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NONSMOOTH LYAPUNOV PAIRS FOR INFINITE-DIMENSIONAL
FIRST-ORDER DIFFERENTIAL INCLUSIONS∗

SAMIR ADLY† , ABDERRAHIM HANTOUTE‡ , AND MICHEL THERA§

Abstract. The main objective of this paper is to provide new explicit criteria to characterize weak lower semi-
continuous Lyapunov pairs or functions associated to first-order differential inclusions in Hilbert spaces. These
inclusions are governed by a Lipschitzian perturbation of a maximally monotone operator. The dual criteria we
give are expressed by the means of the proximal subdifferential of the nominal functions while primal conditions
are described in terms of the Dini directional derivative. We also propose a unifying review of many other
criteria given in the literature. Our approach is based on advanced tools of variational analysis and generalized
differentiation.

Key words. Differential inclusions, maximal monotone operators, Lipschitz perturbations, lower semi-
continuous Lyapunov pairs and functions, invariance of sets, subdifferential sets, contingent derivatives.
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1. Introduction. With the ever-increasing influence of mathematical modeling and engi-
neering in various branches of applications, it is not surprising that the theory of differential
inclusions has played a central role in the understanding of various applications, including for
instance, physical problems, biological and physiological systems, population dynamics. The
stability analysis of the different systems involved in real applications and more precisely the
characterization of the evolution of a point to its stable state has been studied by many authors
since the pioneering work by Lyapunov at the end of the 19th century.

The main feature of Lyapunov’s approach is that it does not require an explicit expression
for the solutions of the dynamic system. In order to find good candidates (energy-like) functions
which well-behave with the underlying trajectories, we only need to use the involved data. In the
literature such functions are termed Lyapunov’s functions. This indirect method is very useful
especially when dealing with complex real-world applications, where only the behavior of the
system is of major interest (such as, for instance, the behavior at infinite-time or the stability of
the equilibrium sets).

The aim of this paper is to provide explicit primal and dual criteria for weakly lower semi-
continuous (lsc, for short) Lyapunov functions, or, more generally, for Lyapunov pairs associated
to a first-order differential inclusion of the type:

ẋ(t;x0) ∈ f(x(t;x0))−Ax(t;x0) a.e. t ≥ 0, x0 ∈ cl(Dom A). (1.1)

The resulting criteria in the approach we propose are given explicitly by means of the proximal
subdifferential of the involved functions and therefore, an a priori knowledge of the semigroup
generated by −A is not required. Hence, this work follows the spirit of the Lyapunov indirect
method since it only calls upon the known data f and A present in (1.1).

Here, and thereafter, cl(Dom A) denotes the closure of the domain of a multivalued max-
imally monotone operator A : H ⇒ H defined on a real Hilbert space H, and f is a Lips-
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chitz mapping defined on cl(Dom A). A pair of proper extended-real-valued lsc functions V,W :
H → R ∪ {+∞} is said to form a Lyapunov pair for the differential inclusion (1.1) if for all
x0 ∈ cl(Dom A) the solution x(·;x0), in the sense that will be made precise in Sect. 3, satisfies

V (x(t;x0))− V (x(s;x0)) +
∫ t

s

W (x(τ ;x0))dτ ≤ 0 for all t ≥ s ≥ 0. (1.2)

Observe that for W = 0 one recovers the classical notion of Lyapunov functions; e.g., [34]. More
generally, instead of (1.2), we are going to consider functions V,W satisfying, for some a ≥ 0,

eatV (x(t;x0))− easV (x(s;x0)) +
∫ t

s

W (x(τ ;x0))dτ ≤ 0 for all t ≥ s ≥ 0.

In this case, the (weighted) pair (V,W ) will be refered to as an a-Lyapunov pair. The main
motivation in using a-Lyapunov pairs instead of simply functions is that many stability concepts
for the equilibrium sets of (1.1), namely stability, asymptotic or finite-time stability, can be
obtained just by choosing appropriate functions W in (1.2). The weight eat is useful for instance
when exponential stability is concerned. So, even in autonomous systems like those considered
in (1.1), the function W or the weight eat may be useful since, in some sense, they emphasize
the decreasing of the Lyapunov function V .

Lyapunov pairs have been considered in [14, 15, 17, 25, 30] among many contributions. For
instance, Cârjaă & Motreanu [15], using arguments based on tangency and flow-invariance, have
given a characterization of Lyapunov pairs for a general initial value problem with a possibly
multivalued m-accretive operator on an arbitrary Banach space by means of the contingent
derivative related to the operator. In [14], they also have given an infinitesimal characterization of
Lyapunov pairs of functions for the flow generated by a semilinear evolution equation on a Hilbert
space by means of a suitable contingent derivative formulation. Kocan & Soravia in [24,25] have
considered Lyapunov functions for infinite-dimensional dynamical systems governed by general
maximal monotone operators. They have obtained a characterization of Lyapunov pairs by means
of the associated Hamilton-Jacobi partial differential equations, whose solutions are meant in the
viscosity sense. The criteria in [14, 15, 24, 25] are given by means of the semigroup generated by
−A; see also [8, 10, 16] for related results. In the case of a differentiable semigroup generated
by −A, explicit characterizations for some classes of invariant sets are given in [8], by means of
the tangent cones to these sets. Criteria for Lyapunov pairs with respect to the homogeneous
counterpart of (1.1) (i.e., f = 0) were given in [30] in term of the resolvent of A (see Corollary 5.2
in Sect. 5). Using deep tools from nonsmooth analysis, Clarke et al gave in [20] sufficient criteria
by means of Hamilton-Jacobi equations whose solutions are the lsc Lyapunov functions (called
by these authors functions that weak or strong decrease along the trajectories). This approach
applies to (1.1) when the right-hand-side (RHS) is replaced by an upper semicontinuous set-
valued mapping with nonempty convex and compact values. Nonsmooth Lyapunov functions
were also investigated for different models; in [7,18,32] for locally Lipschitz Lyapunov functions,
in [12] for convex Lyapunov functions, in [5, 6, 17, 25, 30, 37] for lsc Lyapunov functions, etc.
In [1] and [23], smooth Lyapunov functions were used in the framework of the stability of second
order differential equations and non-linear mechanical systems with frictional and unilateral
constraints.

If we assume that V is sufficiently smooth (of class C1 on H for example), then by an
elementary derivation of the composite function t 7→ eatV (x(t;x0)), it is not difficult to show
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that (V,W ) forms an a-Lyapunov pair for (1.1) if, for instance,

sup
y∈H

sup
y∗∈Ay

(
V ′(y)(f(y)− y∗) + aV (y) +W (y)

)
≤ 0 (1.3)

(with the convention sup∅ = −∞). Hence, provided that V and W have a good behavior around
the equilibrium sets of (1.1) (namely, semidefiniteness and appropriate continuity of V ), one
can derive many stability properties of the solution x(·;x0). Meanwhile, the assumption on the
smoothness of V reduces the efficiency of this general approach as long as complex systems
are considered. Therefore, relaxing the condition on the smoothness allows more flexibility in
determining such functions. Our approach is also useful especially when dealing with multiple
isolated equilibrium sets for (1.1). More precisely, to study each equilibrium set separately, a
candidate Lyapunov function can be chosen to have infinite value outside a neighborhood of
this set. This fact is possible if one considers lsc extended real-valued candidate functions as
we do in this paper. Since our goal is to provide criteria for nonsmooth (lsc) Lyapunov pairs,
with respect to (1.1), instead of the derivative of V in (1.3), our study will involve the usage
of appropriate tools of advanced variational analysis and generalized differentiation, namely the
proximal, horizontal, and the limiting subdifferentials, normal cones, Dini directional derivative,
etc.

It is useful to recall that the concept of Lyapunov pairs can be equivalently written in terms
of (forward) invariance. We recall that a nonempty closed set S ⊂ H is invariant for (1.1) if the
whole trajectory x(·;x0) is kept in S whatever it starts in S (x0 ∈ S ∩ cl(Dom A)). In general,
in the framework of general differential inclusions, if for every x0 ∈ S one can find at least one
solution starting at x0 and which remains all the time in S, then S is termed a viable set for
this differential inclusion; there exists a wide literature on viability theory (see for instance the
books by Aubin [2] and Aubin & Cellina [3] and the references therein). In our setting, due to
the uniqueness of the solution of (1.1), both concepts are equivalent. On another hand, it can
be easily shown that V is a Lyapunov function for (1.1) if and only if its epigraph is invariant
for the (augmented in H × R) differential inclusion

ż(t;x0, α0) ∈ f̃(z(t;x0, α0))− Ãz(t;x0, α0) a.e. t ≥ 0, z(0, x0, α0) = (x0, α0) ∈ cl(Dom Ã),

where f̃ := (f, 0) and Ã := (A, 0) are defined on H × R. Conversely, a nonempty closed set S is
invariant for (1.1) if the indicator function of S is a Lyapunov function for (1.1). In this respect,
Nagumo’s Theorem (e.g., [16,36] and the references therein) states that a closed set S is invariant
for an ODE of the form

ẋ(t;x0) = F (x(t;x0)) (1.4)

if and only if for each y ∈ Rn the vector F (y) of the RHS is contingent in the sense of Bouligand
to S at y. Next, this result was adapted by Brézis [11] to non-autonomous ODE in infinite-
dimensional (Banach) spaces, under some supplementary Lipschitz continuity conditions of the
RHS; see also [29] for related results.

The organization of the rest of the paper is as follows. In Section 2, we present briefly tools
and basic results that are necessary for our approach. In Section 3 we focus on new primal and
dual criteria for weakly lsc Lyapunov pairs. This is achieved in Theorem 3.3 using many dual
conditions involving the subdifferential of the nominal functions. The particular case when the
topological interior of the set co(Dom A) is nonempty is addressed in Theorem 3.4. While, the
primal condition involving the directional derivative is given in Theorem 3.5. The counterpart
of these results for the invariance of closed subsets is established in Theorem 3.6. These abstract
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results are illustrated in Section 4 in which we exhibit some concrete examples of nonsmooth
Lyapunov pairs. In Section 5, we make a review of some other criteria for Lyapunov pairs.
Section 6 is devoted to complete the proofs of the main results given in Section 3.

2. Notation and main tools. In this section we introduce some fundamental definitions,
properties and notations which are needed. Throughout the paper, H stands for a (real) Hilbert
space, endowed with the inner product 〈·, ·〉 and associated norm ‖·‖, and identified to its topo-
logical dual H ′. If H is a finite Cartesian product of Hilbert spaces (Hi, ‖·‖i), i = 1, · · · , k, then
we use the `1-norm given by ‖·‖ = ‖·‖1 + · · · ‖·‖k . We write →, ⇀ (or weak-lim) to denote the
strong and weak convergence, respectively, and →

S
,⇀
S

if the convergence is restricted to a set

S ⊂ H. The null vector in H is denoted by θ. For x ∈ X, Bρ(x) is the open ball with center
x and radius ρ > 0 so that B := B1(θ) is the unit open ball. For a, b ∈ R := R ∪ {+∞,−∞},
[a, b) is the line segment excluding b, and a+ := max{0, a}. The following notations and facts
are basically standard in convex, variational, and set-valued analysis; the reader can consult the
books [19,27,31] for more details, discussions, and further references.

Given a set S ⊂ H (or S ⊂ H × R), by coS, Int S, and clS (or S), we denote the convex
hull, the interior, and the closure of the set S, respectively. The indicator function of S and the
distance function to S are given, respectively, by

δS(x) := 0 if x ∈ S; +∞ if not, d(x, S) := inf{‖x− y‖ : y ∈ S}.

The orthogonal projection mapping, ΠS , onto S is defined as

ΠS(x) := {y ∈ S : ‖x− y‖ = d(x, S)}.

For a multivalued operator A : H ⇒ H, the domain and the graph are given, respectively, by

Dom A := {x ∈ H | Ax 6= ∅}, gphA := {(x, y) ∈ H ×H | y ∈ Ax};

it is convenient to identify an operator A to its graph in H ×H. The inverse operator of A is
A−1 : H ⇒ H defined as

(y, x) ∈ A−1 ⇐⇒ (x, y) ∈ A.

For λ > 0, the resolvent and the Yoshida approximation of A are given, respectively, by

Jλ := (I + λA)−1, Aλ :=
1
λ

(I − Jλ),

where I : H ⇒ H stands for the identity mapping. The operator A is said to be monotone if

〈y1 − y2, x1 − x2〉 ≥ 0 for all (xi, yi) ∈ A, i = 1, 2,

and maximally monotone if A is not properly included in any other monotone operator. If A is
maximally monotone, it is well known (e.g., Simons [33]) that cl(Dom A) is convex, and the set Ax
is convex and closed for every x ∈ H. We recall that, for every λ > 0, Jλ is defined everywhere,
single-valued, nonexpansive, and satisfies Aλx ∈ A(Jλx) and limλ→0+ Jλx = x for every x ∈
cl(Dom A). If Int (co {Dom A}) 6= ∅, then Int (Dom A) = Int (cl(Dom A)) = Int (co {Dom A}),
and A is locally bounded on Int (Dom A). Moreover, if (Ax)◦ denotes the set of points of minimal
norm in A(x), i.e., (Ax)◦ := {y ∈ Ax : ‖y‖ = minz∈Ax ‖z‖}, then, for every x ∈ Dom A we have
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that limλ→0+ Aλx = (Ax)◦ = ΠAx(θ), or, more generally,

lim
λ→0+

Aλ(x+ λy) = ΠAx(y) for every y ∈ H. (2.1)

In particular, if A = ∂h is the subdifferential in the sense of convex analysis of some lsc convex
proper function h : H → R (see (2.4)), then A is typically an example of a maximally monotone
operator (however, not all maximally monotone operators are convex subdifferentials) and we
know that

Dom A ⊂ Dom h ⊂ cl(Dom h) = cl(Dom A).

Given a function ϕ : H → R, its (effective) domain and epigraph are defined, respectively,
by

Dom ϕ := {x ∈ H | ϕ(x) < +∞}, epiϕ := {(x, α) ∈ H × R | ϕ(x) ≤ α}.

For λ ∈ R, the set [ϕ > λ] := {x ∈ H | ϕ(x) > λ} signifies the open upper-level set of ϕ at height
λ. We use the notations

F(H) := {ϕ : H → R | ϕ proper and lsc}, Fw(H) := {ϕ : H → R | ϕ proper and weakly lsc},
(2.2)

and denote by F+(H) and F+
w (H) the subsets of those functions, respectively in F(H) and

Fw(H) which are nonnegative. If ϕ ∈ F(H), x ∈ Dom ϕ, and ξ ∈ H. We call ξ a proximal
subgradient of ϕ at x, written ξ ∈ ∂Pϕ(x), if there are ρ > 0 and σ ≥ 0 such that

ϕ(y) ≥ ϕ(x) + 〈ξ, y − x〉 − σ ‖y − x‖2 for all y ∈ Bρ(x).

We recall that ∂Pϕ(x) is convex, possibly empty, and not necessarily closed. More generally, ξ
is said a Fréchet subgradient of ϕ at x, written ξ ∈ ∂Fϕ(x), if

ϕ(y) ≥ ϕ(x) + 〈ξ, y − x〉+ o(‖y − x‖) for all y ∈ H.

Associated to these concepts, limiting objects have been introduced: we call ξ a limiting subdif-
ferential of ϕ at x, written ξ ∈ ∂Lϕ(x), if there exist sequences (xk)k, (ξk)k ⊂ H such that

xk →
ϕ
x (i.e., xk → x, ϕ(xk)→ ϕ(x)), ξk ∈ ∂Pϕ(xk), ξk ⇀ ξ,

while, ξ is a horizontal subgradient of ϕ at x, written ξ ∈ ∂∞ϕ(x), if there exist sequences
(αk)k ⊂ R+ and (xk)k, (ξk)k ⊂ H such that

αk → 0+, xk →
ϕ
x, ξk ∈ ∂Pϕ(xk), αkξk ⇀ ξ.

For comparative purposes, we recall that in the present setting the Clarke subdifferential of ϕ at
x is defined by the so-called representation formula (see, e.g., [28])

∂Cϕ(x) = co{∂Lϕ(x) + ∂∞ϕ(x)}, (2.3)

from which it clearly follows that ∂Pϕ(x) ⊂ ∂Fϕ(x) ⊂ ∂Lϕ(x) ⊂ ∂Cϕ(x). In particular, if
ϕ is Gâteaux-differentiable at x and ϕ′G(x) denotes its Gâteaux-differential, then ∂Pϕ(x) ⊂
{ϕ′G(x)} ⊂ ∂Cϕ(x). If ϕ is C1, then ∂Pϕ(x) ⊂ {ϕ′(x)} = ∂Cϕ(x) and ∂∞ϕ(x) = {θ}. If ϕ is C2,
then ∂Pϕ(x) = ∂Cϕ(x) = {ϕ′(x)}. If ϕ is convex, then all these subdifferential concepts (except
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the horizontal) coincide with the usual Fenchel-Moreau-Rockafellar subdifferential set

∂ϕ(x) := {y ∈ H | ϕ(z)− ϕ(x) ≥ 〈y, z − x〉 for all z ∈ H}. (2.4)

Finally, let us mention that if x /∈ Dom ϕ, then by convention we set ∂Pϕ(x) = ∂Fϕ(x) =
∂Lϕ(x) = ∂Cϕ(x) = ∅.

From a geometrical point of view, if S ⊂ H is a closed set and x ∈ S, the proximal normal
cone to S at x is NP

S (x) := ∂P δS(x) or, equivalently,

NP
S (x) = cone(Π−1

S (x)− x) if Π−1
S (x) 6= ∅; {θ} if Π−1

S (x) = ∅.

We shall also use ÑP
S (x) to denote the subset of NP

S (x) given by

ÑP
S (x) := {y ∈ H : 〈y, z − x〉 ≤ ‖z − x‖2 for all z ∈ S closed to x}. (2.5)

Similarly, NL
S(x) := ∂LδS(x) (= ∂∞δS(x)) is the limiting normal cone to S at x, and NC

S (x) :=
co{NL

S(x)} is the Clarke normal cone to S at x. We call contingent cone to S at x ∈ S (or
Bouligand tangent cone), written TS(x), the set

TS(x) := {y ∈ H | x+ τkyk ∈ S for all k, for some yk → y and τk → 0+}.

Moreover, we have that ∂Pϕ(x) × {−1} = NP
epiϕ(x, ϕ(x)) ∩ (H × {−1}), ∂∞ϕ(x) × {0} =

NP
epiϕ(x, ϕ(x))∩ (H ×{0}), and Tepiϕ(x, ϕ(x)) = epiϕ′(x, ·), where ϕ′(x, ·) : H → R denotes the

Dini directional derivative of ϕ at x, given by

ϕ′(x, v) := lim inf
t→0+,w→v

ϕ(x+ tw)− ϕ(x)
t

;

hence, if ϕ is convex, then ϕ′(x, v) = inft>0 t
−1(ϕ(x+tv)−ϕ(x)) is the usual directional derivative.

3. A general criterion for nonsmooth Lyapunov pairs. In this section, H is a Hilbert
space, and A : H ⇒ H, f : cl (Dom A) ⊂ H → H denote a maximally monotone operator and a
Lf -Lipschitz continuous mapping, respectively. Our aim is to provide explicit characterizations
of weakly lower semicontinuous Lyapunov pairs with respect to the differential inclusion (1.1):

ẋ(t;x0) ∈ f(x(t;x0))−Ax(t;x0) a.e. t ≥ 0, x0 ∈ cl (Dom A) .

Let us first precise the sense in which we are considering solutions of (1.1); the reader is
refered to [12] for more details. Fix T > 0 and x0 ∈ cl (Dom A) . By a strong solution we mean
a function x(·;x0) : [0, T ] → H defined and continuous on [0, T ], verifying the initial condition
x(0;x0) = x0, absolutely continuous on every interval [a, b] ⊂ (0, T ), and satisfying

x(t;x0) ∈ Dom A, ẋ(t;x0) ∈ f(x(t;x0))−Ax(t;x0) a.e. t ∈ (0, T ).

If such a solution exists it must be unique. Further, we have that ẋ(·;x0) ∈ L∞([0, T ), H) if
and only if x0 ∈ Dom A. In this later case, for all t ∈ [0, T ), x(t;x0) ∈ Dom A and x(·;x0) is
right-derivable at t with

d+

dt
x(t;x0) = (f(x(t;x0))−Ax(t;x0)))◦ = f(x(t;x0))−ΠAx(t;x0)(f(x(t;x0))). (3.1)

For instance, a strong solution exists in each of the following cases (see Brézis [12]): x0 ∈ Dom A;
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Int (co(Dom A)) 6= ∅; dimH < ∞; A = ∂ϕ for some convex function ϕ ∈ F(H); etc. In the
general case, it is well established (see e.g., [9]) that Equation (1.1) admits a unique weak solution
x(·;x0) ∈ C(0, T ;H) which satisfies x(t;x0) ∈ cl(Dom A) for all t ≥ 0. Equivalently, there exists
a sequence (zk)k∈N ⊂ Dom A converging to x0 such that the strong solution xk(·; zk) of the
equation

ẋk(t; zk) ∈ f(xk(t; zk))−Axk(t; zk) a.e. t ≥ 0, xk(0, zk) = zk, (3.2)

uniformly converges to x(·;x0) on [0, T ]. Moreover, we have that

x(s;x(t;x0)) = x(s+ t;x0) for all s, t ≥ 0, (3.3)

‖x(t;x0)− x(t; y0)‖ ≤ eLf t ‖x0 − y0‖ for all t ≥ 0, x0, y0 ∈ cl(Dom A).

In the remainder of the paper, x(·;x0) will denote the weak (strong, if applicable) solution
of Equation (1.1).

Definition 1. Let V ∈ F(H), W ∈ F(H), and a ∈ R+ be given. We say that (V,W ) forms
an a-Lyapunov pair for (1.1) if for all x0 ∈ cl (Dom A) we have that

eatV (x(t;x0)) +
∫ t

0

W (x(τ ;x0))dτ ≤ V (x0) for all t ≥ 0.

In particular, if a = 0, we call (V,W ) a Lyapunov pair and, in addition, if W = 0 then V is
said a Lyapunov function. The last inequality above is refered to as the Lyapunov inequality
associated to (1.1).

As we observe in the following lemma, for which a proof can be found in Clarke et al [21], the
lack of regularity of Lyapunov pairs is mainly due to the non-smoothness of the first component
function.

Lemma 3.1. If W ∈ F+(H), then there exists a sequence of functions (Wk)k∈N ⊂ F+(H)
converging pointwisely to W (for instance, Wk ↗ W ) such that Wk is Lipschitz continuous on
every bounded subset of H. Consequently, for each k and y ∈ H, we have that W (y) > 0 if and
only if Wk(y) > 0. Moreover, for given V ∈ F+(H) and a ≥ 0, (V,W ) forms an a-Lyapunov
pair for (1.1) if and only if each (V,Wk) is an a-Lyapunov pair.

It is also worth recalling that the very essential point in Lyapunov’s theory is that a Lyapunov
function decreases along the trajectories of (1.1). Our definition also reflects this effect according
to the following proposition.

Proposition 3.2. Let V ∈ Fw(H), W ∈ F+(H), and a ∈ R+ be given. Then, the following
are equivalent:

(i) (V,W ) forms an a-Lyapunov pair for (1.1);
(ii) for every x0 ∈ cl(Dom A) we have that

eatV (x(t;x0))− easV (x(s;x0)) +
∫ t

s

W (x(τ ;x0))dτ ≤ 0 for all t, s ≥ 0;
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(iii) for every x0 ∈ cl(Dom A) there is some δ > 0 such that

eatV (x(t;x0)) +
∫ t

0

W (x(τ ;x0))dτ ≤ V (x0) for all t ∈ [0, δ].

Proof. Implication (ii) =⇒ (iii) is immediate. To establish (i) =⇒ (ii), without loss of generality
(w.l.o.g., for short), by Lemma 3.1 we might assume that W is continuous (which makes the
integrals easier to handle). Then, if x0 ∈ cl(Dom A) is fixed, combining Definition 1 with (3.3)
it follows that, for all t ≥ s ≥ 0,

ea(s+t)V (x(s+ t;x0)) +
∫ s+t

0

W (x(τ ;x0))dτ

= eateasV (x(s;x(t;x0))) +
∫ t

0

W (x(τ ;x0))dτ +
∫ s

0

W (x(τ ;x(t;x0)))dτ

≤ eatV (x(t;x0))− eat
∫ s

0

W (x(τ ;x(t;x0)))dτ +
∫ t

0

W (x(τ ;x0))dτ

+
∫ s

0

W (x(τ ;x(t;x0)))dτ ≤ eatV (x(t;x0)) +
∫ t

0

W (x(τ ;x0))dτ ;

that is, (ii) holds.
To show that (iii) =⇒ (i) holds, we fix x0 ∈ cl(Dom A) and set

δ̄ := sup
{
δ ≥ 0 | eatV (x(t;x0)) +

∫ t

0

W (x(τ ;x0))dτ ≤ V (x0) for all t ∈ [0, δ]
}
.

Taking into account the current assumption (iii), we observe that δ̄ > 0 . Proceeding by contra-
diction, we suppose that δ̄ <∞, and using the semi-continuity of V we derive that

eaδ̄V (x(δ̄;x0)) +
∫ δ̄

0

W (x(τ ;x0))dτ ≤ V (x0).

But x(δ̄;x0) ∈ cl(Dom A), and so by (iii) there exists some ε > 0 such that

eatV (x(t;x(δ̄;x0)) +
∫ t

0

W (x(τ ;x(δ̄;x0)))dτ ≤ V (x(δ̄;x0)) for all t ∈ (0, ε].

Hence, using again (3.3), for every t ∈ (0, ε], we obtain

ea(t+δ̄)V (x(t+ δ̄;x0)) +
∫ t+δ̄

0
W (x(τ ;x0))dτ

= eaδ̄eatV (x(t;x(δ̄;x0)) +
∫ δ̄

0
W (x(τ ;x0))dτ +

∫ t
0
W (x(τ ;x(δ̄;x0)))dτ

≤ eaδ̄(V (x(δ̄;x0)) +
∫ δ̄

0
W (x(τ ;x0))dτ

≤ V (x0),

and the contradiction δ̄ < ε+ δ̄ ≤ δ̄.

The next example shows the necessity of considering nonsmooth Lyapunov’s pairs or func-
tions; it will be continued in Example 4.4.
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Example 3.1. We consider the one-dimensional systems with the parameter λ ∈ R+,

ẋλ(t;x0) ∈ −Sign(xλ(t;x0)) + λ |xλ(t;x0)| a.e. t ≥ 0, xλ(0;x0) = x0 ∈ R, (3.4)

where Sign(α) := 1 if α > 0; −1 if α < 0; [−1, 1] if α = 0. These systems can be reformulated in
the form (1.1) by taking A = ∂ | · | and fλ = λ | · |.

If λ = 0, then 0 is the unique equilibrium point and the solution is given by

x0(t;x0) :=
{

max{0, x0 − t} if x0 ≥ 0
min{0, x0 + t} if x0 ≤ 0.

In view of (1.3), the smooth function V0(x) := 1
2x

2 is a Lyapunov function since that

〈∇V0(x),−Signx〉 = − |x| ≤ 0 for all x ∈ R. (3.5)

It follows that the function V (x) = |x| , x ∈ R, is also a Lyapunov function for (3.4), but
this fact could not be checked using (1.3) since |·| fails to be differentiable at 0.

If λ > 0, the equilibrium points are {0, 1
λ} and the solution is given by

xλ(t;x0) :=
{

max{0, eλt(x0 − 1
λ ) + 1

λ} if x0 ≥ 0
min{0, e−λt(x0 − 1

λ ) + 1
λ} if x0 ≤ 0.

If we consider again the smooth function V0(x) = 1
2x

2, now (1.3) is written

〈∇V0(x),−Signx+ λ |x|〉 = |x| (λx− 1),

so that an inequality as in (3.5) is valid only for x ≤ 1
λ . Consequently, an expected Lyapunov

function would be the lsc extended real-valued function

Vλ(x) =
1
2
x2 if x ≤ 1

λ
and Vλ(x) = +∞ otherwise.

The following theorem gives the desired characterization of weakly lower semicontinuous
Lyapunov’s pairs with respect to (1.1). More generally, we establish a general principle for the
Lyapunov inequality to hold locally on upper-level sets of the candidate function V.

We recall that Fw(H) (and F+(H)) and ÑP
epiV (y, V (y)) are defined in (2.2) and (2.5),

respectively, and that by convention sup∅ = −∞. The proof of the part (v) =⇒ (i) will be
completed in Section 6.

Theorem 3.3. We let V ∈ Fw(H), W ∈ F+(H), a ∈ R+ be given, and fix ȳ ∈ cl(Dom A),
λ̄ ∈ [−∞, V (ȳ)), and ρ̄ ∈ (0,+∞] so that

Bρ̄(ȳ) ∩ [V > λ̄] ∩Dom V ⊂ cl(Dom A).

Then, the following statements are equivalent :
(i) ∀x0 ∈ Bρ̄(ȳ) ∩ [V > λ̄] ∩Dom V,

eatV (x(t;x0)) +
∫ t

0

W (x(τ ;x0))dτ ≤ V (x0) ∀t ∈ [0, ρ(x0)] ,



10 S. Adly, A. Hantoute, M. Théra

where ρ(x0) is the positive (possibly +∞) number given by

ρ(x0) = sup
{
ν > 0

∣∣∣∣ ∃ρ > 0 with Bρ(x0) ⊂ Bρ̄(ȳ) ∩ [V > λ̄] s.t. ∀s ∈ [0, ν] :
2 ‖x(s;x0)− x0‖ < ρ and

∣∣(e−as − 1)V (x0)−
∫ s

0
W (x(τ ;x0))dτ

∣∣} < ρ

}
;

(3.6)
(ii) ∀y ∈ Bρ̄(ȳ) ∩ [V > λ̄] and δ > 0,

sup
ξ∈∂PV (y)

lim inf
z →
Dom A

y
〈ξ + δ(y − z), f(z)−ΠAz(f(z))〉+ aV (y) +W (y) ≤ 0,

sup
ξ∈∂∞V (y)

lim inf
z →
Dom A

y
〈ξ + y − z, f(z)−ΠAz(f(z))〉 ≤ 0;

(iii) ∀y ∈ Bρ̄(ȳ) ∩ [V > λ̄] and δ > 0,

sup
ξ∈∂PV (y)

lim inf
z →
Dom A

y
lim
λ→0+

〈ξ + δ(y − z), f(y)−Aλ(z + λf(z))〉+ aV (y) +W (y) ≤ 0,

sup
ξ∈∂∞V (y)

lim inf
z →
Dom A

y
lim
λ→0+

〈ξ + y − z, f(y)−Aλ(z + λf(z))〉 ≤ 0;

(iv) ∀y ∈ Bρ̄(ȳ) ∩ [V > λ̄] and δ > 0,

sup
ξ∈∂PV (y)

lim inf
z →
Dom A

y
inf

z∗∈Az
〈ξ + δ(y − z), f(z)− z∗〉+ aV (y) +W (y) ≤ 0,

sup
ξ∈∂∞V (y)

lim inf
z →
Dom A

y
inf

z∗∈Az
〈ξ + y − z, f(z)− z∗〉 ≤ 0;

(v) ∀y ∈ Bρ̄(ȳ) ∩ [V > λ̄] and (ξ, η) ∈ ÑP
epiV (y, V (y)),

lim inf
z →
Dom A

y
inf

z∗∈Az
〈ξ + y − z, f(z)− z∗〉 ≤ η(aV (y) +W (y)).

(vi) If ρ̄ = −λ̄ = +∞, (V,W ) forms an a-Lyapunov pair for (1.1).

Proof. The proof of the (main) statement (v) =⇒ (i) is postponed to Section 6. According to
Lemma 3.1, we may assume first that W is Lipschitz continuous on bounded subsets of H. Next,
for each x0 ∈ Bρ̄(ȳ) ∩ [V > λ̄] ∩ Dom V, in view of the lsc of V and the continuity of x(·;x0),
we have that ρ(x0) > 0 or ρ(x0) = +∞. Thus, by Proposition 3.2, the last statement (vi) is
equivalent to (i). The proof of (ii) =⇒ (iv) =⇒ (v) is immediate and the equivalence (ii)⇐⇒(iii)
follows from (2.1).

We are going to establish the statement (i) =⇒ (ii): Let us fix y ∈ Bρ̄(ȳ) ∩ [V > λ̄],
ξ ∈ ∂PV (y) ∪ ∂∞V (y), δ > 0, and denote

κ(ξ) := 1 if ξ ∈ ∂PV (y); 0 if ξ ∈ ∂∞V (y); (3.7)

hence, y ∈ Bρ̄(ȳ) ∩ [V > λ̄] ∩ Dom V ⊂ cl(Dom A) and (ξ,−κ(ξ)) ∈ NP
epiV (y, V (y)). We also

fix ε > 0, and let (yk)k∈N ⊂ Dom A be such that yk → y, and denote by xk(·; yk) the (strong)
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solution of the equation

ẋk(t; yk) ∈ f(xk(t; yk))−Axk(t; yk) a.e. t ≥ 0, xk(0, yk) = yk.

By (i), and recalling that ρ(y) > 0, we let T ∈ (0, ρ(y)) be such that(
x(t; y), e−atV (y)− e−at

∫ t

0

W (x(τ ; y))dτ
)
∈ epiV ∀t ∈ [0, T ].

Let us introduce the mapping h : [0, T ] ⊂ R→ R given by

h(t) := κ(ξ)
(

(e−at − 1)V (y)− e−at
∫ t

0

W (x(τ ; y))dτ
)
. (3.8)

Therefore, by the definition of NP
epiV (y, V (y)), there exists α > 0 such that for all t ∈ [0, T ]

(w.l.o.g.)

−ε
2
≤ −α ‖x(t; y)− y‖2 − αh(t)2 ≤ h(t) + 〈ξ, y − x(t; y)〉.

Next using the facts that (xk(·; yk))k∈N uniformly converges to x(·; y) on [0, T ] and x(·; y) is
continuous, we may also suppose that, for all t ∈ [0, T ] and all k,

δ

2
‖yk − y‖2 − ε < 〈ξ, yk − xk(t; yk)〉+ h(t) +

δ

2
‖xk(t; yk)− y‖2 =: ϕ(t).

Then, for each k, we apply the Ekeland variational principle ( [22]), on the interval [0, k−1T ],
to find sk ∈ [0, (2k)−1T ] such that d+

dt ϕ(sk) ≥ −2ε (we recall that xk(·; yk) is right-derivable
at sk and so is ϕ). Therefore, by invoking (3.1) together with the fact that limk→+∞ h′(sk) =
−κ(ξ)(aV (y) +W (y)), for k large enough we get that

〈ξ + δ(y − xk(sk; yk)), (f(xk(sk; yk))−Axk(sk; yk))◦〉 ≤ −κ(ξ)(aV (y) +W (y)) + 2ε.

Finally, using once again the continuity of x(·; y) and the uniform convergence of xk(·; yk) to
x(·; y) on [0, T ], we obtain the convergence of xk(sk; yk) to y. This completes the proof of (ii)
since ε is arbitrarily chosen.

Let us give some preliminary remarks on Theorem 3.3.

Remark 3.1. (a) The use of proximal subdifferentials provides sharper conditions since it
is generally strictly smaller than the Fréchet or the Clarke subdifferential (e.g., [31]). The weak
lower semi-continuity of V is only needed for the implication (v) =⇒ (i).
(b) If V ≥ 0, statement (i) of Theorem 3.3 can be also rewritten as: for all x0 ∈ Bρ̄(ȳ) ∩ [V >
λ̄] ∩Dom V,

V (x(t;x0)) +
∫ t

0

[aV (x(τ ;x0)) +W (x(τ ;x0))] dτ ≤ V (x0) for all t ∈ [0, ρ(x0)] .

(c) Statement (iv) in Theorem 3.3 holds if, for instance, ∀y ∈ Bρ̄(ȳ) ∩ [V > λ̄],

sup
ξ∈∂PV (y)

lim inf
λ→0+

〈ξ, f(y)−Aλy〉+ aV (y) +W (y) ≤ 0, sup
ξ∈∂∞V (y)

lim inf
λ→0+

〈ξ, f(y)−Aλy〉 ≤ 0.
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Indeed, by taking yλ := Jλy it follows that Aλy ∈ Ayλ, yλ →
Dom A

y, and, for every ξ ∈ ∂PV (y)∪
∂∞V (y) and δ > 0,

lim inf
λ→0+

〈ξ + δ(y − yλ), f(y)−Aλy〉 ≤ −κ(ξ)(aV (y) +W (y)),

(κ was defined in (3.7)) showing that (iv) holds.
(d) A careful reading of the proof of ”(v) =⇒ (i)” in Theorem 3.3 (postponed to Sect. 6) reveals
that Theorem 3.3(iv) is also equivalent to, ∀y ∈ Bρ̄(ȳ) ∩ [V > λ̄] and δ > 0,

sup
ξ∈∂PV (y)

sup
ε>0

lim inf
z →
Dom A

y
inf

z∗∈Aεz
〈ξ + δ(y − z), f(z)− z∗〉+ aV (y) +W (y) ≤ 0,

sup
ξ∈∂∞V (y)

sup
ε>0

lim inf
z →
Dom A

y
inf

z∗∈Aεz
〈ξ + y − z, f(z)− z∗〉 ≤ 0,

where Aε : H ⇒ H is defined by (e.g., Martinez-Legaz & Théra [26])

y∗ ∈ Aεy ⇐⇒ 〈y∗ − z∗, y − z〉 ≥ −ε for all (z∗, z) ∈ A.

The following result shows that Theorem 3.3 takes a simple form on Int (Dom A). The proof
of the statement (iv) =⇒ (i) is postponed to Sect. 6.

Theorem 3.4. We let V ∈ Fw(H), W ∈ F+(H), and a ∈ R+ be given, and fix ȳ ∈ Dom A,
λ̄ ∈ [−∞, V (ȳ)), and ρ̄ ∈ (0,+∞] so that

Bρ̄(ȳ) ∩ [V > λ̄] ∩Dom V ⊂ Int (co(Dom A)) 6= ∅.

Then, the following statements are equivalent :
(i) ∀x0 ∈ Bρ̄(ȳ) ∩ [V > λ̄] ∩Dom V,

eatV (x(t;x0)) +
∫ t

0

W (x(τ ;x0))dτ ≤ V (x0) ∀t ∈ [0, ρ(x0)] ,

where ρ(x0) > 0 is defined in (3.6);
(ii) ∀y ∈ Bρ̄(ȳ) ∩ [V > λ̄] and δ > 0,

sup
ξ∈∂PV (y)

〈ξ, f(y)−ΠAy(f(y))〉+ aV (y) +W (y) ≤ 0, sup
ξ∈∂∞V (y)

〈ξ, f(y)−ΠAy(f(y))〉 ≤ 0;

(iii) ∀y ∈ Bρ̄(ȳ) ∩ [V > λ̄] and δ > 0,

sup
ξ∈∂PV (y)

inf
y∗∈Ay

〈ξ, f(y)− y∗〉+ aV (y) +W (y) ≤ 0, sup
ξ∈∂∞V (y)

inf
y∗∈Ay

〈ξ, f(y)− y∗〉 ≤ 0;

(iv) ∀y ∈ Bρ̄(ȳ) ∩ [V > λ̄] and (ξ, η) ∈ ÑP
epiV (y, V (y)),

inf
y∗∈Ay

〈ξ, f(y)− y∗〉 ≤ η(aV (y) +W (y)).

Proof. The proof of (iv) =⇒ (i) is postponed to Sect. 6. Since that the statements (ii) =⇒
(iii) =⇒ (iv) are obvious, we only need to show that (i) =⇒ (ii) holds. To achieve this goal,
we may first assume that W is Lipschitz continuous on the bounded subsets of H, according to
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Lemma 3.1. Next, we fix y ∈ Bρ̄(ȳ) ∩ [V > λ̄], (ξ,−κ(ξ)) ∈ NP
epiV (y, V (y)) (κ was defined in

(3.7)), and δ > 0, so that y ∈ Dom V ∩Dom A. Arguing as in the proof of Theorem 3.3, by (i)
we let T > 0 and α > 0 be such that, for all t ∈ [0, T ],

〈ξ, x(t; y)− y〉 − α ‖x(t; y)− y‖2 ≤ κ(ξ)
(

(e−at − 1)V (y)− e−at
∫ t

0

W (x(τ ; y))dτ
)

=: h(t).

Then, because x(·; y) is a strong solution (remember that y ∈ Dom A), multiplying the inequality
above by t−1 and next taking the limit as t→ 0+ we obtain that

〈ξ, f(y)−ΠAy(f(y))〉 = 〈ξ, d
+

dt
x(0, y)〉 ≤ −κ(ξ) (aV (y) +W (y)) ,

establishing (ii).

Now, using the concept of Dini directional derivative, we give the primal counterpart of
Theorem 3.3.

Theorem 3.5. With the notation of Theorem 3.3 we assume that, for every y ∈ Bρ̄(ȳ)∩[V >
λ̄] ∩Dom V and δ > 0,

lim inf
z →
Dom A

y
inf

z∗∈Az
V ′(y, f(z)− z∗) + δ〈z − y, z∗〉+ aV (y) +W (y) ≤ 0.

Then, for every x0 ∈ Dom V ∩Bρ̄(ȳ) ∩ [V > λ̄],

eatV (x(t;x0)) +
∫ t

0

W (x(τ ;x0))dτ ≤ V (x0) ∀t ∈ [0, ρ(x0)] ,

where ρ(x0) > 0 is defined in (3.6).

Proof. It is sufficient to verify Theorem 3.3(iv). Let y ∈ Bρ̄(ȳ) ∩ [V > λ̄], δ > 0, and ξ ∈
∂PV (y) ∪ ∂∞V (y) so that (ξ,−κ(ξ)) ∈ NP

epiV (y, V (y)), where κ(·) is defined in (3.7); hence,
y ∈ Dom V . If ε > 0 is given, by the current assumption there exists a sequence (yk, y∗k)k ⊂ A
such that

V ′(y, f(yk)− y∗k) + δ〈y − yk, f(yk)− y∗k〉+ aV (y) +W (y) < ε, for k ∈ N.

We may distinguish two cases: if αk := 〈y − yk, f(yk)− y∗k〉 ≥ 0 for infinitely many k, then(
f(yk)− y∗k

ε− (κ(ξ)− 1)δαk − aV (y)−W (y)

)
∈ epi(V ′(y, ·)) ⊂ TepiV (y, V (y)).

But TepiV (y, V (y)) is the dual cone of NP
epiV (y, V (y)) (e.g., [19]), and so we write

〈ξ + δ(y − yk), f(yk)− y∗k〉 = 〈(ξ,−κ(ξ)), (f(yk)− y∗k, ε− (κ(ξ)− 1)δαk − aV (y)−W (y))〉
+ κ(ξ)(ε− aV (y)−W (y))− κ(ξ)(κ(ξ)− 1)δαk
≤ −κ(ξ)(aV (y) +W (y)) + κ(ξ)ε,
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which yields Theorem 3.3(iv), as ε→ 0. Otherwise, if αk ≤ 0 for all k, we obtain that

〈ξ + δ(y − yk), f(yk)− y∗k〉 = 〈(ξ,−κ(ξ)), (f(yk)− y∗k, ε− δαk − aV (y)−W (y))〉
+ κ(ξ)(ε− aV (y)−W (y)) + (1− κ(ξ))δαk
≤ −κ(ξ)(aV (y) +W (y)) + κ(ξ)ε,

showing that Theorem 3.3(iv) also holds in this case. Thus, the desired conclusion follows.

Remark 3.2. It is worth observing that the conclusion of Theorem 3.5 also holds if for
every y ∈ Bρ̄(ȳ) ∩ [V > λ̄] ∩Dom V and δ > 0 we have that

lim inf
z →
Dom A

y
inf

z∗∈Az
V ′(y, f(y)− z∗) + δ〈z − y, z∗〉+ aV (y) +W (y) ≤ 0.

From a geometrical point of view, Theorem 3.3 can also be viewed as a criterion for the
invariance (or viability ( [2, 3])) of subsets with respect to (1.1).

Definition 2. A nonempty subset S ⊂ H is said invariant for (1.1) if for all x0 ∈ S ∩
cl(Dom A) we have that x(t;x0) ∈ S for all t ≥ 0.

In other words, S is invariant for (1.1) if and only if the function δS∩cl(Dom A) is a Lyapunov
function for (1.1); hence, Theorems 3.3 and 3.4 apply and yield:

Theorem 3.6. Let S ⊂ H be a weakly closed set. Then, the following conditions are
equivalent :

(i) S is invariant for (1.1);
(ii) ∀y ∈ S ∩ cl(Dom A),

sup
ξ∈NL

S∩cl(Dom A)(y)

lim inf
z →
Dom A

y
〈ξ + y − z, f(z)−ΠAz(f(z))〉 ≤ 0;

(iii) ∀y ∈ S ∩ cl(Dom A),

sup
ξ∈NL

S∩cl(Dom A)(y)

lim inf
z →
Dom A

y
lim
λ→0+

〈ξ + y − z, f(z)−Aλ(z + λf(z))〉 ≤ 0;

(iv) ∀y ∈ S ∩ cl(Dom A),

sup
ξ∈NL

S∩cl(Dom A)(y)

lim inf
z →
Dom A

y
inf

z∗∈Az
〈ξ + y − z, f(z)− z∗〉 ≤ 0;

(v) if S ∩ cl(Dom A) ⊂ Int (co(Dom A)), ∀y ∈ S,

sup
ξ∈NLS (y)

inf
y∗∈Ay

〈ξ, f(z)− z∗〉 ≤ 0.

By the very definition of the weak solution x(·, x0), it follows that the convex functions
δcl(Dom A) and d(·, cl (Dom A)) are Lyapunov functions for (1.1). Likewise, the set cl (Dom A) is
invariant for (1.1). These facts can also be checked by using Theorem 3.3:

Corollary 3.7. Let be given y ∈ cl (Dom A), ξ ∈ Ncl(Dom A)(y), and δ > 0. If

yλ := Jλ(y + λf(y)), y∗λ := λ−1 [y + λf(y)− yλ] , λ > 0,
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then y∗λ ∈ Ayλ, lim
λ→0+

yλ → y, and

lim inf
λ→0+

〈ξ + δ(y − yλ), f(yλ)− y∗λ〉 ≤ 0.

Consequently, the conditions (i)–(vi) of Theorem 3.3 hold when V either stands for δcl(Dom A) or
d(·, cl (Dom A)), W = 0, and a = 0.

Proof. First, we recall that y∗λ = Aλ(y+λf(y)) ∈ Ayλ for every λ > 0. Hence, invoking the fact
that 1

λ (y − Jλy) ∈ A(Jλy), by the monotonicity of A we write〈
λ−1(y − Jλy)− λ−1(λf(y) + y − yλ), Jλy − yλ

〉
≥ 0.

But ‖Jλy − yλ‖2 ≤ 〈f(y), yλ − Jλy〉 ≤ λ ‖f(y)‖2 (as Jλ is nonexpansive), and so limλ→0+ yλ =
limλ→0+ Jλy = y. Finally, observing that 〈y − yλ, f(y) − y∗λ〉 = −λ−1 ‖yλ − y‖2 ≤ 0, we obtain
that

lim inf
λ→0+

〈ξ + δ(y − yλ), f(yλ)− y∗λ〉 ≤ lim inf
λ→0+

〈ξ, f(yλ)− y∗λ〉 = lim inf
λ→0+

λ−1 〈ξ, yλ − y〉 ≤ 0,

where in the last inequality we used the facts that ξ ∈ Ncl(Dom A)(y) and yλ ∈ Dom A. Hence,
the desired conclusion follows since ∂∞d(y, cl (Dom A)) = {θ} (⊂ Ncl(Dom A)(y)) and

∂P δcl(Dom A)(y) = ∂∞δcl(Dom A)(y) = Ncl(Dom A)(y), ∂P d(y, cl(Dom A)) ⊂ Ncl(Dom A)(y),

which completes the proof of the current corollary.

4. Illustrative examples. To illustrate the previous results, we exhibit some concrete
examples of Lyapunov pairs. Throughout this section, Ω ⊂ Rn is an open bounded set with
a sufficiently smooth boundary ∂Ω, and (Lp(Ω), ‖·‖p) is the usual normed space of Lebesgue
p-integrable functions; for simplicity, if p = 2, instead of ‖·‖2 we write ‖·‖ and denote by 〈·, ·〉
the corresponding inner product. We denote (L2(Ω))n the Hilbert space endowed with the inner
product 〈(u1, · · · , un), (v1, · · · , vn)〉 := 〈u1, v1〉 + · · · + 〈un, vn〉 and the norm ‖(u1, · · · , un)‖ :=
(‖u1‖2 + · · ·+ ‖un‖2)

1
2 , for (u1, · · · , un), (v1, · · · , vn) ∈ (L2(Ω))n. The Euclidean norm in Rn is

denoted by |·|. If k ≥ 0 is an integer and 1 ≤ p ≤ ∞, Hk(Ω) is the Sobolev space of functions
u on the open set Ω ⊂ Rn for which Dαu belong to L2(Ω) when |α| ≤ k, with its usual norm.
Hk

0 (Ω) is the closure of C∞0 (Ω) in Hk(Ω). We denote by c(n,Ω) a (positive) Poincaré´s constant;
that is, a constant depending only on Ω and the dimension n such that

c(n,Ω) ‖u‖2 ≤ ‖∇u‖2 for every u ∈ H1
0 (Ω). (4.1)

We consider a typical simple example of a partial differential equation (PDE, for short) given
by  u̇−∆u = ρ(‖u‖)u in (0,+∞)× Ω

u(t;x) = 0 in (0,+∞)× ∂Ω
u(0, x) = u0(x) ∈ L2(Ω) in Ω,

(4.2)

where ∆ is the Laplacian operator (with respect to the state variable x), and ρ : R→ R is a
given function such that the mapping f : L2(Ω)→ L2(Ω) defined as

f(u) := ρ(‖u‖)u
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is Lipschitz continuous. The PDE in (4.2) can be rewritten in the form of (1.1) by defining the
operator A : L2(Ω) ⇒ L2(Ω) as

Au := −∆u, Dom A = {u ∈ H1
0 (Ω) | ∆u ∈ L2(Ω)} = H1

0 (Ω) ∩H2(Ω). (4.3)

It is well established, e.g. Brezis [12] for example, that A is a self-adjoint maximally monotone
operator with cl(Dom A) = L2(Ω) (the closure is taken with respect to the L2(Ω)-norm).

Given an integer p ≥ 1, if we denote Ap : L2(Ω) ⇒ L2(Ω) the p times composition of A with
itself, we know, for instance from Brezis [13, Theorem IX.25], that

Dom Ap = {u ∈ H2p(Ω) | u = ∆u = · · · = ∆p−1u = 0 on ∂Ω}. (4.4)

We set A0 for the identity mapping in L2(Ω), and we define for p ≥ 0 the functions Vp,Wp :
L2(Ω)→ R+ ∪ {+∞} as

Vp(u) :=
{

1
2 ‖A

pu‖2 if u ∈ Dom Ap

+∞ otherwise,

Wp(u) :=
{

1
2 ‖∇(Apu)‖2 if u ∈ H2p+1(Ω) and ∆qu|∂Ω = 0 for all q = 0, 1, · · · , p
+∞ otherwise.

Then, clearly Dom Vp = Dom Ap and Dom Wp = {u ∈ H2p+1(Ω)) | ∆qu|∂Ω = 0 for all q =
0, 1, · · · , p} are convex subsets of cl(Dom A), and it can also be checked that both functions
Vp,Wp are proper, convex, and (weakly) lsc on L2(Ω), at the same time as

V ′p(u; v) = 〈∆pu,∆pv〉 for all u, v ∈ Dom Vp, (4.5)

W ′p(u; v) = 〈∇(∆pu),∇(∆pv)〉 for all u, v ∈ Dom Wp. (4.6)

In particular, we have that A = ∂W0 (see, e.g., [4]) and, so, for every u0 ∈ L2(Ω) and T > 0
equation (4.2) has a unique strong solution u(·;u0) ∈ C([0, T ];L2(Ω)), which satisfies u(t;u0) ∈
Dom A for every t ∈ (0, T ].

In the two examples below, we investigate concrete Lyapunov pairs with respect to (4.2) by
assuming some boundedness conditions on the function ρ. These examples have been studied in
the case ρ = 0 in [30] to provide some regularity properties of the solution of a general variant of
(4.2). Our main objective in the next examples is to show how our criteria can be applied, namely
even if in this situation it holds that Dom Vp ⊂ Dom A for every p ≥ 1 and Dom Wp ⊂ Dom A
for every p ≥ 0, then it seems necessary to use approximate sequences to check the criteria of
Theorem 3.3.

Example 4.1. Given p ∈ N, we suppose that the function ρ satisfies

sup ρ ≤ c(n,Ω)
4

.

Then, we claim that the pairs (Vp, 1
2Wp) and (Wp,

1
2Vp+1) form Lyapunov pairs with respect to

(4.2).

Proof. We fix p ≥ 0, u ∈ Dom Vp, and δ > 0, and for λ > 0 we denote

uλ := u+ λ∆uλ = (I − λ∆)−1(u), (4.7)
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so that f(uλ) ∈ Dom Vp, ∆puλ ∈ H1
0 (Ω), and ∆p+1uλ ∈ L2(Ω). Moreover, since uλ → u as

λ→ 0+, by the current assumption on the function ρ we may suppose that

λρ(‖uλ‖) ≤
1
2
. (4.8)

Now, using (4.5) and (4.7), we write

V ′p(u; f(uλ) + ∆uλ) = ρ(‖uλ‖)〈∆puλ − λ∆p+1uλ,∆puλ〉+ 〈∆puλ,∆p+1uλ〉 − λ‖∆p+1uλ‖2

= ρ(‖uλ‖)‖∆puλ‖2 +
(

1
2
− λρ(‖uλ‖)

)
〈∆p+1uλ,∆puλ〉+

1
2
〈∆puλ,∆p+1uλ〉 − λ‖∆p+1uλ‖2.

By the monotonicity of A = −∆ and the obvious fact A0 = 0 we have that

〈∆p+1uλ,∆puλ〉 = −〈A(∆puλ),∆puλ〉 ≤ 0.

Hence, in view of (4.8) we derive that(
1
2
− λρ(‖uλ‖)

)
〈∆p+1uλ,∆puλ〉 ≤ 0,

and therefore, using the last estimate,

V ′p(u; f(uλ) + ∆uλ) ≤ ρ(‖uλ‖)‖∆puλ‖2 +
1
2
〈∆puλ,∆p+1uλ〉. (4.9)

Now, by the Green formula we know that 〈∆puλ,∆p+1uλ〉 = −〈∇(∆puλ),∇(∆puλ)〉. As a result,
the observation (4.9) and the current assumption sup ρ ≤ c(n,Ω)

4 , together with (4.1) (recall that
∆puλ ∈ H1

0 (Ω)) and the fact δ〈u− uλ,∆uλ〉 = −δλ−1‖u− uλ‖2 ≤ 0, yield to

V ′p(u; f(uλ) + ∆uλ) + δ〈u− uλ,∆uλ〉 ≤ ρ(‖uλ‖)‖∆puλ‖2 −
1
4
‖∇(∆puλ)‖2 − 1

4
‖∇(∆puλ)‖2

≤
(
ρ(‖uλ‖)−

c(n,Ω)
4

)
‖∆puλ‖2 −

1
4
‖∇(∆puλ)‖2

≤ −1
4
‖∇(∆puλ)‖2 = −1

2
Wp(uλ);

the last equality holds because uλ ∈ Dom Wp. Invoking the lower semicontinuity of Wp, Theorem
3.5 applies and entails that (Vp, 1

2Wp) forms a Lyapunov pairs for (4.2).

To prove that (Wp,
1
2Vp+1) is a Lyapunov pair, we take u ∈ Dom Wp and let (uλ)λ>0 be

defined as in (4.7). Then, arguing as above, we observe that uλ, f(uλ), ∆uλ ∈ Dom Wp so that
(4.6) reads

W ′p(u; f(uλ) + ∆uλ) = 〈∇(∆pu),∇(∆p(f(uλ)))〉+ 〈∇(∆pu),∇(∆p+1uλ)〉

= ρ(‖uλ‖) ‖∇(∆puλ)‖2 +
(
λρ(‖uλ‖)−

1
2

)∥∥∆p+1uλ
∥∥2 − 1

2

∥∥∆p+1uλ
∥∥2
.
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Thus, by (4.1), (4.8), and the current assumption on the function ρ,

W ′p(u; f(uλ) + ∆uλ) + δ〈u− uλ,∆uλ〉 ≤
(
ρ(‖uλ‖)−

c(n,Ω)
4

)
‖∇(∆puλ)‖2 − 1

4

∥∥∆p+1uλ
∥∥2

≤ −1
4

∥∥∆p+1uλ
∥∥2

= −1
2
Vp+1(uλ).

Hence, by Theorem 3.5 we deduce that (Wp,
1
2Vp+1) forms a Lyapunov pair for (4.2).

Let us introduce the (lsc convex proper) functions Vp,q : L2(Ω) → R+ ∪ {+∞}, where
p ∈ [2,+∞) and q ∈ N∗, defined as

Vp,q(u) :=
{ 1

p ‖∆
qu‖pLp(Ω) if u ∈ Dom Aq and ∆qu ∈ Lp(Ω),

+∞ otherwise,

where the operator Aq is defined in (4.4). It can be checked that for every u, v ∈ domVp,q =
{u ∈ Dom Aq | ∆qu ∈ Lp(Ω)} one has that

V ′p,q(u; v) = 〈|∆qu|p−1 sign(∆qu),∆qv〉.

Example 4.2. Given p ∈ [2,+∞) and q ∈ N∗, we suppose that

sup ρ ≤ 2c(n,Ω)(p− 1)p−2.

Then, we claim that:

(i) for a1 := 2c(n,Ω)(p−1)
p , the pair (Vp,q, a1Vp,q) forms a Lyapunov pair for (4.2);

(ii) if n ≥ 3 , there exists an a2 > 0 depending only on n and Ω such that the pair of functions(
Vp,q, a2

(
Vpn(n−2)−1,q

)n−2
n

)
forms a Lyapunov pair for (4.2).

Proof. (i) We fix u ∈ domVp,q and let (uλ)λ>0 be as defined in (4.7). Thus, by the regularity
of Dirichlet’s problem in Lp spaces (e.g. [13, Theorem IX.32]), for each λ > 0 we have that uλ,
f(uλ), ∆uλ ∈ domVp,q and, so,

V ′p,q(u; f(u) + ∆uλ)

= ρ(‖u‖) ‖∆qu‖pp + λ−1〈|∆qu|p−1 sign(∆qu)− |∆quλ|p−1 sign(∆quλ),∆quλ −∆qu〉

+ 〈|∆quλ|p−1 sign(∆quλ),∆q+1uλ〉.

Since the function α 7→ |α|p−1 sign(α) is nondecreasing it follows that

〈|∆qu|p−1 sign(∆qu)− |∆quλ|p−1 sign(∆quλ),∆quλ −∆qu〉 ≤ 0,

and so, by the last inequality,

V ′p,q(u; f(u) + ∆uλ) ≤ ρ(‖u‖) ‖∆qu‖pp + 〈|∆quλ|p−1 sign(∆quλ),∆q+1uλ〉.

In virtue of the Green formula, we have that

〈|∆quλ|p−1 sign(∆quλ),∆q+1uλ〉 = −〈∇(|∆quλ|p−1 sign(∆quλ)),∇(∆quλ)〉,
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and so

V ′p,q(u; f(u) + ∆uλ) ≤ ρ(‖u‖) ‖∆qu‖pp − (p− 1)〈|∆quλ|p−2∇(∆quλ),∇(∆quλ)〉

= ρ(‖u‖) ‖∆qu‖pp − (p− 1)
∑

i=1,··· ,n

∫
Ω

∣∣∣(∆quλ)
p
2−1∂i(∆quλ)

∣∣∣2
= ρ(‖u‖) ‖∆qu‖pp − 4(p− 1)p−2

∫
Ω

∣∣∣∇((∆quλ)
p
2

)∣∣∣2
2

= ρ(‖u‖) ‖∆qu‖pp − 4(p− 1)p−2
∥∥∥∇((∆quλ)

p
2 )
∥∥∥2

. (4.10)

Thus, applying (4.1) to (∆quλ)
p
2 (we remember that uλ ∈ domVp,q so that ∆quλ ∈ Lp(Ω) and

(∆quλ)
p
2 ∈ L2(Ω); while the relation ∇((∆quλ)

p
2 ) ∈ L2(Ω) is a consequence of the last equality

above) we write

c(n,Ω)
∥∥∥(∆quλ)

p
2

∥∥∥2

≤
∥∥∥∇((∆quλ)

p
2 )
∥∥∥2

, (4.11)

and so (4.10) infers

V ′p,q(u; f(u) + ∆uλ) ≤ ρ(‖u‖) ‖∆qu‖pp − 4c(n,Ω)(p− 1)p−2 ‖∆quλ‖pp .

By the lower semicontinuity of Vp,q we have that ‖∆qu‖pp = pV (u) ≤ lim infλ→0+ pV (uλ) =
‖∆quλ‖pp. Thus, taking limits in the last inequality, and making use of the current assumption
on the function ρ,

lim inf
λ→0+

V ′p,q(u; f(u) + ∆uλ) + 2c(n,Ω)(p− 1)p−2 ‖∆qu‖pp

≤ (ρ(‖u‖)− 2c(n,Ω)(p− 1)p−2) ‖∆qu‖pp ≤ 0.

Consequently, as δ〈u− uλ,∆uλ〉 = −δ ‖u− uλ‖2 ≤ 0, we obtain

lim inf
domA3v→u

V ′p,q(u; f(u) + ∆v) + δ〈u− v,∆v〉+ 2c(n,Ω)(p− 1)p−1Vp,q(v) ≤ 0,

which in view of Theorem 3.5 (together with Remark 3.2) achieves the proof of the statement
(i).

(ii) In the case where n ≥ 3, applying the Sobolev inequality to (∆quλ)
p
2 we also find a

constant c2 > 0, also depending only on n and Ω, such that

c2

(∫
Ω

∣∣∣(∆quλ)
p
2

∣∣∣2n(n−2)−1)(n−2)(2n)−1

≤
(∫

Ω

∣∣∣∇((∆quλ)
p
2

)∣∣∣2) 1
2

.
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Hence, using once again (4.11), from (4.10) gives that

V ′p,q(u; f(u) + ∆uλ)

≤ ρ(‖u‖) ‖∆qu‖pp − 2(p− 1)p−2
∥∥∥∇((∆quλ)

p
2 )
∥∥∥2

− 2(p− 1)p−2
∥∥∥∇((∆quλ)

p
2 )
∥∥∥2

≤ ρ(‖u‖) ‖∆qu‖pp − 2c(n,Ω)(p− 1)p−2 ‖∆quλ‖pp − 2c2(p− 1)p−2

(∫
Ω

∣∣∣(∆quλ)
p
2

∣∣∣ 2n
n−2
)n−2

n

= ρ(‖u‖) ‖∆qu‖pp − 2c(n,Ω)(p− 1)p−2 ‖∆quλ‖pp

− 2c2(p− 1)p−2

(
pn

n− 2

)n−2
n (

Vpn(n−2)−1,q(uλ)
)n−2

n .

Consequently, taking into account the lsc of Vp,q and Vpn(n−2)−1,q (as p, pn(n − 2)−1 ≥ 2),
together with the current assumption on the function ρ,

lim inf
λ→0+

V ′p,q(u; f(u) + ∆uλ) + 2c2(p− 1)p−2

(
pn

n− 2

)n−2
n (

Vpn(n−2)−1,q(uλ)
)n−2

n ≤ 0,

so that, applying Theorem 3.5 together with Remark 3.2, statement (ii) follows by taking a2 =

2c2(p− 1)p−2
(
pn
n−2

)n−2
n

.

In the following example we investigate the invariance with respect to (4.2) of the convex
subsets Cp ⊂ L2(Ω), p ∈ N, given by

C0 :=
{
u ∈ L2(Ω) | u(x) ≥ 0 for x ∈ Ω a.e.

}
,

and for p ≥ 1 by

Cp :=
{
u ∈ L2(Ω)

∣∣∣∣ ∆pu ∈ L2(Ω), ∆ku ∈ H1
0 (Ω) for all k = 0, · · · , p− 1,∫

Ω
v∆pu ≥ 0 for all v ∈ L2(Ω) s.t. v ≥ 0 on Ω a.e.

}
.

Example 4.3. For every integer p ≥ 0, the set Cp is invariant for (4.2).

Proof. We fix p ∈ N, u ∈ Cp, and ξ ∈ NCp(u); hence, as Cp is a cone and θ ∈ Cp we get that
〈ξ, u〉 = 0. Next, we consider the sequence (uλ)λ>0 defined in (4.7); i.e. uλ = (I − λ∆)−1(u), so
that ∆kuλ ∈ H1

0 (Ω) for all k = 0, . . . , p, and∫
Ω

(∆puλ)−∆pu = −λ
∫

Ω

(∆puλ)−∆p+1uλ −
∫

Ω

∣∣(∆puλ)−
∣∣2 ,

where (∆puλ)− := −min{∆puλ(x), 0} is the negative part of ∆puλ. On another hand, according
to Tartar [35, Chapt. 4 Lemma 1.1], (∆puλ)− ∈ H1

0 (Ω) and we have that

∂

∂xi
(∆puλ)− = 0 if ∆puλ ≥ 0, and

∂

∂xi
(∆puλ)− = − ∂

∂xi
(∆puλ) if ∆puλ < 0. (4.12)
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Hence, according to the Green formula we obtain∫
Ω

(∆puλ)−∆pu = −λ
∫

Ω

(∆puλ)−∆p+1uλ +
∫

Ω

(∆puλ)−∆puλ

= λ

∫
Ω

∇((∆puλ)−)∇(∆puλ)−
∫

Ω

∣∣(∆puλ)−
∣∣2 .

Thus, using the decomposition ∆puλ = (∆puλ)+−(∆puλ)−, where (∆puλ)+ denotes the positive
part, and the fact that

∫
Ω
∇((∆puλ)−)∇((∆puλ)+) = 0 (remember (4.12)),∫

Ω

(∆puλ)−∆pu = λ

∫
Ω

∇((∆puλ)−)∇((∆puλ)+)− λ
∫

Ω

∣∣∇((∆puλ)−)
∣∣2 − ∫

Ω

∣∣(∆puλ)−
∣∣2

= −λ
∫

Ω

∣∣∇((∆puλ)−)
∣∣2 − ∫

Ω

∣∣(∆puλ)−
∣∣2 .

Consequentely, as
∫

Ω
(∆puλ)−∆pu ≥ 0 (remember that u ∈ Cp) it infers that (∆puλ)−(x) = 0,

for x ∈ Ω a.e., and so uλ ∈ Cp. Finally, observing that 〈ξ, f(u)〉 = ρ(‖u‖)〈ξ, u〉 = 0, by the
definition of ξ it follows that

〈ξ, f(u) + ∆uλ〉 ≤ λ−1〈ξ, uλ − u〉 ≤ 0.

Thus, the desired conclusion follows from Theorem 3.6.

Example 4.4. (Continuation of Example 3.1) For fixed p ∈ N, we consider the dynamical
systems given in R by

ẋp(t;x0) ∈ −Sign(xp(t;x0)) + p |xp(t;x0)| a.e. t ≥ 0, xp(0;x0) = x0 ∈ R.

We define the functions Vp : R→ R ∪ {+∞} as V0(x) := |x| and, if p > 0,

Vp(x) := |x| if |x| ≤ 1
p

and Vp(x) = +∞ otherwise.

Then, Vp is a Lyapunov function with respect to the system above.

Proof. We fix x ∈ R. Because each Vp is convex ∂PVp(x) = ∂Vp(x) and, so, ∂V0(x) = {sign(x)},
∂∞V0(x) = {0},

∂Vp(x) =


{sign(x)} if |x| < 1

p

[1,+∞) if x = 1
p

(−∞,−1] if x = − 1
p

∅ if x /∈ [− 1
p ,

1
p ].

, ∂∞Vp(x) =


{0} if |x| < 1

p

[0,+∞) if x = 1
p

(−∞, 0] if x = − 1
p

∅ if x /∈ [− 1
p ,

1
p ].

Then, since that

〈∂V0(x),−Sign(x)〉 = 〈sign(x),−Sign(x)〉 = −(Sign(x))2 ≤ 0,

〈∂Vp(x),−Sign(x) + p |x|〉 = (Sign(x))2(px− 1) ≤ 0 if p > 0 and px < 1,

〈α,−Sign(x) + p |x|〉 = 0 for α ∈ [0,+∞) and x =
1
p
, and

〈α,−Sign(x) + p |x|〉 = 2α ≤ 0 for α ∈ (−∞, 0] and x = −1
p
,
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Theorem 3.3(iv) applies and yields the desired conclusion.

Example 4.5. We consider the differential inclusion given in R by

ẋ ∈ d(x, [0, 1/4])(x− 1)−NR+(x),

where d(·, [0, 1/4]) is the usual distance to [0, 1/4]. Then, the set [0, 1/4] is stable in the following
sense: for every ε > 0, there exists δ > 0 such that, for every x0 ∈ ]1/4, 1/2],

x0 − 1/4 ≤ δ =⇒ d(x(t;x0), [0, 1/4]) ≤ ε ∀t ≥ 0. (4.13)

Proof. We consider the (convex) lsc proper function V : R→ R ∪ {+∞} given by

V (x) :=
1
2
d2(x, [0, 1/4]) if x ∈ [0, 1/2] and V (x) := +∞ otherwise,

so that, for x ∈ [0, 1/2],

∂V (x) =


0 if x ∈ ]0, 1/4],
x− 1

4 if x ∈ ]1/4, 1/2[ ,
]−∞, 0], if x = 0,
[1/4,+∞[, if x = 1/2,

∂∞V (x) =

 0 if x ∈ ]0, 1/2[ ,
]−∞, 0], if x = 0,
[0,+∞[, if x = 1/2.

Then, if x ∈ [0, 1/2], ξ1 ∈ ∂V (x) and ξ2 ∈ ∂∞V (x),

0 ≥ 〈ξ1, d(x, [0, 1/4])(x− 1)〉 =

 0 ∈ R− if x ∈ [0, 1/4],
(x− 1/4)2(x− 1) ∈ R− if x ∈ ]1/4, 1/2[ ,
α ∈ R− if x = 1/2;

0 ≥ 〈ξ2, d(x, [0, 1/4])(x− 1)〉 =
{

0 ∈ R− if x ∈ [0, 1/2[ ,
α ∈ R− if x = 1/2.

In other words, Theorem 3.3(iv) applies and entails that V is a Lyapunov function. Consequently,
if x0 ∈ ]1/4, 1/2], then by Lyapunov’s Inequality we obtain that

d(x(t;x0), [0, 1/4]) ≤ x0 − 1/4 for all t ≥ 0.

Thus, for every given ε > 0 the inequality in (4.13) holds with δ =
√

2ε for t > 0.

5. Other criteria for Lyapunov pairs. In this section we make a unified review of many
other useful criteria for a-Lyapunov pairs with respect to (1.1).

The first result extends in our setting [30, Theorem 3.6].

Corollary 5.1. Let V ∈ Fw(H), W ∈ F+(H), and a ∈ R+ be given, and fix ȳ ∈
cl(Dom A), λ̄ ∈ [−∞, V (ȳ)), and ρ̄ ∈ (0,+∞] so that

Bρ̄(ȳ) ∩ [V > λ̄] ∩Dom V ⊂ cl(Dom A).

Let ψ : R→ R be a C1-concave function, with a positive derivative, and satisfying lim
α→+∞

ψ(α) =
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+∞. Furthermore, let assume that, for every y ∈ Bρ̄(ȳ) ∩ [V > λ̄] and δ > 0,

sup
ξ∈∂PV (y)

lim inf
z →
Dom A

y
inf

z∗∈Az
〈ξ + δ(y − z), f(z)− z∗〉+ [ψ′(V (y))]−1 (aV (y) +W (y)) ≤ 0,

sup
ξ∈∂∞V (y)

lim inf
z →
Dom A

y
inf

z∗∈Az
〈ξ + y − z, f(z)− z∗〉 ≤ 0.

Then, for every x0 ∈ Bρ̄(ȳ) ∩ [V > λ̄] ∩Dom V it holds that

eatψ(V (x(t;x0))) +
∫ t

0

W (x(τ ;x0))dτ ≤ ψ(V (x0)) ∀t ∈ [0, ρ(x0)] ,

where ρ(x0) > 0 is defined in (3.6).

Proof. First, according to Lemma 3.1 we may suppose that W is Lipschitz continuous on
bounded sets of H. Let us use the notation Ṽ := ψ ◦ V + δDom V and remark that Dom Ṽ ⊂
Dom V ; hence, Bρ̄(ȳ) ∩ [V > λ̄] ∩ Dom Ṽ ⊂ cl(Dom A). To show that Ṽ ∈ Fw(H), we pick
a sequence (yk)k that weakly converges to a given y ∈ H, and without any loss of general-
ity, we may suppose that (yk)k ⊂ Dom V, y ∈ Dom V, and (V (yk))k is bounded, and there-
fore supk ψ′(V (yk)) ≤ m for some m ∈ R+; otherwise, lim infk V (yk) = +∞ and so, since
limα→+∞ ψ(α) = +∞, we deduce that limk→∞ Ṽ (yk) = limk→∞ ψ(V (yk)) = +∞ ≥ Ṽ (y). Now,
invoking the concavity of ψ, for each k we get

Ṽ (y)− Ṽ (yk) = ψ(V (y))− ψ(V (yk)) ≤ ψ′(V (yk))(V (y)− V (yk)),

and taking the limit as k → +∞, we obtain

Ṽ (y)− lim inf
k

Ṽ (yk) ≤ lim sup
k

ψ′(V (yk))(V (y)− V (yk)) ≤ m(V (y)− lim inf
k

V (yk)) ≤ 0,

showing that Ṽ ∈ Fw(H).
The next step consists of proving that, for every given y ∈ Dom Ṽ (⊂ Dom V ),

∂P Ṽ (y) ⊂ ψ′(V (y))∂PV (y), ∂∞Ṽ (y) ⊂ ∂∞V (y).

Indeed, if ξ ∈ ∂P Ṽ (y), there exits α ≥ 0 such that for all z ∈ Dom V close enough to y one has,
using the current assumptions on ψ,

〈ξ, z − y〉 ≤ ψ(V (z))− ψ(V (y)) + α ‖y − z‖2 ≤ ψ′(V (y))(V (z)− V (y)) + α ‖y − z‖2 ;

thus, ξ ∈ ψ′(V (y))∂PV (y). While, for ξ ∈ ∂∞Ṽ (y) there are sequences yk →eV y, αk → 0+, and

ξk ∈ ∂P Ṽ (yk) such that αkξk ⇀ ξ; w.l.o.g., we may suppose that (yk)k ⊂ Dom Ṽ (⊂ Dom V )
and (V (yk))k is bounded (as ψ(V (yk)) → ψ(V (yk)) ∈ R). Also, subsequencing if necessary, in
view of the properties of ψ and the fact that Ṽ (yk)→ Ṽ (y) we may suppose that V (yk)→ V (y)
and, so, yk →

V
y and ψ′(V (yk)) → ψ′(V (y)). Now, for each k, it follows from above that ξ̂k :=

[ψ′(V (yk))]−1
ξk ∈ ∂PV (yk). Thus, since that α̃k := ψ′(V (yk))αk → ψ′(V (y))0+ = 0+, yk →

V
y

and α̃k ξ̂k = αkξk ⇀ ξ we deduce that ξ ∈ ∂∞V (y). Finally, we conclude by appling Theorem
3.3(iv) to the pair (Ṽ ,W ).
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The following result follows the lines of [25,30].

Corollary 5.2. Let V ∈ Fw(H) satisfy Dom V ⊂ cl(Dom A), W ∈ F+(H), and a ∈ R+.
We assume that, for all y ∈ Dom V,

lim inf
λ→0+

λ−1 [V (Jλ(λf(y) + y))− V (y)] + aV (y) +W (y) ≤ 0.

Then, (V,W ) is an a-Lyapunov pair for (1.1).

Proof. First, as in Corollary 5.1, w.l.o.g. W is assumed to be Lipschitz continuous on bounded
sets of H. We fix ε > 0 and take y ∈ Dom V and (ξ, η) ∈ ÑP

epiV (y, V (y)). By the current
assumption, we take sequences (λk)k converging to 0+ as k → +∞ and (yk)k such that

yk := Jλk(λkf(y) + y)→ y, λ−1
k (y − yk)→ y, and λ−1

k ‖yk − y‖
2 → 0,

together with (
yk

V (y) + λk [ε− aV (y)−W (y)]

)
∈ epiV for k = 1, 2, · · · . (5.1)

Let us also set y∗k for λ−1
k (λkf(y) + y − yk). Then, y∗k ∈ Ayk and

lim inf
k→+∞

〈y − yk,−y∗k〉 = lim inf
k→+∞

〈y − yk,−f(y)− λ−1
k (y − yk)〉 ≤ 0. (5.2)

Now, as (ξ, η) ∈ ÑP
epiV (y, V (y)), from (5.1) we may suppose that, for each k ∈ N∗,〈(

ξ
η

)
,

(
yk − y

λk [ε− aV (y)−W (y)]

)〉
≤ ‖yk − y‖2 + λ2

k ‖ε− aV (y)−W (y)‖2 ,

from which we obtain

〈ξ, f(yk)− y∗k〉 = λ−1
k 〈(ξ, η), (yk − y, λk(ε− aV (y)−W (y)))〉

+ η(aV (y) +W (y)− ε) + 〈ξ, f(yk)− f(y)〉

≤ λ−1
k ‖yk − y‖

2 + λk ‖ε− aV (y)−W (y)‖2

+ η(aV (y) +W (y)− ε) + 〈ξ, f(yk)− f(y)〉.

Hence, by the Lipschitz continuity of f on cl(Dom A), and by virtue of (5.2), we deduce that

lim inf
z →
Dom A

y
inf

z∗∈Az
〈ξ + y − z, f(z)− z∗〉 ≤ lim inf

k→+∞
〈ξ + y − yk, f(yk)− y∗k〉 ≤ η(aV (y) +W (y)− ε).

Finally, when ε→ 0+, Theorem 3.3(v) follows as well as the desired conclusion.

The following Corollary, originally given in [1], is an immediate consequence of Theorem 3.3.

Corollary 5.3. Let ϕ ∈ F(H) be convex, V ∈ Fw(H) satisfy Dom V ⊂ cl(Dom ϕ),
W ∈ F+(H), and a ∈ R+. We assume that, for all y ∈ Dom V and δ > 0,

sup
ξ∈∂PV (y)

lim inf
z →
Dom (∂ϕ)

y
ϕ(z − δ(y − z)− ξ)− ϕ(z) + 〈ξ, f(y)〉+ aV (y) +W (y) ≤ 0,
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sup
ξ∈∂∞V (y)

lim inf
z →
Dom (∂ϕ)

y
ϕ(2z − y − ξ)− ϕ(z) + 〈ξ, f(y)〉 ≤ 0.

Then, (V,W ) is an a-Lyapunov pair for (1.1) when A = ∂ϕ.

Proof. We take δ > 0 and ξ ∈ ∂PV (y) for some y ∈ Dom V ⊂ cl(Dom ϕ) (= cl(Dom (∂ϕ))).
If ε > 0 is given, by the current assumption we find a sequence (yk, y∗k)k ⊂ ∂ϕ such that (yk)k
converges to y and

ϕ(yk − δ(y − yk)− ξ)− ϕ(yk) + 〈ξ, f(yk)〉 ≤ ε− aV (y)−W (y) for k = 1, 2, · · · .

Then, for each k ∈ N∗ we write

〈ξ + δ(y − yk), f(yk)− y∗k〉 = 〈ξ + δ(y − yk), f(yk)〉+ 〈yk − δ(y − yk)− ξ − yk, y∗k〉
≤ 〈ξ + δ(y − yk), f(yk)〉+ ϕ(yk − δ(y − yk)− ξ)− ϕ(yk)
≤ δ〈y − yk, f(yk)〉 − aV (y)−W (y) + ε.

Thus, by taking limits as k → +∞ and next letting ε→ 0, we obtain that

sup
ξ∈∂PV (y)

lim inf
z →
Dom A

y
inf

z∗∈Az
〈ξ + δ(y − z), f(z)− z∗〉 ≤ −aV (y)−W (y).

Following the same argument we show that

sup
ξ∈∂∞V (y)

lim inf
z →
Dom A

y
inf

z∗∈Az
〈ξ + y − z, f(z)− z∗〉 ≤ 0,

and, so, the conclusion follows from Theorem 3.3(iv).

To fix ideas, let us end up the section by discussing the simple case A = 0 of an ordinary
differential equation. Then, (1.1) reads: for every x0 ∈ H there exists a unique x(·;x0) ∈
C1(0,∞;H) such that x(0;x0) = x0 and

ẋ(t;x0) = f(x(t;x0)) for all t ≥ 0. (5.3)

In this case, Theorem 3.4 simplifies to (see [20,37] for related results):

Corollary 5.4. Let V ∈ Fw(H) satisfy Dom V ⊂ cl(Dom A), W ∈ F+(H), and a ∈ R+.
Then, the following statements are equivalent :

(i) (V,W ) is an a-Lyapunov pair for (5.3);
(ii) for every y ∈ Dom V,

V ′(y, f(y)) + aV (y) +W (y) ≤ 0;

(iii) for every y ∈ Dom V,

sup
ξ∈∂V (y)

〈ξ, f(y)〉+ aV (y) +W (y) ≤ 0,

where ∂V either stands for ∂PV, ∂LV, ∂FV, or ∂CV.

Proof. The equivalence of (i), (ii), and ((iii) with ∂ = ∂P ) comes from Theorem 3.4. So, we
only need to prove that (iii) for ∂ = ∂P implies (iii) for ∂ = ∂C , since ∂C is the largest among
all the cited subdifferentials. We fix y ∈ Dom V ; if ξ ∈ ∂LV (y), then there exist yk →

V
y and
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(ξk)k ⊂ H such that ξk ∈ ∂PV (yk) for each k and ξk ⇀ ξ. Thus, applying (iii) for ∂ = ∂P yields

〈ξk, f(yk)〉+ aV (yk) +W (yk) ≤ 0 for each k ∈ N. (5.4)

Passing to the limit as k goes to +∞, and taking into account the lower semicontinuity of V and
W, it follows that

〈ξ, f(y)〉+ aV (y) +W (y) ≤ 0.

Now, if ξ ∈ ∂∞V (y), then there exist yk →
V
y and αk → 0+, together with (ξk)k ⊂ H, such

that ξk ∈ ∂PV (yk) for each k and αkξk ⇀ ξ. Thus, ξk and yk satisfy (5.4) which in turn, after
multiplying by αk and next taking limits as k → +∞, gives us 〈ξ, f(y)〉 ≤ 0. Consequently, (iii)
for ∂ = ∂C follows from the representation formula (2.3): ∂CV (y) = co{∂LV (y) ∪ ∂∞V (y)}.

6. Appendix: proof of Theorem 3.3((v) =⇒ (i)) and Theorem 3.4((iv) =⇒ (i)).
This section is devoted to complete the missing proofs of Theorems 3.3 and 3.4.

We begin by giving a couple of lemmas:

Lemma 6.1. Let S ⊂ H be a weakly closed set. Then, for every x ∈ H \ S we have that

∂Ld(·, S)(x) ⊂
{
x−ΠS(x)
d(x, S)

}
.

Proof. We fix x ∈ H \S and pick ξ ∈ ∂Ld(·, S)(x). Then, there exist sequences (xk)k, (ξk)k ⊂ H
such that xk → x, ξk ∈ ∂P d(xk, S) for every k, and ξk ⇀ ξ. In particular, for each k, we
may suppose that xk /∈ S and so {ΠS(xk)} is a singleton and ξk = xk−ΠS(xk)

d(xk,S) (see, e.g., [21]).
Furthermore, as ‖xk −ΠS(xk)‖ ≤ d(xk, S) ≤ ‖xk − x‖ + d(x, S), the sequence (ΠS(xk))k is
bounded and so, subsequencing if necessary, we may assume that it weakly converges, say to
some x̄ ∈ S. Hence, writing

‖x− x̄‖ ≤ lim inf
k→+∞

‖xk −ΠS(xk)‖ = lim
k
d(xk, S) = d(x, S),

it follows that x̄ ∈ ΠS(x) and, so,

ξ = weak- lim
k
ξk = lim

k
ξk =

x− x̄
d(x, S)

⊂ x−ΠS(x)
d(x, S)

,

as we wanted to prove.

The following lemma is the Gronwall Lemma (e.g., [1, Lemma 1]).

Lemma 6.2. Given t2 > t1 ≥ 0, a 6= 0, and b ≥ 0, we assume that the absolutely continuous
function h : [t1, t2]→ R+ satisfies h′(t) ≤ ah(t) + b a.e. t ∈ [t1, t2]. Then, for all t ∈ [t1, t2],

h(t) ≤
(
h(t1) +

b

a

)
ea(t−t1) − b

a
.

6.1. Proof of Theorem 3.3 ((v) =⇒ (i)). Proof. First, according to Lemma 3.1 we
may assume (w.l.o.g.) that W is Lipschitz continuous on every compact subset of H; hence, we
shall use LW to refer to its Lipschitz constant on Bρ̄(ȳ). We recall that Lf denotes the Lipschitz
constant of the mapping f on cl(Dom A).

In this first part we gather the notation that we will use in the remainder of the proof. We
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fix x0 ∈ Bρ̄(ȳ) ∩ [V > λ̄] ∩ Dom V and according to the weak lower semicontinuity of V we fix
ρ > 0 such that

Bρ(x0) ⊂ Bρ̄(ȳ) ∩ [V > λ̄]. (6.1)

Using the continuity of x(·;x0), we also select ν > 0 such that

sup
t∈[0,ν]

2 ‖x(t;x0)− x0‖+
∣∣∣∣(e−at − 1

)
V (x0)−

∫ t

0

W (x(τ ;x0))dτ
∣∣∣∣ < ρ. (6.2)

Next, we fix T > ν and take a sequence (yn)n∈N∗ ⊂ Dom A that converges to x0. Let xn(·; yn)
denote the (strong) solution of the differential inclusion

ẋn(t; yn) ∈ f(xn(t; yn))−Axn(t; yn), a.e. t ≥ 0, xn(0, yn) = yn. (6.3)

We know that the sequence (xn(·; yn))n uniformly converges to x(·;x0) on [0, T ] and, so, we may
suppose that (see (6.1) and (6.2)), for all t ∈ [0, ν] and every n, n′ ≥ 1,

xn(t; yn) ∈ B ρ
2
(x0) (⊂ Bρ̄(ȳ)), (6.4)

2 ‖xn′(t; yn′)− x0‖+
∣∣∣∣(e−at − 1)V (x0)−

∫ t

0

W (xn(τ ; yn))dτ
∣∣∣∣ < ρ. (6.5)

Now, if n ∈ N∗ is fixed, we define the C1-function hn : [0, T ] ⊂ R+ → R+ as

hn(t) :=
∫ t

0

W (xn(τ ; yn))dτ ; (6.6)

and the functions γn(·) : [0, T ] ⊂ R+ → R, zn(·) : [0, T ] ⊂ R+ → H × R, and ηn : [0, T ] ⊂ R+ →
R+ given respectively by

γn(t) := e−at(V (x0)− hn(t)), zn(t) := (xn(t; yn), γn(t)), ηn(t) :=
1
2
d2(zn(t), epiV ). (6.7)

We observe that each function ηn is Lipschitz continuous on every compact interval in (0, T ] so
that, using a well known chain rule (e.g. [19]), for all t ∈ (0, T ) we obtain

∂Cηn(t) = d(zn(t), epiV )∂Cd(zn(·), epiV )(t) 6= ∅.

Thus we observe that if zn(t) ∈ epiV , then ∂Cηn(t) = {0}.

In order to establish Theorem 3.3(i), we shall proceed by step.

First, in the following lemma we give a general estimation of ∂Cηk :

Lemma 6.3. We let n ∈ N∗ and t ∈ (0, T ) be such that zn(t) 6∈ epiV. Then, we have that

∂Cηn(t) ⊂co

 ⋃
(u,µ)∈E

〈
zn(t)−

(
u

µ

)
,

(
f(xn(t; yn))−Axn(t; yn)
−aγn(t)− e−atW (xn(t; yn))

)〉 ,
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where

E := ΠepiV (zn(t)) ∩ (Bρ(x0)× [γn(t), γn(t) + ρ]) .

Proof. We take ξ ∈ d(zn(t), epiV )∂Ld(·, epiV )(zn(t)). Since that epiV is weakly closed in
H × R, by Lemma 6.1 there exists some (u, µ) ∈ ΠepiV (zn(t)) such that ξ = zn(t)− (u, µ), and,
as (x0, V (x0) + (1− e−at)hn(t)) ∈ epiV (we recall that W ∈ F+(H)),

max{|µ− γn(t)| , ‖u− x0‖} ≤ ‖(u, µ)− zn(t)‖+ ‖xn(t; yn)− x0‖
≤
∥∥zn(t)− (x0, V (x0) + (1− e−at)hn(t))

∥∥+ ‖xn(t; yn)− x0‖ .
(6.8)

Thus, by (6.2),

max{|µ− γn(t)| , ‖u− x0‖} ≤ 2 ‖xn(t; yn)− x0‖+
∣∣(e−at − 1)V (x0)− hn(t)

∣∣ < ρ.

We also observe that V (u) > γn(t) because, otherwise, we would have

V (u) ≤ γn(t) < V (xn(t; yn))

which in turn yields the contradiction

d(zn(t), epiV ) = ‖zn(t)− (u, γn(t))‖ < ‖(u, µ)− zn(t)‖ = d(zn(t), epiV ). (6.9)

Consequently, we write

(u, µ) ∈ ΠepiV (zn(t)) ∩ (Bρ(x0)× [γn(t), γn(t) + ρ]) ,

and so, from one hand, by (2.3) it follows that (see, e.g., [19])

d(zn(t), epiV )∂Cd(zn(·), epiV )(t) ⊂ co

 ⋃
(u,µ)∈E

∂C 〈zn(t)− (u, µ), zn(·)〉 (t)

 . (6.10)

On the other hand, set D := {t ∈ [0, T ] | xn(·; yn) is differentiable at t for all n}; hence, the set
H \D is of measure zero, for each n ∈ N∗ there exists a number δn > 0 such that

sup
t∈D
‖ẋn(t; yn)‖+ |γ̇n(t)| ≤ δn,

and, by the Lipschitz continuity of zn(·),

∂C〈p∗, zn(·)〉(t) = co{lim
n
〈p∗, żn(tk) ∩Bδn〉 | tk → t; tk ∈ D}.

Therefore, invoking the (‖·‖ × weak) upper semicontinuity of A, and taking limits as k → +∞
one obtains:

∂C〈p∗, zn(·)〉(t) ⊂
{〈

p∗,

(
f(xn(t; yn))−Axn(t; yn)
−aγn(t)− e−ath′n(t)

)〉}
. (6.11)

Combining (6.11) to (6.10) yields the desired conclusion of the current lemma.
Next, we improve the formula given in Lemma 6.3, provided that the current assumption
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(Theorem 3.3(v)) is assumed.

Lemma 6.4. We let n ∈ N∗ and t ∈ (0, T ) be given. Then, the following inclusion holds:

∂Cηn(t) ⊂ (−∞, 2 (Lf + LW ) ηn(t)] for all t ∈ [0, ν]. (6.12)

Proof. We suppose that V (xn(t; yn)) > γn(t) because, otherwise, ∂Cηn(t) = {0} and the
conclusion obviously holds. Then, according to Lemma 6.3, it suffices to show that for every
fixed x∗n ∈ Axn(t; yn) and (u, µ) ∈ ΠepiV (zn(t)) ∩ (Bρ(x0)× [γn(t), γn(t) + ρ]) it holds that

ψ(u, µ, x∗n) :=
〈
zn(t)−

(
u

µ

)
,

(
f(xn(t; yn))− x∗n

−aγn(t)− e−atW (xn(t; yn))

)〉
≤ 2(Lf + LW )ηn(t). (6.13)

Indeed, as the vector (u, µ) (∈ ΠepiV (zn(t))) obviously verifies

〈zn(t)− (u, µ), (u′, µ′)− (u, µ)〉 ≤ ‖(u′, µ′)− (u, µ)‖2 ∀(u′, µ′) ∈ epiV,

we have that zn(t) − (u, µ) ∈ ÑP
epiV (u, µ) (remember (2.5)), with u ∈ Bρ(x0) ∩ Dom V ⊂

cl(Dom A) ∩ Bρ̄(ȳ) ∩ [V > λ̄], according to (6.1). Hence, taking into account the current as-
sumption (Theorem 3.3(v)), there exists a sequence (uk, u∗k)k ⊂ A such that uk → u and, for all
k ≥ 1,

Lf ‖xn(t; yn)− u‖ ‖u− uk‖+ ‖uk − u‖ ‖f(uk)− x∗n‖ ≤
1
k
, (6.14)

〈xn(t; yn)− uk, f(uk)− u∗k〉 ≤ (γn(t)− µ)(aV (u) +W (u)) +
1
k
.

Thus, writing

〈xn(t; yn)− u, f(xn(t; yn))− x∗n〉 = 〈xn(t; yn)− u, f(xn(t; yn))− f(uk)〉
+〈xn(t; yn)− uk, f(uk)− u∗k〉
+〈xn(t; yn)− uk, u∗k − x∗n〉 ( ≤ 0 as A is monotone)
+〈uk − u, f(uk)− x∗n〉,

and using the Lf -Lipschitz continuity of f yields

〈xn(t; yn)− u, f(xn(t; yn))− x∗n〉 ≤ Lf ‖xn(t; yn)− u‖ ‖xn(t; yn)− uk‖

+ (γn(t)− µ)(aV (u) +W (u)) +
1
k

+ ‖uk − u‖ ‖f(uk)− x∗n‖

≤ 2Lfηn(t) + (γn(t)− µ)(aV (u) +W (u)) +
2
k
,
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where in the last inequality we have used (6.14). Consequently, when k → +∞,

ψ(u, µ, x∗n) = 〈xn(t; yn)− u, f(xn(t; yn))− x∗n〉
+ a(µ− γn(t))γn(t) + (µ− γn(t))e−atW (xn(t;xn))

≤ 2Lfηn(t)− (µ− γn(t))(aV (u) +W (u))

+ a(µ− γn(t))γn(t) + (µ− γn(t))e−atW (xn(t; yn))

= a(µ− γn(t))(γn(t)− V (u)) ( ≤ 0 in view of (6.9))

+ 2Lfηn(t) + (µ− γn(t))(e−atW (xn(t; yn))−W (u))

≤ 2Lfηn(t) + (µ− γn(t))e−at(W (xn(t; yn))−W (u)).

But, u, xn(t; yn) ∈ Bρ(x0) ⊂ Bρ̄(ȳ) and W is LW -Lipschitz continuous on Bρ̄(ȳ), and so

ψ(u, µ, x∗n) ≤ 2Lfηn(t) + LW |µ− γn(t)| ‖xn(t; yn)− u‖ ≤ 2(Lf + LW )ηn(t),

establishing (6.13).

Finally, in the last lemma we obtain the desired conclusion.

Lemma 6.5. Theorem 3.4(i) holds; that is, for all t ∈ [0, ρ(x0)] we have that

eatV (x(t;x0)) +
∫ t

0

W (x(τ ;x0))dτ ≤ V (x0). (6.15)

Proof. As the number ν can be chosen close enough to ρ(x0) (remember (6.2)), in view of the
weak lower semicontinuity of V and the continuity of x(·;x0) it suffices to show that (6.15) holds
on [0, ν]. For this aim, we fix t1, t2 ∈ (0, ν), t ∈ (t1, t2), and n ∈ N∗. By invoking (6.12) together
with Lemma 6.2, we obtain that

e−2(Lf+LW )t(Lf + LW )ηn(t) ≤ e−2(Lf+LW )t1(Lf + LW )ηn(t1).

Thus, by making t1 → 0, it follows that d ((xn(t; yn), e−at(V (x0)− hn(t))), epiV ) = 0 which in
turn gives us, as n→ +∞,

eatV (x(t;x0)) +
∫ t

0

W (x(τ ;x0))dτ ≤ V (x0),

as we wanted to prove.

6.2. Proof of Theorem 3.4 ((iv) =⇒ (i)). Proof. Let us recall the notation used in
the proof of Theorem 3.3((v) =⇒ (i)) (see Page 26): for a fixed x0 ∈ Bρ̄(ȳ) ∩ [V > λ̄] ∩ Dom V,
the numbers ρ, ν > 0 satisfy (6.1) and (6.2). For given T > ν and (yn)n∈N∗ ⊂ Dom A, xn(·; yn)
is the strong solution of (6.3) so that (6.4) and (6.5) hold, and xn(·; yn) uniformly converges to
x(·;x0) on [0, T ]. As well, the functions hn, γn(·), zn(·), ηn(t), n ∈ N∗, are those defined in (6.6)
and (6.7).

As in the proof of Theorem 3.3, namely, Lemma 6.5, it suffices to show that the current
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assumption (iv) leads us, for every given n ∈ N∗ and t ∈ (0, T ) such that zn(t) 6∈ epiV , to

∂Cηn(t) ⊂ (−∞, 2(LW + Lf )ηn(t)] for all t ∈ [0, ν].

But, we know that (see (6.10) and (6.11))

∂Cηn(t) ⊂co

 ⋃
(u,µ)∈d(zn(t),epiV )∂Ld(·,epiV )(zn(t))

〈
(u, µ),

(
f(xn(t; yn))−Axn(t; yn)
−aγn(t)− e−atW (xn(t; yn))

)〉 ,
and so we will be done if we show that, for every given (u, µ) ∈ d(zn(t), epiV )∂Ld(·, epiV )(zn(t))
and x∗n ∈ Axn(t; yn),〈

(u, µ),
(

f(xn(t; yn))− x∗n
−aγn(t)− e−atW (xn(t; yn))

)〉
≤ 2(LW + Lf )ηn(t); (6.16)

In this respect, by the definition of ∂L we select sequences (yk, γk)k, (uk, µk)k ⊂ H × R be such
that (see the proof of Lemma 6.1)

(yk, γk)− (uk, µk) ⇀ (u, µ), (yk, γk)→ zn(t), {(uk, µk)} = ΠepiV (yk, γk) ∀k ≥ 1;

hence,

(yk, γk)− (uk, µk) ∈ NP
epiV (uk, µk), γk ≤ µk, V (uk) = µk. (6.17)

Furthermore, arguing as in (6.8) and using the assumption on the operator A, we can assume
that

uk ∈ Bρ(x0) ∩Dom V ⊂ Bρ̄(ȳ) ∩ [V > λ̄] ∩ Int (Dom A) ∀k ≥ 1;

that is, w.l.o.g., (uk)k weakly converges to some ū ∈ Bρ(x0). So, taking into account the weak
lower semicontinuity of V, together with the current assumption (iv), we get that ū ∈ Bρ(x0) ∩
Dom V ⊂ Bρ̄(ȳ)∩ [V > λ̄]∩ Int (Dom A). In other words, using again the maximal monotonicity
of A, we may suppose that the sets {Auk}, k ≥ 1, are uniformly bounded.

Now, we fix ε > 0. If µk − γk > 0 for infinitely many k, (6.17) reads (µk − γk)−1(yk − uk) ∈
∂PV (uk) so that by the current assumption we find u∗k ∈ Auk such that

〈(µk − γk)−1(yk − uk), f(uk)− u∗k〉+ aV (uk) +W (uk) ≤ ε(µk − γk)−1; (6.18)

moreover, as the sets {Auk} are bounded independently of k, we may assume that (w.l.o.g.)

〈yk − xn(t; yn), u∗k − x∗n〉 ≤ ε for all k ≥ 1.

Then, we write

〈yk − uk, f(yk)− x∗n〉 = 〈yk − uk, f(yk)− f(uk)〉 (≤ Lf ‖yk − uk‖2)
+〈yk − xn(t; yn), u∗k − x∗n〉 ( ≤ ε)
+〈xn(t; yn)− uk, u∗k − x∗n〉 (≤ 0 by the monotonicity of A)
+〈yk − uk, f(uk)− u∗k〉,
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and so, by (6.18),

〈yk − uk, f(yk)− x∗n〉 ≤ Lf ‖yk − uk‖
2 − (µk − γk)(aV (uk) +W (uk)) + 2ε.

Hence, recalling that V (uk) = µk ≥ γk (by (6.17)) and W ≥ 0, we obtain that〈(
yk
γk

)
−
(
uk
µk

)
,

(
f(yk)− x∗n

−aγk − e−atW (yk)

)〉
= 〈yk − uk, f(yk)− x∗n〉+ (µk − γk)(aγk + e−atW (yk))

≤ Lf ‖yk − uk‖2 − (µk − γk)(aV (uk) +W (uk)) + (µk − γk)(aV (uk) +W (yk)) + 2ε

= Lf ‖yk − uk‖2 + (µk − γk)(W (yk)−W (uk)) + 2ε.

But, uk, yk ∈ Bρ(x0) ⊂ Bρ̄(ȳ) (remember that yk → xn(t; yn) ∈ Bρ(x0)), and so using the
LW -Lipschitzianity of W , the last inequality above gives us〈(

yk
γk

)
−
(
uk
µk

)
,

(
f(yk)− x∗n

−aγk − e−atW (yk)

)〉
≤ Lf ‖yk − uk‖2+

LW
2

(
|µk − γk|2 + ‖yk − uk‖2

)
+2ε;

that is, by taking the limits k → +∞ and next ε→ 0,〈
(u, µ),

(
f(xn(t; yn))− x∗n

−ae−at(V (x0)− hn(t))− e−atW (xn(t; yn))

)〉
≤ 2(LW + Lf )ηn(t),

establishing (6.16).
Now, if µk − γk(t) = 0 for all k, (6.17) reads yk − uk ∈ ∂∞V (uk) and so by the current

assumption we select u∗k ∈ Auk such that

〈yk − uk, f(uk)− u∗k〉 ≤ ε.

Moreover, as above we may assume that 〈yk − xn(t; yn), u∗k − x∗n〉 ≤ ε, for all k ≥ 1. Therefore
the Lf -Lipschitzianity of f together with the monotonicity of A, imply the relation〈(

yk
γk

)
−
(
uk
µk

)
,

(
f(yk)− x∗n

−aγk − e−atW (yk)

)〉
= 〈yk − uk, f(yk)− x∗n〉 ≤ Lf ‖yk − uk‖

2 + 2ε,

from which we derive (6.16) by passing to the limit, first as k → +∞ and then as ε→ 0.
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[26] Martinez-Legaz, J.-E., Théra, M. ε-subdifferentials in terms of subdifferentials. Set-Valued Anal. 4

(1996), no. 4, 327–332.
[27] Mordukhovich, B. S. Variational analysis and generalized differentiation. I. Basic theory. Grundlehren

der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 330. Springer-
Verlag, Berlin, 2006.

[28] Mordukhovich, B. S., Shao Y. Nonsmooth sequential analysis in Asplund spaces,. Trans. Amer. Math.
Soc. 348 (1996), 1235–1280.

[29] Pavel, N.H. Invariant sets for a class of semilinear equations of evolution. Nonlin. Anal. TMA. 1 (1977)
187-196

[30] Pazy, A. The Lyapunov method for semigroups of nonlinear contractions in Banach spaces. J. Anal. Math.
40 (1981), 239–262.

[31] Rockafellar, R.T., Wets, R. J.-B. Variational analysis. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], 317. Springer-Verlag, Berlin, 1998.

[32] Shevitz, D., Paden, B. Lyapunov stability theory of nonsmooth systems. IEEE Trans. Automat. Control
39 (1994), no. 9, 1910–1914.

[33] Simons, S. Minimax and Monotonicity. Lecture Notes in Mathematics. Volume 1693, Springer-Verlag,
Berlin, 1998.

[34] Smirnov, G. Introduction to the theory of differential inclusions. Graduate Studies in Mathematics, 41,
American Mathematical Society, 2002.

[35] Tartar, L. Topics in Nonlinear Analysis. Publ. Math. Univ. d’Orsay,. 13 (1978).
[36] Vrabie, I. I. Nagumo viability theorem. Revisited. Nonlinear Anal. 64 (2006), no. 9, 2043–2052.
[37] Zhu, Q.J. Lower semicontinuous Lyapunov functions and stability. J. Nonlinear Convex Anal. 4 (2003),

no. 3, 325–332.


