopt a joint inventory/admission 

control policy called base stock/base backlog (BSBB) to maximize the net profit 

rate of the system, which includes profit from sales less the costs of inventory, 
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backordering and failure to meet the delivery deadlines promised. According to 

BSBB, the inventory levels are handled as in base stock and, during stockouts, a 

base backlog admission control policy is implemented. Joint inventory and 

admission control policies have been studied in the past years both for single stage 

systems (Caldentey 2001, Kouikoglou and Phillis 2002, Ioannidis and Kouikoglou 

2008) and production networks (Ioannidis et al. 2008), yet without considering 

customer impatience and delivery due dates. 

 Impatience of customers is an important factor that must be taken into 

consideration when controlling inventory and backlog in production systems. This 

subject has drawn some attention in the past decades, mainly for its applicability 

to telecommunication systems rather than manufacturing systems. When we refer 

to customer’s impatience we use the terms balking and reneging (see e.g. Haight 

1957, 1959, 1960). 

 Balking occurs when a customer arrives during a stockout and decides not to 

place an order, rather than join the backlog queue, if he believes that he will be 

served later than desired. Balking causes loss of sales. It can be modeled by 

assigning a balking probability to the arrival process, which depends either on the 

state of the system (Subba Rao 1967) or on some response time estimate (Liu and 

Kulkarni 2008). In the former case, an arriving customer enters the backlog queue 

with some probability which depends on the number of outstanding orders already 

pending. In the latter case, each customer has a due time (deadline measured from 

the time of his arrival) and joins the queue only if he estimates that the facility’s 

response time to his order is less than the due time. 

 Reneging, also referred as abandonment, is the process where outstanding 

customers decide to withdraw their orders if they have waited longer than their 

deadlines. Reneging not only causes loss of sales but also loss of customer 

goodwill. The case of queue abandonment has been studied in the past decades, 

but analytical results for performance measures such as mean backlog queue sizes, 

waiting times or abandonment rates, are limited to single-stage systems with one 

(Movaghar 2006, Economopoulos and Kouikoglou 2008) or several servers 

(Bacceli and Hebuterne 1981, Ward 1999, Brandt and Brandt 1999). For more 

general production systems such as production lines or networks with reneging, 

mathematical difficulties arise in deriving analytical results and determining 
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optimal production control policies. 

 In this paper, we only consider balking of customers but we include a penalty 

cost for the system when it fails to meet a quoted lead time (QLT). Specifically, a 

customer arriving during a stockout is promised a fixed response time QLT to his 

order. If QLT is greater than the customer’s due time, then the customer balks. 

Otherwise, the customer places his order, but if his waiting time exceeds QLT, 

then, though it is not possible to renege and abandon the backlog queue, the 

production facility incurs an extra delay cost as a penalty or discount offered to 

the customer. 

 Our aim is to determine optimal base stock and base backlog levels, denoted s 

and c respectively, for a production line so as to maximize its mean profit rate. In 

section 2, we describe the production line and model the balking process. In 

section 3, we use an equivalent closed queueing system to derive expressions for 

the steady-state probabilities of the system and the various components of the 

profit rate. In section 4, we show that the optimal values for s and c are bounded 

from above. This allows us to develop a simple and fast algorithm to track down 

the optimal solution. Numerical results are presented in section 5 and conclusions 

in section 6. Early results of this work are reported in Economopoulos and 

Kouikoglou (2009). 

 

2. System description 

Consider a production line with N machines that produce one product to meet 

random demand. Machine Mi along with its input buffer will be referred as node i, 

i = 1, 2, …, N, and ni will denote the number of workpieces in node i, including 

the one that may be processed by Mi. Raw items are first processed at MN. 

Workpieces leaving Mi are sent to node i – 1. Machine M1 performs the last 

operation and sends finished items to the output buffer. The processing times of 

Mi are independent exponential random variables with mean 1/µi. For simplicity, 

we assume that all production rates µi are different. Customers arrive according to 

a Poisson process with mean rate λ. 

 Each customer requests one unit of product and, if stock is available, a sale 
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occurs immediately and a new raw item is sent to the buffer of node N to replace 

the item sold. During stockouts, orders cannot be fulfilled immediately and 

customers are reluctant to place orders. To cope with order cancelations and 

attract reluctant customers, the firm announces a standard time frame QLT from 

the moment an order is placed, after which if the order is still pending, the 

customer would benefit from a discount. We assume that each arriving customer 

has a maximum waiting time tolerance upon arrival until his order is shipped. If 

QLT is greater than the customer’s maximum waiting time he will not place the 

order. Otherwise, he places the order but cannot abandon the backlog queue 

thereafter. 

 Let q denote the probability that an arriving customer will place his order 

during a stockout period. The maximum waiting tolerance of customers is a 

random variable θ with known distribution function G(t) = P(θ ≤ t) and the firm’s 

QLT is constant. The probability that an arriving customer facing stockout will 

place his order is   

 q = P(QLT ≤ θ) = 1 − P(θ  ≤ QLT) 

                                         = 1 − G(QLT).    (1) 

Therefore, when no stock is available, the rate at which products are requested is 

qλ. Every time a customer requests a product and enters the backlog queue, a new 

raw item is released to node N. Orders are shipped on a FCFS basis. 

 The number of finished items in the output buffer is denoted nF, the number of 

backorders is denoted nB and the total number of items (raw items, workpieces, 

products) nH. The inventory and backlog levels of the system are controlled by 

implementing the joint inventory/admission control policy BSBB described in 

Section 1. Accordingly, the facility produces until the inventory level nF of the 

output buffer reaches the base stock s and then stops. During stockouts, all 

incoming orders are accepted as long as the number of backorders nB is lower than 

the base backlog c. A new raw item is released into the production line each time 

an order is accepted. It then follows that, at any time instant, the total number of 

items in the system equals s plus the number of backorders, i.e.,  

 nH = s + nB. (2) 
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 The net profit of the system comprises four types of profit or cost. Each time a 

product is sold, the system earns a profit p; penalties due to lost sales can be taken 

into account by adding a unit lost sale cost to p. The system incurs a holding cost 

rate h for every item held in the facility, a backlog cost rate b for every pending 

order and a penalty cost d for every order pending longer than QLT. Different 

holding costs h1, …, hN for the inventories can easily taken into account into the 

model. Yet, a uniform holding cost h is assumed for simplicity in the presentation. 

 The problem is to determine the optimal values of s and c so as to maximize 

the average net profit rate of the system. This quantity is given by  

 J(s, c) = pΤΗs,c − hHs,c − bBs,c − dDs,c, (3) 

where THs,c is the throughput (mean production rate), Hs,c is the average inventory 

of the total number of items in the system (raw items, workpieces, products), Bs,c 

is the average backlog of pending orders and Ds,c is mean rate of delayed orders 

beyond the QLT. 

 

3. Performance evaluation 

In this section, we derive analytical expressions for the performance measures 

involved in equation (3). 

 

3.1 An equivalent cyclic Jackson network 

Consider the cyclic network of queues shown in Fig. 1, in which there are N + 1 

service nodes, i = 0, 1, …, N, and a total population of s + c jobs. Suppose that 

server M0 at node 0 has a service rate µ0 equal to the rate at which orders are 

placed in the production system. The servers of the queueing system have the 

same rates µi and the same contents ni as the nodes the production facility for 

i = 1, …, N. 

 

Insert Figure 1 about here 

 

Page 6 of 29

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 7 

 Under the above assumptions, both systems evolve in the same manner. We 

assume that when n0 = 0 in the queueing system, the production system has nF = 0 

finished items and nB = c orders pending, and when n0 = s + c the production 

system has nF = s and nB = 0 (for a detailed discussion of the equivalence of the 

two systems see e.g. Section II.B of Ioannidis et al. 2008). Table 1 summarizes 

the relationships among the number of items in node 0 of the closed queueing 

system and the state variables nF, nB and nH of the production system. Since the 

service rate of node 0 is equal to the demand rate of the production system, µ0 is 

state-dependent, hence, 

 µ0(n0) =




≤
>

.cnq

cn

0

0

,

,

λ
λ

 (4) 

 

Insert Table 1 about here 

 

 Next, with the use of Table 1, we derive expressions for the throughput THs,c, 

average inventory Hs,c and backlog Bs,c, and the mean rate of delayed orders Ds,c. 

 The throughput of the system equals the rate of accepted orders. We see from 

equation (4) that the latter drops from λ to λq during stockouts, i.e., when nF = 0 

or, in the equivalent queueing system, n0 ≤ c. Therefore, 

 ΤΗs,c = λP(n0 ≥ c + 1) + qλP(n0 ≤ c). (5) 

 The average backlog of the production line by definition is Bs,c = E(nB), where 

E is the expectation operator. By inspection of Table 1 we have nB = 0 for n0 ≤ c 

and n0 = c – nB for nB ≥ 1; thus, 

 Bs,c =∑
=

−=
c

k

kcnkP
1

0 )( . (6) 

 The average overall inventory of raw, semi-finished and finished items is 

Hs,c = E(nH); it follows from equation (2) that 

 Hs,c = s + Bs,c. (7) 

 Finally, the mean arrival rate Ds,c of orders delayed longer than QLT is given 

by 
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 Ds,c =∑
−

=

−=
1

0

0 )(
c

m

mmcnPq Πλ , (8) 

where qλP(n0 = c – m) is rate at which a new order is placed when nB = m orders 

are already pending, and Πm denotes the probability that the lead time (time-to-

fill) of this order will exceed QLT.  

 Equations for the computation of Πm will be established in the next section. All 

probabilities of the state variable n0 involved in equations (5)–(8) can be 

calculated using standard formulas for cyclic Jackson networks (see, e.g., Section 

II.C of Ioannidis et al. 2008, Buzen 1973): 

 (a) Normalization constant of a cyclic Jackson network with nodes k = i, i – 1, 

…, j having constant service rates µk, node j feeding back to i, and a total 

population of n jobs, 

 Gi,j(n) = ∑ ∏
=++ =

−

nn...n

j

ik

n
k

ji

kµ , j ≤ i. (9) 

 (b) Normalization constant of the original cyclic queueing system (i.e., with a 

total population s + c and node 0 having a state-dependent service rate given by 

equation (4)), 

 G(s + c) =∑
+

=

−− −+
cs

n

N
ncn ncsGq

0

01,
),min(

0

00 )(λ . (10) 

 (c) Product-form equilibrium probabilities of the original cyclic queueing 

system, 

 P(n0, …, nN) = ∏
=

−−−

+

N

k

n
k

ncn kq
csG 1

),min( 00

)(

1 µλ . (11) 

 (d) Marginal probabilities for n0, 

 P(n0 = k) = )(
)(

1
1,

),min( kcsGq
csG

N
kck −+

+
−− λ , (12) 

 P(n0 ≥ k) = ∑
+

=

−− −+
+

cs

kn

N
ncn ncsGq

csG
)(

)(

1
1,

),min( λ . (13) 
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3.2 Lead-time analysis 

We now derive equations for the computation of Πm. Assume that s ≥ 1. The case 

s = 0 will be analyzed later as a special case. We consider the system in 

equilibrium. Suppose that a customer arrives during a stockout interval (t, t + dt) 

and decides to place an order while m, m < c, orders are already pending in the 

system. At time t, right before the customer places his order, there are a total of 

nH = s + m workpieces in the production line (a fixed inventory s plus one item 

per outstanding order). Since the firm adopts the FCFS policy, the lead time 

(time-to-fill) of the new order will be the time needed by the facility to produce a 

total of m + 1 items. Various cases have to be considered depending on the 

location of item m + 1 in the production facility. In summary, the probability that 

the lead time of the order exceeds QLT given that nB = m is computed in three 

steps: (a) we calculate the probabilities of various locations of item m + 1 in the 

production facility; (b) for each location i = N, N – 1, …, 1, we compute the tail of 

the probability distribution of the total time item m + 1 spends in Mi, Mi–1, … and 

M1; and (c) we add the products of (a) and (b) for all i. 

 

3.2.1 Location of item m + 1 

 

Proposition 1: Suppose that a new order arrives when m others are already 

pending. Then, for s ≥ 1, 

P(item m + 1 is at Mi | nB = m at time t and a new order arrives at t
+
) = 

        =
)at  arrivesorder  new a and  at time (

)at  arrivesorder  new a and  at time  and at  is 1 item (
+

+

=
=+

ttmnP

ttmnMmP

B

Bi
 (14) 

        =
)(

)1()(

1,

,
1

,1

msG

sGmG

N

iNii

+
−−µ

.  (15) 

 

Proof: First we calculate the denominator of (14). The probability that a customer 

will arrive during a stockout interval (t, t + dt) and decide to place an order while 

m orders are already pending in the system, m < c, equals the product of 
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probabilities of the following events:  

(i) at time t, in steady state, the system is out of stock with m orders pending or, 

equivalently, a total of s + m workpieces are in nodes N, N – 1, …, 1;  

(ii) a new customer arrives in the interval (t, t + dt) and decides to place an 

order. 

Thus, using (4) and (12), we can calculate the denominator of (14) as follows: 

    P(nB = m at time t and a new customer arrives at t
+
) = 

                                    = P(n0 = c − m) × (λqdt) 

 = (qλdt) ( ) )(
)(

1
1, msGq

csG
N

mc +
+

+−λ . (16) 

The numerator of (14), is the probability of intersection of events (ii) and a subset 

of (i) satisfying the following conditions: 

(iii) the first m workpieces are anywhere between machines Mi, Mi–1, …, M1;  

(iv) one more (item m + 1) is in Mi;  

(v) the remaining s – 1 workpieces are anywhere between machines MN and Mi.  

The probability of intersection of (iii)–(v) is computed as follows: 

 

P(events (iii) and (iv) and (v)) = 

 = P(in equilibrium, item m + 1 is at Mi and n0 = c – m) = 

 

=+′′+′=−=∑
−=′′+++

=+++′
+

−
1 (iii)

 (i)

10

1

11

) , ,1 , , ,(

snn...n
mnnn

iiiN

iiN

ii

nnnnnmcnP
K

KK  

=

( ) 
















+ ∑∑
=+++′

−−
−

′−−

−=′′+++

′′−−
+

−−−

−

−

+

+

mnnn

nn

i

n

ii

snnn

n

i

n

i

n

N

mc

ii

ii

iN

iiN
q

csG
11

11

1

1

11
1

1

1
)(

  
)(

1

KK

KK µµµµµµµλ  

= ( ) )1()(
)(

1
,

1
,1 −

+
−+−

sGmGq
csG

iNii

mc µλ .  

Multiplying the above by qλdt and dividing by (16) yields (15). 

 

3.2.2 Remaining sojourn time distribution of item m + 1 from Mi on. Suppose 
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that at time t item m + 1 is located at machine Mi awaiting to be processed by Mi, 

Mi–1, … and M1. The distribution of its sojourn time depends on the locations of 

the remaining m workpieces ahead of it. The enumeration of all possibilities is 

fraught with combinatorial difficulties. We circumvent this using the following 

result.  

 

Proposition 2: The time to produce item m + 1 has the same distribution as the 

cycle time of a job in a closed Jackson network with nodes i, i – 1, …, 1 and a 

total population of m + 1 jobs. The probability that this time is greater than QLT is 

given by 

 DPi(m) =
( )∑ ∑

= =

− 






i

k

j

k
m

j

i,k

!j
em k

1 0

QLT
QLT

)(
µβ µ ; (17) 

where, for distinct service rates, 

 βk,i(m) =

∑ =

−

−

i

j

m

jij

m

kik

1
,

,

µα

µα
   and    αk,i =∏

≠
= −

i

lk
l kl

l

1 µµ
µ

. (18) 

  

Proof: The first part of the proof is similar to the proof of Proposition 1. Consider 

an order arriving when the system is out of stock with m orders already pending. 

Suppose further that this order “sees” the system in the following state: 

(iii)' the first m workpieces are at specific locations between machines Mi, Mi–1, 

…, M1;  

(iv) one more (item m + 1) is in Mi;  

(v) the remaining s – 1 workpieces are anywhere between machines MN and Mi.  

Event (iii)' is a subset of (iii), which was defined in the proof of Proposition 1. 

The conditional probability of (iii)' and (iv) given (iii)–(iv) is given by 

 

)at  1 item and ahead orders  sees arrival (

) , with 1 and , , , , state sees arrival ( 11110

i

iiiiii

MmmP

mnnnnnnnnmcnP

+
=′++++′′+′=−= −− KK
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The above expression is the product-form equilibrium probability of a queueing 

network with m jobs and nodes i, i – 1, …, and 1 in a cycle. Now the well-known 

arrival theorem for Jackson networks (see, e.g., Sevcik and Mitrani 1981) says 

that this probability is the same as the probability of the state seen by a job 

arriving at node i from node 1 in the same cyclic network but with a total 

population m + 1. Therefore the distribution of the time until item m + 1 is 

produced is the same as the distribution of the cycle time in the network with 

nodes i, i – 1, …, and 1 and population m + 1. Moreover, the probability that this 

time is greater than QLT is given by equation (17), as shown in Zazanis (2004). 

When all the node rates are different, βk,i(m) and αk,i are given by equation (18). 

When this is not the case, the coefficients can be computed using a partial-

fractions expansion of the z-transform of the normalizing constant Gi,1(m + 1) or, 

equivalently, the method of Lam (1977). 

 

3.2.3 Estimation of performance indices. Combining Propositions 1 and 2 we 

see that the probability Πm that the waiting time of an arriving customer will 

exceed QLT when m orders are already pending is given by 

 Πm =∑
=

=+
N

i

iBi mmn|MmP
1

)(DP) at  is 1 (item ,  s ≥ 1. (19) 

In the special case s = 0 we have a make-to-order policy, and each workpiece in 

the system is associated with an order. Thus, when order m + 1 is placed, the 

corresponding item is released into the buffer of raw items upstream of MN. In this 

case, equation (16) simplifies to 

 Πm = DPN(m),     for MTO systems. 

Using equations (9)–(10), (12)–(13), (15), and (17)–(19) we can compute the 

Page 12 of 29

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 13 

performance indices given by (5)–(8) and, finally, the average profit rate of the 

system given by (3). 

 

4. Optimization 

We now consider the problem of determining optimal values for s and c, denoted 

sopt and copt respectively, so as to maximize the average profit rate of the system. 

We have the following propositions. 

 

Proposition 3: The optimal base stock level is bounded from above as follows 

 
h

p
s

λ
<opt . 

 

Proof: Τhe throughput of the system cannot exceed the demand rate λ. Also, 

because nH = s + nB, we have Hs,c = E(nH) ≥ s. It follows from equation (3) that 

J(s, c) ≤ pλ − sh. Since J(s, c) must not be negative, we obtain the bound on sopt. 

 

Proposition 4: The optimal base backlog level copt is bounded from above as 

follows 

 
bh

p
c

+
< 1

opt

µ
. 

 

Proof: Consider an arriving customer who finds c − 1 pending orders and decides 

to place one more. This customer must wait until c items are produced. The best-

case scenario would be that these c items are in the last machine M1 and require 

only one operation. The mean time to fill this customer’s order is thus greater than 

c/µ1 and the associated mean holding and backlog cost is c(h + b)/µ1. The latter 

must be less than p to ensure that the mean profit to be earned from this customer 

is positive. This yields a bound on copt above which it is not profitable for the 

system to accept an incoming order. 
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 The following algorithm performs an exhaustive search to find the optimal 

base stock and base backlog. 

 

Algorithm 1: 

1. Set J(0, 0) = 0, Jopt = 0, sopt = 0 and copt = 0. Initialize the base stock level 

and the base backlog; thus, s = 1 and c = 0. 

2. Compute the profit rate J(s, c). Keep the optimal control parameters and the 

maximum profit rate in memory; thus, if J(s, c) > Jopt, then set Jopt = J(s, 

c), sopt = s and sopt = c. 

3. Apply Proposition 3: If (s + 1) < pλ/h, then set s := s + 1 and go to step 2; 

else go to step 4. 

4. Apply Proposition 4: If (c + 1) < pµ1/(h + b), then set c := c + 1, s = 0, and 

go to step 2; otherwise stop. 

 

 It follows from Propositions 3 and 4, that the above algorithm requires a finite 

number of iterations to find the optimal control parameters. 

 

5. Numerical results and discussion 

We now use Algorithm 1 of the previous section to illustrate the advantages of the 

proposed BSBB policy over two simpler, yet commonly used policies. 

 

5.1 Analytical results for a production line with exponential machines 

Consider a production line similar to the one described in Section 2 consisting of 

six machines Mi, i = 1, 2, …, 6, with exponentially distributed service and 

customer interarrival times. Standard values for the system parameters are: mean 

demand rate λ = 4.0, mean production rates µ1 = 5.25, µ2 = 6.5, µ3 = 5.5, µ4 = 5.0, 

µ5 = 7.0, µ6 = 6.0, unit profit p = 100.0, unit costs h = 8.0, b = 8.0 and d = 10.0, 
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and QLT = 1.0. The maximum waiting tolerance of customers is a random 

variable θ with a uniform distribution function in [0, 10], i.e., G(t) = t/10. Upon 

substitution of G(t) into equation (1), we obtain q = 0.9. This means that 90% of 

the customers arriving during stockouts are willing to wait one time unit and place 

their orders; the rest balk. 

 We compare BSBB, denoted (s, c), with the lost sales (LS) and make to order 

(MTO) policies. Because these policies are special cases of BSBB (LS is the same 

as (s, 0) and MTO coincides with (0, c)), their performance will not, in general, be 

as good as that of BSBB. We examine the effects of varying λ, h, b, d and QLT on 

the net profit rate of each policy. In each experiment, we modify one of these 

parameters fixing the others to their standard values and compute the optimal 

parameters under BSBB, LS and MTO. Tables 2 and 3 show the profit rate for 

various values of λ and QLT. Figure 2 shows the profit rate versus the various 

values of the cost parameters h, b and d.  

 

Insert Table 2 about here 

 

 From Table 2 we see that when λ is greater than minµi = 5, LS and BSBB 

perform similarly. This happens because BSBB tends to reject customers during 

stockouts and keeps a high stock when customers arrive frequently. However, as 

the demand rate decreases the probability of a stockout decreases as well, and the 

system does not need to maintain high stock levels.  

 An interesting result can be drawn from Table 3, where we observe that BSBB 

always performs better than but close to LS for all values of QLT we tested. When 

QLT is zero, all customers who arrive during stockouts place their orders with 

probability one. In this case, BSBB reacts to protect the system against delay 

penalties, so it rejects all customers beyond c = 1 and, therefore, it is similar to an 

LS policy. As QLT increases, customers become more reluctant to place orders 

and so a relaxed admission control policy benefits the firm more. 
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Insert Table 3 about here 

 

Insert Figure 2 about here 

 

 Finally we investigate the second-order properties of the mean profit rate for 

the BSBB policy with respect to s and c. Figure 3 shows that the profit rate 

appears to be a unimodal function in each parameter s and c when the other is 

fixed. Unimodality with respect to s implies that the optimal base stock for a 

system with fixed base backlog c is the value sc such that J(sc, c) > J(sc + 1, c). 

Unimodality with respect to c can be defined in a dual fashion. Establishing this 

property could reduce the computational effort for tracking down the optimal 

parameters for BSBB since, at step 3 or 4 of Algorithm 1, a jump to step 2 would 

occur whenever a local maximum for s or c, respectively, is attained regardless of 

validity of the condition of Proposition 3 or 4. 

 

Insert Figure 3 about here 

 

 The profit rate also appears to be a submodular function. By submodularity, if 

cs is the largest value of c at which J(s, c) is maximized for some fixed s, then cs is 

decreasing in s (here we take decreasing to mean nonincreasing). For example, 

from the second graph of Figure 3 we see that the maxima of the profit rate for 

s = 0, 6, 11, and 16 are respectively at c0 = 10, c6 = 4 and c11 = c16 = 3. Similarly, 

submodularity of J implies that sc ≤ sc–1. Use of submodularity can potentially 

reduce the search effort. For example, if sc ≤ sc–1 holds then, once we have found 

the optimal base stock sc–1 for base baclog c – 1, the optimal base stock sc for c is 

in the subset {0, 1, …, sc–1}; thus in step 3 of Algorithm 1 we do not need to try 

values for s larger than sc–1 even though they may satisfy the inequality of 

Proposition 3. 
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5.2 Simulation results for production lines with non-exponential machines 

So far we have assumed that the processing times of all machines of the 

production line are exponentially distributed. This assumption permits modeling 

the system as a Jackson network and expressing analytically all important 

performance indices. However, this assumption is often violated in practice. For 

example, Inman (1999) studied the machine processing times in two automotive 

assembly plants and observed that the Erlang distribution provides more 

reasonable approximations of the empirical processing time distributions. To 

investigate the performance of the proposed joint inventory/admission control 

policy for more realistic systems, we examine six-machine production lines whose 

standard parameter values are as in the previous section. The processing times 

have Erlang distributions with various stages but the mean processing time of 

each machine Mi is equal to 1/µi, as in the exponential case. Optimal control 

parameters for each case are found by applying Algorithm 1 and using simulation, 

rather than analysis, in step 2 to compute the profit rate J(s, c). Note that 

Propositions 3 and 4 hold regardless of the type of distribution assumed for the 

processing or interarrival times.  

 Four distributions of processing times are tested: exponential (Erlang-1), 

Erlang-2, Erlang-4 and deterministic (Erlang-∞). To perform a fair comparison, 

we used common random numbers to generate the processing times for each 

machine. In all experiments, the errors in estimating the mean profit rate of the 

system were less than 0.5% with a 95% confidence level. On an Intel Core 2 Duo 

2.33GHz personal computer, the computational time for an exhaustive search of 

the control parameters varies from about half to three hours, depending on the 

parameters of the system and especially the processing time distributions. 

 Table 4 gives simulation results for the maximum profit rates under BSBB, LS 

and MTO and the corresponding optimal values for s and c. The column labeled 

“QLT = 1” of Table 2 and column “Exponential” of Table 4 correspond to the 

analytical and simulation results of the same system. We see that the simulation 

model gives the exact optimal control parameters, except for the MTO policy 

where the optimal c is overshot by 1 (yet the profit estimates J ≈ 177 of the two 

models deviate by less than 0.002%). As the number of Erlang stages increases 
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from 1 (exponential case) to infinity (deterministic case), the variance of 

processing times decreases to zero. From Table 4 we see that decreasing the 

variance results in an increase of the profit rate, a reduction of the safety stock s 

under BSBB and LS and an increase of the maximum number c of backorders 

allowed under BSBB and MTO. 

 

Insert Table 4 about here 

 

 We also examine the second-order properties of the mean profit rate with 

respect to s and c under the BSBB policy. For this experiment we use an Erlang-2 

distribution for the machine processing times and standard values for the 

remaining system parameters. Figure 4 shows that the profit rate is a unimodal 

and submodular function as in the exponential case. Establishing these properties 

for non-exponential production lines would substantially reduce the number of 

simulation runs needed to optimize the system. Because the optimal parameters 

for non-exponential systems are not too far from those of exponential systems, 

one could track down the optimal control parameters of the latter, using the fast 

analytical model of Section 3, and set them as initial values in a local search 

thereafter using simulation. Some guidelines for performing local search are given 

in Section 5.1. 

 

Insert Figure 4 about here 

 

6. Conclusion 

In this paper, we have studied a control policy for production lines with 

exponential machines and impatient customers. During stockouts, the system 

informs customers about anticipated delays by quoting a fixed lead time, QLT, to 

each arriving order, and offers a discount per unit of delay beyond QLT. An 

arriving customer balks if QLT exceeds his due time, which is a random variable 

with known distribution.  
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 A joint threshold-type inventory and admission control policy is proposed to 

maximize the net profit rate of the system. The system accepts orders as long as 

the backlog level is under c and produces until the number of finished products 

reaches s. We derive analytical expressions for the performance indices involved 

in the mean profit rate of the system and develop a simple but efficient algorithm 

that uses bounds on the optimal parameters and performs an exhaustive search to 

determine their values. These bounds hold regardless of the distributions of 

machine processing times. 

 We have compared the proposed policy, BSBB, with the LS (lost sales) and 

MTO (make-to-order) policies. In general BSBB manages the values s and c in an 

optimal fashion and shows a better adaptability than LS or MTO to seasonal 

demand variations and changes in the cost parameters. Systems with 

exponentially distributed processing times are analytically tractable and the 

computational time required to find the optimal control parameters is very short. 

Systems with more general distributions are analyzed with exceptional accuracy 

and optimized using simulation. In all cases, BSBB performed much better than 

LS and MTO.  

 From the numerical results it appears that the mean profit rate of the system is 

a unimodal and submodular function with respect to the control parameters. As 

these properties could significantly reduce the search effort for finding the optimal 

control parameters, they are subjects of future work. Also, because QLT has a 

significant impact on system performance, considering it as an additional control 

parameter to be optimized is another challenging subject of research. 
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Figure 1. Equivalent cyclic network of queues. 
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Figure 2. Profit rate versus various values of system parameters. 
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Figure 3. Profit rate versus control parameters. 
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Figure 4. Profit rate versus control parameters (Erlang-2 distribution). 
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Table 1.  Relationship among state variables. 

Production system Cyclic network of queues 
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Table 2.  Optimal control parameters and profit rate versus demand rate. 

 Demand rate 

 λ = 3 λ = 4 λ = 4.95 λ = 6.95 

Policy s c J s c J s c J s c J 

BSBB 7 6 215.97 11 3 259.21 13 2 280.39 13 1 294.17 

MTO 0 13 160.29 0 10 177.06 0 9 182.81 0 8 186.51 

LS 9 0 202.10 12 0 249.91 14 0 275.48 14 0 293.18 
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Table 3.  Optimal control parameters and profit rate versus QLT. 

 Quoted lead time 

 QLT = 0 QLT = 1 QLT = 2 QLT = 5 

Policy s c J s c J s c J s c J 

BSBB 12 1 250.69 11 3 259.21 11 4 259.22 11 5 254.61 

MTO 0 10 179.40 0 10 177.06 0 10 185.12 0 17 148.83 

LS 12 0 249.91 12 0 249.91 12 0 249.91 12 0 249.91 
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Table 4.  Optimal control parameters and profit rates for various distributions of 

machine processing times (simulation results). 

 Distribution 

 Exponential Erlang-2 Erlang-4 Deterministic 

Policy s c J s c J s c J s c J 

BSBB 11 3 259.26 9 4 287.65 8 5 304.86 7 5 327.47 

MTO 0 11 177.06 0 11 207.27 0 12 226.60 0 12 249.75 

LS 12 0 249.96 11 0 275.73 10 0 291.62 9 0 313.46 
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