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Abstract

In this paper, we give a general construction of stationary Gaus-
sian processes indexed on graphs. This construction relies on spectral
theory of Hilbertian operators defined on a graph. We then extend
natural maximum likelihood estimators of the parameters of the cor-
responding spectral density and provide their asymptotic behaviour.
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Introduction

In the past few years, many interest has been paid to the study of ran-
dom fields over graphs, driven by the growing needs for both theoretical and
practical results for data defined on graphs. On one side, the definition of
graphical models by J.N. Darroch, S.L. Lauritzen and T.P. Speed in 1980 [7]
introduced a new regard on Markov fields, and many tools have been devel-
oped in this direction (see, for instance [18] and [19]). On another side, the
industrial demand linked to graphical problems had rose up with the appari-
tion of new technologies. In very particular the Internet and social networks
provide a huge field of applications, but biology, economy, geography or im-
age analysis benefit also from models taking into account a graph structure.

The analysis of road traffic is at the root of this work. Actually, predic-
tion of road traffic deals the forecast of the speed of the vehicles which may
be seen as a spatial random fields over the traffic network. If some work has
been done without taking into account the particular graph structure of the
speed process, see in particular [8] and [14] for the related statistical issues,
in this paper we build a model of a class of Gaussian random fields over
graphs and study the particular properties of such stochastic process.

A random field over graph is a spatial process indexed by the vertices of
a graph, namely Xi, i ∈ G. Many models already exist in the probabilist
literature, ranging from Markov fields to autoregressive processes, which are
based on two general kinds of construction. On the one hand, graphical
models following the ideas of Markov fields described for instance in [17],
are built by specifying a dependency structure for Xi and Xj , conditionally
to the other variables, as soon as the locations i and j are neighbors. This
particular dependency structure must be chosen by the statistician. We refer
for instance to [7] and references therein. On the other hand, the graph
itself, through the adjacency operator, can provide the dependency. This is
the case for autoregressive models (see [11]) using strongly the local form of
the graph for statistical inference.

We will provide in this paper a new framework taking into account both
advantages of these two points of views. Hence, we extend some classical
results from time series to spatial fields over general graph, and we will
tackle the issue of building ARMA processes on graphs and provide some
conditions on the graph. For this, we will make use of spectral analysis
of time series and extend to this framework classical results such as the
problem of identification of the maximum likelihood estimator, through an
approximation of the Gaussian contrast called the Whittle’s approximation
and usual Szegö Lemmas. This will enable us to construct a maximum
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likelihood estimate for the parameters of the spectral density of processes on
the graph that we will define. We point out that we will compare throughout
all the paper our new framework with the processes indexed by Z

d with d ≥ 1.

The paper falls into the following parts. Section 1 is devoted to recall
some definitions of graphs and spectral theory for time series. Then we state
the definition of general spatial ARMA processes over a graph in Section 2,
and the main theorem is given in Section 3. Section 4 provides some way
to modify the graph himself, in order to consider a larger class of processes,
which leads to the construction of a large class of Markov fields. Section 5
gives the definition of the spectral measure for the graph, and a sufficient
condition for its existence. Some simulations are provided in Section 6. The
last section provides all the tools necessary to prove the theorem, in particular
Szegö Lemmas are given in Section 7.1, while the proofs of the technical
Lemmas are postponed in Section 7.3.

1 Definitions and useful properties for spec-

tral analysis and Toeplitz operators

In the whole paper, we will consider a Gaussian spatial process (Xi)i∈G in-
dexed by the vertices of an infinite undirected weighted graph.

We will call G = (G,W ) this graph, where

• G is the set of vertex. G is said to be infinite as soon as G is infinite
(but countable).

• W ∈ [−1, 1]G×G is the symmetric weighted adjacency operator. That
is, 1 ≥ |Wij| 6= 0 when i ∈ G and j ∈ G are connected.

We chose W symmetric (Wij = Wji, i, j ∈ G)) since we deal only with
undirected graphs.

For any vertex i ∈ G, a vertex j ∈ G is said to be a neighbor of i if and
only if Wij 6= 0. The degree deg(i) of i is the number of neighbors, and the
degree of the graph G is defined as the maximum degree of the vertices of
the graph G :

deg(G) := max
i∈G

deg(i).

From now, assume the degree of the graph G is bounded :

deg(G) < +∞.
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When G = Z, we will use the renormalized adjacency operator W
(Z)
ij =

1
2
11{|i−j|=1}, (i, j ∈ Z). Here, deg(Z) = 2. This example will be used in all the

paper to illustrate our talk.
Assuming that the entries ofW belong to [−1, 1] is not restrictive since re-

normalizing the adjacency operator does not change the objects introduced
later. In particular, the spectral representation of Hilbertian operator is not
sensitive to a renormalization, and it is a key tool used in the whole paper.

To introduce the spectral decomposition, consider the action of the adja-
cency operator on l2(G) as

∀u ∈ l2(G), (Wu)i :=
∑

j∈G
Wijuj, (i ∈ G).

Notice that as the degree of G and the entries ofW are both bounded, W lies
in BG the set of all bounded Hilbertian operator on l2(G). BG is endowed
with the classical operator norm

∀A ∈ BG, ‖A‖2,op := sup
u∈l2(G),‖u‖

2

‖Au‖2 ,

where ‖.‖2 stands for the usual norm on l2(G).
Recall that for any bounded Hilbertian operator A ∈ BG, the spectrum

Sp(A) is defined as the set of complex numbers λ where λ Id−A is not in-
vertible, where Id stands for the identity of BG. Since W is bounded and
self-adjoint, Sp(W ) is a compact non-empty subset of R.

We aim now at providing a spectral representation of any bounded normal
Hilbertian operator. For this, recall first the definition of a resolution of
identity E :

Definition 1.1. Let M be a σ-algebra over a set Ω. We call identity reso-
lution (on M) an application

E : M → BG

such that, ∀ω, ω′ ∈ M,

1. E(∅) = 0, E(Ω) = I

2. Every E(ω) is a self-adjoint projection operator.

3. E(ω ∩ ω′) = E(ω)E(ω′)

4. If ω ∩ ω′ = ∅, then E(ω ∪ ω′) = E(ω) + E(ω′)
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5. For all x ∈ l2(G) and y ∈ l2(G), the functional Ex,y defined by

Exy(ω) = 〈E(ω)x, y〉l2(G)

is a complex measure on M.

We can now state the fundamental theorem

Theorem 1.1 (Spectral decomposition). If A ∈ BG is normal (A commutes
with its adjoint), then there exists a unique identity resolution E over all
Borelian subsets of the spectrum of A denoted Sp(A), such that

A =

∫

Sp(A)

λdE(λ)

Moreover, for any U ∈ BS such that UA = AU , every projector E(ω), ω ∈
Sp(A) commutes with U

Since W is self-adjoint in our case, it is a normal operator, so Theorem
1.1 may be applied.

We obtain the spectral representation of the adjacency operatorW thanks
to the identity resolution E over Sp(W )

W =

∫

Sp(W )

λdE(λ).

Moreover, with this decomposition, we can give a spectral representation
for the powers of W , W k, k ∈ Z. Define first, for any i ∈ G, the sequences δi
in l2(G) by

δi := (11k=i)k∈G.

For any i, j ∈ G, the sequences δi and δj define a real measure µij by

∀ω ⊂ Sp(W ), µij(ω) := Eδiδj (ω) = 〈E(ω)δi, δj〉l2(G).

Hence, we can write :

∀k ∈ N, ∀i, j ∈ G,
(

W k
)

ij
=

∫

Sp(W )

λkdµij .

In the usual case of Z, an explicit expression for µij can be given. Denote
Tk(X) the kth-Tchebychev polynomial, k ∈ N. We can provide the spectral
decomposition of W (Z) :

∀i, j ∈ Z,
(

(

W (Z)
)k
)

ij
=

∫

[−1,1]

λk
T|j−i|(λ)√
1− λ2

dλ
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This shows that, in this case, for any i, j ∈ G, the measure dµij is absolutely
continuous with respect to the Lebesgue measure, and its density is given by

dµij

dλ
=
T|j−i|(λ)√
1− λ2

Note that we recover the usual spectral decomposition by setting :

∀i, j ∈ G, dµ̂ij(t) :=
1

2π
cos ((j − i)t) dt.

We get

∀i, j ∈ Z,
(

(

W (Z)
)k
)

ij
=

∫

[0,2π]

cos(t)kdµ̂ij(t)

Note that this corresponds to choosing another identity resolution, given
by the family of measure (µ̂ij)ij∈G. Further on, this enables to handle the
usual case of processes indexed by Z. Since our aim is to study some kind
of stationary processes indexed by the vertex G of the graph G, recall once
again what happen for the usual case of Z.

Let X = (Xi)i∈Z be a stationary Gaussian process indexed by Z. Since
X is Gaussian, stationarity is equivalent to second order stationarity, that
is, ∀i, k ∈ Z,Cov(Xi, Xi+k) does not depend on i. Thus, we can define

rk := Cov(Xi, Xi+k)

In this example, we assume that (rk)k∈Z ∈ l1(Z). This leads to a particular
form of the covariance operator K defined on l2(Z) by

∀i, j ∈ Z, Kij := ri−j.

Recall that BZ denotes here the set of bounded Hilbertian operators on l2(Z).
Notice that, since (rk)k∈Z ∈ l1(Z), K ∈ BZ (see for instance [6] for more
details). This bounded operator is constant over each diagonals, and so
called a Toeplitz operator (see also [5] for a general introduction to Toeplitz
operators).

Toeplitz operators enjoy the following representation,

∀i, j ∈ Z, T (f)ij := Kij =
1

2π

∫

[0,2π]

f(t) cos ((i− j)t) dt,

where f is the spectral density of the process X, defined by

f(t) := 2
∑

k∈N∗

rk cos(kt) + r0
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This expression can be written, using the Tchebychev polynomials (Tk)k∈N,

f(t) := 2
∑

k∈N∗

rkTk (cos(t)) + r0T0 (cos(t)) .

This falls in the framework of Theorem 3.1, by setting

∀λ ∈ [−1, 1], g(λ) := 2
∑

k∈N∗

rkTk(λ) + r0T0(λ).

We get, using the family (µ̂ij)i,j∈Z defined above,

∀i, j ∈ Z, Kij =

∫

[0,2π]

g (cos(t)) dµ̂ij(t).

Notice that the last expression may also be written K = g(W (Z)), and
the convergence is ensured by the boundedness of W (Z) together with the
boundedness of the Tchebychev polynomials, Tk([−1, 1]) ⊂ [−1, 1], ∀k ∈ Z,
and the summability of the sequence (rk)k∈Z.

This remark is fundamental for the construction we provide in the follow-
ing section, Definition 2.1.

Finally, we will extend usual MA processes to any graph, using this the-
ory. This will be the purpose of Section 2.

Recall here some properties about the moving average representation
MA∞ of the process, which exists as soon as log(f) is integrable. In this case,
there exists a sequence (ak)k∈N, with a0 = 1, and a white noise ǫ = (ǫk)k∈Z,
such that the process X may be written as

∀i ∈ Z, Xi =
∑

k∈N
akǫi−k

Defining the function h over the unit circle C by

∀x ∈ C, h(x) =
∑

k∈N
akx

k,

we recover, with a few computations, the spectral decomposition of the co-
variance operator K of X :

∀i, j ∈ Z, Kij =

∫

[0,2π]

∣

∣h(eit)
∣

∣

2
dµ̂ij(t),

which shows the equality

g (cos(t)) =
∣

∣h(eit)
∣

∣

2
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Recall that when h is a polynomial of degree p, the process is said to
be MAp. In this case, g is also a polynomial of degree k. Reciprocally, if g
is a real polynomial of degree p, and as soon as g (cos(t)) is even, and non-
negative for any t ∈ [0, 2π], the Fejer-Riez theorem provides a factorization of

g (cos(t)) such that g (cos(t)) = |h(eit)|2 (see for instance [13]). This proves
that X is MAp if, and only if, its covariance operator may be written g(A),
with g is polynomial of degree p.

2 Analytic construction

In this section, we will define moving average and autoregressive processes
over the graph G. In the whole section, we deal with the adjacency weighted
operator W of the graph G.

As explained in the last section, since W is bounded and self-adjoint,
Sp(W ) is a non-empty compact subset of R, which admits a spectral decom-
position thanks to an identity resolution E, given by

W =

∫

Sp(W )

λdE(λ).

We define here MA and AR Gaussian processes, with respect to the
operator W , by defining the correspondent classes of covariance operators,
since the covariance characterized fully any Gaussian process.

Definition 2.1. Let (Xi)i∈G be a Gaussian process, indexed by the vertices
G of the graph G, and K its covariance operator.

If there exists an analytic function g defined on the convex hull of Sp(W ),
such that

K =

∫

Sp(W )

g(λ)dE(λ),

we will say that X is

• MA
(W )
q if g is a polynomial of degree q.

• AR
(W )
p if 1

g
is a polynomial of degree p which has no root in the convex

hull of Sp(W ).

• ARMA
(W )
p,q if g = P

Q
with P a polynomial of degree p and Q a polynomial

of degree q with no roots in the convex hull of Sp(W ).

Otherwise, we will talk about the MA
(W )
∞ representation of the process X.
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Notice that, in the usual case of Z, and for finite order ARMA, we recover
the usual definition as shown in the end of the previous section. So, the last
definition may be seen as an extension of isotropic ARMA for any graph G.

This kind of modeling is interesting when the interactions are propagated
time by time and locally (that may be for instance a good modeling for traffic
problems).

Now, we get a representation of moving average processes over any graph
G. The following section gives the main result of this paper, that is the
maximum likelihood identification, and section 4 proposes a general definition
of stationary processes indexed by the vertices of a graph, and shows the
stationarity of MA representation thanks to this definition.

3 Convergence of approximate likelihood max-

imum estimators

In this section let G = (G,W ) be a graph with bounded degree (deg(G) <
+∞). Let also (Xi)i∈G be a Gaussian spatial process indexed by the vertices
of G with spectral density fθ0 depending of an unknown parameter θ0 ∈ Θ.
We aim at estimating θ0. For this, we will generalize maximum likelihood
estimation for parameters of time series.

We will also develop a Whittle approximation for ARMA processes in-
dexed by the vertices of a graph. That is an approximation of the likelihood
which provides the convergence of maximum likelihood estimate. We follow
here the guidelines of the proof given in [2] for the usual case of time series.

Let us now specify the framework of our study. Let (Gn)n∈N be a growing
sequence of nested subgraphs, which means that if Gn = (Gn,Wn), we have
Gn ⊂ Gn+1 ⊂ G and for any i, j ∈ Gn, it holds that Wn(i, j) = W (i, j).

We will use the following notations. Let mn = Card(Gn). We set also
δn = Card {i ∈ Gn, ∃j ∈ G\Gn,Wij 6= 0} .

The sequence (mn)n∈Z may actually be seen as the “volume” of the graph
Gn, and δn as the size of the boundary of Gn. For the special case G = Zd

and Gn = [−n, n]d, we get mn = (2n+ 1)d and δn = 2d(2n+ 1)d−1.
The ratio δn

mn
is a natural quantity associated to the expansion of the

graph which also appears is isoperimetrical [16] and expander issues. We will
assume here that this ratio tends to 0 with the size of the graph, and also
that, even W has to be renormalized.

Assumption 3.1.

• supi,j∈SWij ≤ 1
D
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• δn = o(mn)

Notice here that the first assumption implies that Sp(W ) ⊂ [−1, 1]. The
second assumption is a non-expansion criteria which is satisfied for the last
examples G = Zd and Gn = [−n, n]d, but not for an homogeneous tree,
whatever the choice of the sequence of subgraphs (G

n
)n∈N.

We will now chose a parametric family of covariance operators of MA(W )

processes as defined in the last section. First, let Θ be a compact subspace
of R.

We point out that for sake of simplicity, we choose a one-dimensional
parameter space Θ. Nevertheless, all the results could be extend to the case
Θ ⊂ Rk, k ≥ 1.

Define F as the set of analytic functions over the convex hull of Sp(W ).
Let also be a (fθ)θ∈Θ be a parametric family of functions of F . They

define a parametric set of covariances on G by

K(fθ) = fθ(W ).

As in [2], we will need a strong regularity for this family of spectral
densities.

Let us introduce a regularity factor for any analytic function f ∈ F ,
f(x) =

∑

k fkx
k(x ∈ Sp(W ), with

α(f) :=
∑

h∈N
|fh| (h+ 1).

Define further,

Fρ := {f ∈ F , α(log(f)) ≤ ρ} , ρ > 0.

Notice that for any f ∈ Fρ, we have α(f) ≤ eρ, α( 1
f
) ≤ eρ.

Assumption 3.2.

• The application θ → fθ is injective.

• For any λ ∈ Sp(W ), the application θ → fθ(λ) is continuous.

• ∀θ ∈ Θ, fθ ∈ Fρ .

From now, fix θ0 ∈ Θ. Let X be a centered Gaussian MA∞ process over
G with covariance operator K(fθ0) (see section 2).
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We observe the restriction of this process on the subgraph Gn defined
before. Our aim is to compute the maximum likelihood estimator of θ0. Let
Xn = (Xi)i∈Gn

be the observed process and Kn(fθ) be its covariance :

Xn ∼ N (0, Kn(fθ0)) .

The corresponding log-likelihood at θ is

Ln(θ) := −1

2

(

mn log(2π) + log det (Kn(fθ)) +XT
n

(

Kn(fθ)
)−1

Xn

)

.

Recall what happens in the usual case of time series (G = Z, Gn =
[−n, n]). Using the notations of Section 1, we assume that X is a stationary
process indexed by Z with spectral density f , such that log(f) is integrable.
Recall that, if g is such that f(t) = g (cos(t)), we have

K(g) = g(W (Z)).

It is usual to maximize an approximation of the likelihood. The classical
approximation is Whittle’s one ([9]), where the log det (Kn(fθ)) is replaced
by

1

2π

∫

[0,2π]

log (g (cos(t))) dt.

Back to the general case, we aim at performing the same kind of ap-
proximation. So that, we will need the following assumption to ensure the
convergence of log det (Kn(fθ)) (see Section 2 for the definition of µxx) :

Assumption 3.3. There exists a positive measure µ, such that

1

mn

∑

x∈Gn

µxx
D−→ µ,

as n goes to infinity.
Here, D stands for the convergence in distribution

The limit measure µ is classically called spectral measure of G with re-
spect to the sequence of subgraph Gn (see [15] for example). In Section 5, we
give some sufficient condition to ensure the existence of the spectral measure.

As in the case of time series (for G = Z), we can approximate the log-
likelihood. It avoids an inversion of matrix and a computation of a determi-
nant. Indeed, we will consider the two following approximations.

11



L̄n(θ) := −1

2

(

mn log(2π) +mn

∫

log(fθ(x))dµ(x) +XT
n (Kn(fθ))

−1
Xn

)

L̃n(θ) := −1

2

(

mn log(2π) +mn

∫

log(fθ(x))dµ(x) +XT
n

(

Kn

(

1

fθ

))

Xn

)

Generally, approximate maximum likelihood estimators are not asymp-
totically normal. Indeed, the derivate of the approximated log-likelihood has
to be asymptotically unbiased [2].

To overcome this problem in Z
d, the tapered periodogram can be used

[17]. The following corresponds to graph extensions of standard time series
models.

This is tractable only in two cases :

• The MAK case : If there exists K > 0 such that the true spectral
density fθ0 is a polynomial of degree bounded by K.

• The ARK case : If there exists K > 0 such that all the spectral densi-
ties (for any θ ∈ Θ) of the parametric set are such that 1

fθ
is a polyno-

mial of degree bounded by K.

So, to define the unbiased approximate log-likelihood, we first introduce
the unbiased periodogram in one of this cases.

We first count, for any couple of vertices (i, j) ∈ G2, the number of path
(counted with their weight) going from i to j with length k = 0, · · · , K.

For this, define the K-type of a couple of vertex (i, j) ∈ G2 as the (K+1)-
tuple given by

t(i, j) :=
(

W
(p)
ij

)

p≤K
.

Then, denote

VK :=

{

(

W
(p)
ij

)

p≤K
, i, j ∈ G

}

.

This set gives among any i, j ∈ G all possible (K + 1)-tuple of the
number of path (counted with their weight) going from i to j with length
k = 0, · · · , K. We highlight that it is finite as soon as the entries of the
weighted adjacency operator W take a finite number of values, and since the
degree of G is bounded.

In the following, we chose n large enough to ensure that
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Assumption 3.4.

∀v ∈ VK , ∃(i, j) ∈ G2
n,
(

W
(p)
ij

)

p≤K
= v.

This is possible since VK is finite, and since t(i, j) = {0}K+1 as soon as
the shortest path from i to j is longer than K.

Define now the matrix B(n) (the dependency on K is omitted, for clarity)
by

B
(n)
ij :=

Card {(k, l) ∈ Gn ×G, t(k, l) = t(i, j)}
Card {(k, l) ∈ Gn ×Gn, t(k, l) = t(i, j)} , if t(i, j) 6= {0}K+1

:= 1 if t(i, j) = {0}K+1
.

The matrix B(n) gives a correction of the boundary problem, comparing,
for any v ∈ VK the frequency of the interior couples of vertices of K-type v
with the boundary couples of vertices of K-type v.

The explicit construction for G = Z
2 and K = 2 is given at the end of

the section.
Back to the general case, we can define the unbiased periodogram as

XT
nQn(

1

g
)Xn

where Qn(g) := B(n) ⊙Kn(g), and ⊙ denotes the Hadamard product for the
matrix i.e. (M ⊙ N)ij = MijNij. Notice here that thanks to the example
given just below, it is actually a way to extend the tapered periodogram (see
for instance [10]) in the general case.

Let us write now the unbiased empirical log-likelihood :

L(u)
n (θ) := −1

2

(

mn log(2π) +mn

∫

log(fθ(x))dµ(x) +XT
n

(

Qn(
1

fθ
)

)

Xn

)

We denote θn, θ̃n, θ̄n, θ
(u) the maximum likelihood estimators associated

to respectively Ln, L̃n, L̄n, L
(u)
n .

We will need the following assumption, which holds for instance for Zd :

Assumption 3.5. There exists a positive sequence (un)n∈N such that, un →
0, supij

∣

∣

∣
B

(n)
ij − 1

∣

∣

∣
≤ un

We can now state the fundamental theorem :

Theorem 3.1. Under Assumptions 3.2 and 3.3, the estimators θn,θ̄n, θ̃n
converge, as n goes to infinity, Pfθ0

-a.s. to the true value θ0 for any θ0 ∈ Θ.

If moreover Assumption 3.5 is true, we get the convergence of θ
(u)
n .

13



Proof. The proof follows the guidelines of the usual proof that can be found
in [2]. We highlight the main changes due to the graph case. We first define
the Kullback information on Gn of f with respect to g, by

IKn(f, g) := EPf

[

− log(
dPg

dPf

)

]

and the asymptotic information (on G) by

IK(f, g) = lim
n

1

mn

IKn(f, g)

when it is finite.
The convergence of the estimators of the maximum approximate likeli-

hood relies on the following lemmas :

Lemma 3.1. Under Assumptions 3.2 and 3.3, the asymptotic Kullback in-
formation exists and verifies

IK(f, g) =
1

2

∫ (

− log(
f

g
)− 1 +

f

g

)

dµ

Furthermore, if we denote ln(θ,X) = 1
mn
Ln(θ,X), we have Pfθ0

-almost surely,

ln(θ0)− ln(θ) → IK(fθ0 , fθ)

uniformly as n tends to infinity.
This property is still true if we change Ln into L̄n or L̃n

Furthermore, for both the ARK or the MAK case (see above), this still

holds when Ln is changed into L
(u)
n .

Lemma 3.2. Let fθ0 be the true spectral density, and ℓn a deterministic
sequence of continuous functions such that

∀x ∈ Θ, ℓn(θ0)− ℓn(x) → IK(fθ0 , fx)

uniformly as n tends to infinity. Then, if xn = argmaxθ ℓn(x), we obtain

xn → θ0

We require additional assumptions to provide the asymptotic normality
and efficiency of the last estimator θ

(u)
n , in both the MAk, or the ARk cases.

Assumption 3.6. Assume that

14



• There exists a positive sequence (vn)n∈N such that vn = o(
√
mn) and

∣

∣

∣

∣

1

mn

Tr(KGn
(g))−

∫

gdµ

∣

∣

∣

∣

≤ α(g)vn

• ∀θ ∈ Θ, d
dθ
(fθ) ∈ Fρ,

d2

dθ2
(fθ) ∈ Fρ

The first assumption means that the convergence to the spectral measure
µ is faster than o(

√
mn). The second assumption is more classical, and same

as in the usual case of Z (see [2]).

Theorem 3.2. For any θ0 ∈ Θ̊, in both the ARK or MAK cases, and and
under all previous assumptions 3.3, 3.2, 3.5, 3.6, the estimator θ

(u)
n of θ0 is

asymptotically normal :

√
mn(θ

(u)
n − θ0)

D−→ N



0,

(

1

2

∫
(

f ′
θ0

fθ0

)2

dµ

)−1


 , as n→ ∞.

Furthermore, this asymptotic variance is the Fisher information, so this es-
timator is asymptoticly efficient.

Proof. Here again, we mimic the usual proof by extending the result of [2]
to the graph case. First, Taylor’s formula gives, since θ0 ∈ Θ̊, the existence

of θ̆n ∈
[

θ
(u)
n , θ0

]

, such that

(l(u)n )′(θ0) = (l(u)n )′(θ(u)n ) + (θ0 − θ(u)n )(l(u)n )′′(θ̆n).

As θ
(u)
n = argmax l

(u)
n , we get (l

(u)
n )′(θ

(u)
n ) = 0 And so,

√
mn(θ0 − θ(u)n ) =

(

(l(u)n )′′(θ̆n)
)−1√

mn(l
(u)
n )′(θ0).

The theorem relies on three lemmas :
Lemma 3.3 provides the asymptotic normality for

√
mn(l

(u)
n )′(θ0). Com-

bined with Lemma 3.4, we get the asymptotic normality for
√
mn(θ0 − θ

(u)
n ).

Finally, Lemma 3.5 gives the Fisher information, and this proves that the
estimator θ

(u)
n realize the Cramér-Rao bound. This provides the efficiency of

this estimator.

Lemma 3.3.

√
mn(l

(u)
n )′(θ0)

n→∞−−−→ N (0,
1

2

∫
(

f ′
θ0

fθ0

)2

dµ)

15



Lemma 3.4.

(

(l(u)n )′′(θ̆n)
)−1

n→∞−−−→ 2

(

∫
(

f ′
θ0

fθ0

)2

dµ

)−1

Lemma 3.5. The asymptotic Fisher information may be written as :

J(θ0) =
1

2

∫ (

f ′
θ0

fθ0

)2

dµ

Let us now explain what happens for Z2, for K = 2. We define W (Z2) by

∀i, j, k, l ∈ Z,W (Z2) ((i, j), (k, l)) :=
1

4
11|i−j|+|k−l|=1.

We denote by u, v the vertices of Z2 and the canonical generator of Z2 by
e1, e2. We mean that if u = (i, j), i, j ∈ Z, then we can write v = u+ ke1 +
le2, k, l ∈ Z for v = (i + k, j + l). Actually there exist only five 2-type of
vertices (see figure 3 for the meaning of this construction) : ∀u ∈ Z2

• t(u, u) =
(

0, 0, 1
4

)

:= t1

• t(u, u+ e1) = t(u, u− e1) = t(u, u+ e2) = t(u, u− e2) = (0, 1, 0) := t2

• t(u, u+e1+e2) = t(u, u+e1−e2) = t(u, u−e2+e2) = t(u, u−e1−e2) =
(

0, 0, 1
8

)

:= t3

• t(u, u+2e1) = t(u, u−2e1) = t(u, u+2e2) = t(u, u−2e2) =
(

0, 0, 1
16

)

:=
t4

• t(u, v) = (0, 0, 0) := t5 in all the other cases

In this example, we set Gn = [1, n]2, and we can compute that

• Card{(k,l)∈Gn×G,t(k,l)=t1}
Card{(k,l)∈Gn×Gn,t(k,l)=t1} = n2

n2 = 1

• Card{(k,l)∈Gn×G,t(k,l)=t2}
Card{(k,l)∈Gn×Gn,t(k,l)=t2} = 4n(n−1)

4n2

• Card{(k,l)∈Gn×G,t(k,l)=t3}
Card{(k,l)∈Gn×Gn,t(k,l)=t3} = 4(n−1)2

n2

• Card{(k,l)∈Gn×G,t(k,l)=t1}
Card{(k,l)∈Gn×Gn,t(k,l)=t1} = 4n(n−2)

4n2

One can notice that

sup
ij

∣

∣

∣
B

(n)
ij − 1

∣

∣

∣

n→∞−−−→ 0.

The assumption 3.5 ensure that this property holds for the graph we consider.
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4 Algebraical construction of covariance op-

erator on a graph

In Section 2, we dealt with the case of ARMA(W ) processes indexed by the
vertex G of a graph G. We built all processes with the weighted adjacency
operator without specifying a general notion of stationarity. In this section,
we give a definition of stationarity for Gaussian processes on a graph, com-
patible with the construction of ARMA(W ) processes given in Section 2.

This leads to a large class of covariance operators. In this class, we lay a
special interest to general ARMA, built with operators different fromW . As
said in Section 2, this leads to a modification of the graph and we can consider
working on the new graph. Actually, this section is devoted to modify the
weights in an “isotropic” sense, and locally, for finite order operators. Now,
let us give a sense to this “isotropic” modification.

For clarity, each time we will define a quantity of interest we will illustrate
it on the classical graph Z.

To define a notion of stationarity (with respect to W ) for Gaussian pro-
cesses indexed by G, a first idea is to use the set of all automorphisms of
G. Recall that, a permutation σ on G is an automorphism if it leaves W
invariant :

∀i, j ∈ G, Wσ(i)σ(j) =Wij .

In the case of Z the automorphisms are the symmetry and the translation
operators. Stationarity is defined through invariance by these transforma-
tions of the covariance function. More generally, the definition of stationarity
on Zd, homogeneous trees or distance transitive graph may be set in the same

17



way [10], [1], [12]. Unfortunately, as the generic situation for a graph is to a
have a trivial set of automorphisms (reduced to the identity operator), the
last way to stationarity is a dead-end, since any covariance operator would be
stationary. To get away from this dead-end we choose to take another path
defining stationary covariance operators as images of W by adequate invari-
ant functions. We recall here that W ∈ BG where BG is the set of bounded
Hilbertian operators on l2(G). We denote also by ΣG the set of permutation
of G. Define the operator Mσ attached to the permutation σ ∈ ΣG by

∀i, j ∈ G, (Mσ)ij = 11i=σ(j)

Define FG the set of all continuous linear operators from l1(G) to l∞(G),
and let us define the class of invariant functions.

Definition 4.1. We call invariant, a real function

Φ : Dom(Φ) ⊂ BG 7→ FG,

that satisfies the following assumptions:

• DomΦ is stable by any permutations and by the transposition :

∀A ∈ Dom(Φ), ∀σ ∈ ΣG,M
−1
σ AMσ ∈ Dom(Φ), AT ∈ Dom(Φ)

• Φ commutes with the conjugation by Mσ, for any permutation σ of G:

∀σ ∈ ΣG, ∀A ∈ Dom(Φ),Φ(M−1
σ AMσ) =M−1

σ Φ(A)Mσ

• Φ commutes with the transposition.

∀A ∈∈ Dom(Φ),Φ(AT ) = Φ(A)T .

We will denote by IG the set of invariant functions from BG to FG.

Remark : Notice that Φ is given by a family of functions φij all defined on
Dom(Φ). Actually, thanks to the invariance, these functions are completely
determined by the domain Dom(Φ), and two real-valued functions φ := φ11

and ψ := φ12 from BG to R such that

• For any σ such that σ(1) = k,

∀k ∈ G, ∀A ∈ Dom(Φ),Φ(A)(k, k) = φ(M−1
σ AMσ)

18



• For any σ such that σ(1) = k, σ(2) = l,

∀k, l ∈ G, k 6= l, ∀A ∈ Dom(Φ),Φ(A)(k, l) = ψ(M−1
σ AMσ)

• If τ12 is the simple permutation, permuting 1 and 2,

ψ(A) = ψ(Mτ12A
TMτ12)

Notice that this condition implies that

• For any σ letting 1 invariant,

∀k ∈ G, ∀A ∈ Dom(Φ), φ(A) = φ(M−1
σ AMσ)

• For any σ letting 1 and 2 invariant,

∀k, l ∈ G, k 6= l, ∀A ∈ Dom(Φ), ψ(A) = ψ(M−1
σ AMσ)

An example may be given by the discrete Laplacian. Recall that the
discrete Laplacian L(W ) of W on the graph is defined by :

∀i, j ∈ G,L
(W )
ij := 11i=j

∑

k∈G
Wik −Wij

Set, for A ∈ BG, φL(A) =
∑

k∈GA1k and ψL(A) = −A12, where φ and ψ
are defined in the last remark. We get

ΦL(A)ij = 11(i=j)

∑

k∈G
Aik − Aij = L

(A)
ij

That proves that ΦL ∈ IG , and its domain is the set of the operators
A ∈ BG such that, for any i ∈ G, the sequence (Aik)k∈G is summable.

Back to the general construction, we can make another remark about the
previous construction of invariant functions. Actually, one can imagine that
the function φii given by an invariant function Φ is built exploring the graph
from the vertex i ∈ G. We can then define the order of an invariant function
either finite or infinite, to measure if this exploration is local. The distance d
denotes the natural distance on the graph G, that is, for i, j ∈ G, the length
of the shortest path going from i to j.

For any r > 0, let us define B(W )(i, r) the ball of radius r (for the natural
distance d) centered on a vertex i ∈ G :

B(W )(i, r) := {j ∈ G, d(i, j) ≤ r} .

This leads to the following definition :
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Definition 4.2 (Order of an invariant function). Let Φ be an invariant func-
tion in IG, we will say that Φ is r-local for some r ≥ 0 if, with the notations
of the previous remark and for any W ∈ Dom(Φ), φ(W ) depends only on
(

Wjk, j, k ∈ B(W )(1, r)
)

, and ψ(W ) depends only on

(

Wjk, j, k ∈ B(W )(1, r) ∪B(W )(2, r)
)

.

The order of Φ is define as the smallest r ≥ 0 such that Φ is r-local.

The order of an invariant function is a very important notion because
it provides some smaller classes of invariant functions and will enable us to
classify stationary processes.

Back to the general construction, we recall that FG is the set of linear
continuous operators from l1(G) into l∞(G). Any covariance operator is in
this class, so we can define stationarity over the graphG with some subclasses
of FG using the invariant functions IG.

We are now able to state an extension of “isotropy” for any graph, and
gives some way to modify the adjacency operator.

Definition 4.3. We say that a Gaussian process (Xi)i∈S is stationary of
order k, if its covariance operator K verifies

K ∈ Sk
+(W ) := {K = Φ(W ),Φ ∈ IG of order r,K is positive definite }

We say that a operator W ′ is an admissible modification of the graph G of
order k if we have

W ′ ∈ S+
1 (W ) := {K = Φ(W ),Φ ∈ IG of order r, (Wij = 0 ⇒ Kij = 0)}

To close this section, let us notice that if W takes a finite number of
values, then any admissible modification of order k do the same, since there
is a finite number of possible subgraphs of size bounded by Dk.

For the usual case of G = Z we are able to recover any covariance operator
K, even non regular. Set

∀ij ∈ Z, Kij = r|i−j|,

and define Φ as
∀W ∈ BG,Φ(W ) =

∑

p≥0

rpΦ
(p)(W ).

with, for all i, j ∈ Z,

Φ(p)(W )ij =
∑

k1 6=i,j∈Z

∑

k2 6=i,j,k1∈Z
· · ·

∑

kp−1 6=i,j,k1,··· ,kp−2∈Z
Wik1Wk1k2 · · ·Wkp−1j.
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The general construction gives a large class of Gaussian graphical models,
since any AR1 built with a isotropic modification of G provides a graphical
model [7]. This falls into a very classical point of view about Gaussian fields,
and allow us to used all general tools developed in this framework for our
case.

5 Homogeneity and spectral measure

This section is entirely dedicated to understand the convergence of the spec-
tral measure 3.3, and to several sufficient assumptions to ensure this conver-
gence.

To this aim, we will chose an operator A ∈ S1.
First, it is important to notice that Assumption 3.3 is equivalent to the

following, under Assumption 3.1, thanks to Lemma 7.1.

Assumption 5.1. Weak convergence of the spectral measure
Let AGn

denote the extracted operator from A over the subgraph Gn, and
λ1, · · · , λ♯Gn

its corresponding eigenvalues, written with their multiplicity or-
ders. We will say that the graph G admits the spectral measure µ with respect
to the sequence Gn if

1

♯Gn

♯Gn
∑

i=1

δλi

n→∞−−−→ µ.

in the sense of the weak convergence.

Let us define

µ(1)
n =

1

♯Gn

♯Gn
∑

i=1

δλi
.

and

µ(2)
n =

1

♯Gn

∑

x∈Gn

µx,x.

To prove this equivalence, we just have to notice that :

∫

Sp(W )

λkdµ(1)
n (λ) −

∫

Sp(W )

λkdµ(2)
n (λ)

=
1

♯Gn

♯Gn
∑

i=1

λki −
1

♯Gn

∑

x∈Gn

(W k)xx

=
1

♯Gn

Tr((WGn
)k)− 1

♯Gn

Tr((W k)Gn
).
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So, we get the result by the quasi-homomorphism lemma 7.1.
This is a classical graph theory assumption, usually verified in the frame

of random graph (in which Gn is not a growing sequence of subgraphs, but
a graph of size n whose spectral measure converge weakly to a particular
law.). For instance, the spectral measure of some random graphs with given
degree distribution converge to the spectral measure of regular tree (see [3]
[4]), whose is well known. [15].

In the frame of road traffic, we provide also another assumption about the
sequence of graphs, which ensures the convergence of the spectral measure.

We define first Vl as

∀l ≥ 0, Vl :=
{

W l
kk, k ∈ G

}

.

Notice first that since W is of finite order, Vl is finite for any l ≥ 0.

Assumption 5.2 (Homogeneity assumption). Assume that the sequence
(Gn)n∈N and the operator W verify :

∀l ≥ 0, ∀n ≥ 1, ∀v ∈ Vl,
♯
{

j ∈ Gn, (A
l)jj = v

}

♯Gn

n→∞−−−→ p(l)v .

Remark : This last assumption may be understood as an homogeneity
in frequency of the type (see section 3) of vertices chosen in the subgraphs
Gn. To illustrate this talk, figure 5 shows an example of admissible sequences
of subgraphs.

Proposition 5.1. Under homogeneity assumption, we obtain the conver-
gence of the weak convergence of the spectral measure :

1

♯Gn

♯Gn
∑

i=1

δλi
→ µ.
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Proof. Under homogeneity assumption, we get

1

♯Gn

Tr
(

(W l)Gn

)

→
∑

v∈Jl

p(l)v v.

Define
ml :=

∑

v∈Jl

p(l)v v.

Since supi,j∈S |Wij | ≤ 1
d
, we have

‖W‖2,in ≤ 1.

So
∀l ≥ 0, Jl ⊂ Sp(W ) ⊂ [−1, 1].

Then
ml ≤ 1.

Since the series t 7→∑

ml
tl

l!
has a positive convergence radius, there exists

a probability measure µ with moments (ml)l≥0. The weak convergence of the
measure is derived from the convergence of the moments. This achieves the
proof of the last proposition.

6 Simulations

In this section, we give some simulations over a very simple case, where the
graph G is built taking some rhombus connected by a simple edge on the left
and right. See Figure 3

Figure 1: Graph G

The sequence of nested subgraphs chosen here is the growing neighbor-
hood sequence (we chose a point x and we take Gn = {y ∈ G, d(x, y) ≤ n}).
We want to fit an AR2 model, such that,

Θ = ]−1, 1[

∀θ ∈ Θ, fθ(x) =

(

1

1− θx

)2

Here, we take for A the adjencency operator of G normalized in order
to get ‖A‖op,∞ ≤ 1. We chose θ0 = 1

2
, ♯Gn = 724, and we approximate
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the spectral measure of G with Monte-Carlo methods. Figure 4 shows the
empirical spectrum of the graph G with respect to the sequence of subgraph
Gn.

Figure 2: Empirical spectrum
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To compute (Kn(fθ))
−1, we use the power series representation of fθ,

and truncate this expression after the 15 first coefficient. This choice is quite
arbitrary, but it ensure that the simulations error are neglectible with respect
to the theorical ones.

Figure 5 gives the empirical distribution of

√

♯Gn

√

∫

Sp(A)

(

f ′
θ

fθ

)2
(

θ̃n − θ0

)

.

We obseve that given the size of the subgraphs chosen, the error is a little
less concentred than the limit error (in red) which should be a N (0, 1).

7 Appendix

7.1 Szegö Lemmas

Szegö Lemmas are useful in time series analysis since they provide the good
approximation to choose for the likelihood. As said in Section 3, this approx-
imations of the likelihood are easier to compute.
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Figure 3: Empirical distribution

In this section, we generalize a weak version of the Szegö Lemmas, for a
general graph, under Assumption 3.1 (non expansion criteria for Gn), and
Assumption 3.3 (existence of the spectral measure µ).

For any matrix (Bij)i,j∈Gn
, we define the norm block :

bN (B) =
1

δN

∑

i,j∈GN

|Bij |

We can state the equivalent version of the first Szegö lemma for time-
series

Lemma 7.1. Asymptotic homomorphism
For any k, n positive integers, and g1, · · · , gk analytic functions over [−1, 1]

such that the regularity factor α is finite for all this functions (α(gi) < +∞),
we have :

bn (KGn
(g1) · · ·KGn

(gk)−KGn
(g1 · · · gk)) ≤

k − 1

2
α(g1) · · ·α(gk)

Corollary 7.1.

1

mn

log det(Kn(g))
n→∞−−−→

∫

log(g)dµ
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Proof. This proof follows again the one of [2]. We will prove the result by
induction on k. First we deal with the case k = 2. Let f and g analytic
functions over [−1, 1] such that α(f) < +∞ and α(g) < +∞. We write

bn(KGn
(f)KGn

(g)−KGn
(fg))

=
1

δn

∑

i,j∈Gn

∣

∣

∣

∣

∣

∑

k∈Gn

(KGn
(f))ik (KGn

(g))kj −
∑

k∈G
(KGn

(f))ik (KGn
(g))kj

∣

∣

∣

∣

∣

=
1

δn

∑

i,j∈Gn

∑

k∈G\Gn

|K(f)ik| |K(g)kj|

Using K(g) =
∑∞

h=0 ghW
h, Fubini’s theorem gives, since all the previous

sequences are l1(G),

bn(KGn
(f)KGn

(g)−KGn
(fg))

≤ 1

δn

∑

i,j∈Gn

∑

k∈G\Gn

∣

∣

∣
(KGn

(f))ik (KGn
(g))kj

∣

∣

∣

≤
(

sup
k∈G\Gn

∑

i∈Gn

|K(h)ik|
)

× 1

δn

∑

k∈G\Gn

∑

j∈Gn

∞
∑

h=0

|gh|
∣

∣(W h)kj
∣

∣

≤
(

sup
k∈G

∑

i∈G
|K(f)ik|

)

×
∞
∑

h=0

|gh|
1

δn

∑

k∈G\Gn

∑

j∈Gn

∣

∣(W h)kj
∣

∣

Introducing

∆h = sup
N∈N

1

δN

∑

k∈G\GN

∑

j∈GN

∣

∣

∣

(

W h
)

kj

∣

∣

∣
,

we get

bn(KGn
(f)KGn

(g)−KGn
(fg)) ≤ sup

k∈G

∑

i∈G
|K(f)ik|

∞
∑

h=0

|gh|∆h.

The coefficient ∆h can be seen as a porosity factor, measuring the weight
of the paths going from the interior of Gn to outside, following path of length
h.

Note that ∆h ≤ h, so we get

∞
∑

h=0

|gh|∆h ≤ α(g)
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Notice that the following define a norm on BG :

∀B ∈ BG, ‖B‖∞,in := sup
k∈G

∑

i∈G
|Bik| .

We get

‖K(f)‖∞,in = sup
k∈G

∑

i∈G
|K(f)ik|

≤
∞
∑

h=0

|fh|
∥

∥Ah
∥

∥

∞,in

≤
∞
∑

h=0

|fh| ‖A‖h∞,in

≤
∞
∑

h=0

|fh| := ‖g‖1,pol

Finally, we get

bn(KGn
(f)KGn

(g)−KGn
(fg)) ≤ ‖g‖1,pol α(g)

To conclude the proof of the lemma, by symmetrization of the last in-
equality, and since 1 ≤ (h+ 1),

bn (KGn
(f)KGn

(g)−KGn
(fg)) ≤ 1

2
α(f)α(g)

We need the following inequalities, to perform the inductive step :

α(fg) ≤ α(f)α(g)

bn(BC) ≤ ‖B‖∞,in bn(C)

bn(B + C) ≤ bn(B) + bn(C)

‖KGn
(f)‖∞,in = ‖f‖1,pol ≤ α(f)

Under the previous assumptions, we get,

bn (KGn
(g1)× · · · ×KGn

(gk)− KGn
(g1 · · · gk))

≤ ‖KGn
(g1)‖∞,in bn (KGn

(g2) · · ·KGn
(gk)−KGn

(g2 · · · gk))
+bn (KGn

(g1)KGn
(g2 · · · gk)−KGn

(g1 · · · gk))

≤ α(g1)
k − 2

2
α(g2) · · ·α(gk) +

1

2
α(g1)α(g2 · · · gk)

≤ k − 1

2
α(g1) · · ·α(gk),

which proves the result.
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The following lemma enables to replace Kn(g) by the unbiased version
Qn(g).

Lemma 7.2. Under assumptions 3.1,3.3 and 3.5, and if f or g is polynomial
with degree K, we have

1

mn

Tr ((Kn(f)Kn(g))
p − (Kn(f)Qn(g))

p) ≤ unα(f)
pα(g)p

Proof. We define, for any f ,

fabs(x) =
∑

k

|fk|xk

Actually, the proof is based of the following idea : as soon as f or g is
a polynomial of degree less or equal to K, we have to control only path of
length less or equal to K.For any p ≥ 0, we get,

1
mn

Tr

((

KGn
(f)KGn

(
1

g
)

)p

−
(

KGn
(f)QGn

(
1

g
)

)p)

≤ 1

mn

∑

i∈Gn

∑

i0=i,i1,··· ,i2p=i

∏

l=0···p
ai2li2l+1

Kn(
1

g
)i2li2l+1

Kn(f)i2l+1i2l+2

− 1

mn

∑

i∈Gn

∑

i0=i,i1,··· ,i2p=i

∏

l=0···p
Kn(

1

g
)i2li2l+1

Kn(f)i2l+1i2l+2

≤ 1

mn

sup
i1,i2,··· ,i2p+1

(

∏

l=0···p−1

ai2l+1i2l+2
− 1

)

×
∑

i∈Gn

∑

i0=i,i1,··· ,i2p=i

∏

l=0···p

∣

∣

∣

∣

Kn(
1

g
)i2li2l+1

Kn(f)i2l+1i2l+2

∣

∣

∣

∣

≤ 1

mn

sup
i1,i2,··· ,i2p+1

(

∏

l=0···p−1

ai2l+1i2l+2
− 1

)

×
∑

i∈Gn

∑

i0=i,i1,··· ,i2p=i

∏

l=0···p
Kn((

1

g
)abs)i2li2l+1

Kn(fabs)i2l+1i2l+2

≤ sup
i1,i2,··· ,i2p+1

∣

∣

∣

∣

∣

∏

l=0···p−1

ai2l+1i2l+2
− 1

∣

∣

∣

∣

∣

∥

∥

∥

∥

(

KGn
(fabs)KGn

((
1

g
)abs)

)p∥
∥

∥

∥

2,in

≤ sup
i1,i2,··· ,i2p+1

∣

∣

∣

∣

∣

∏

l=0···p−1

ai2l+1i2l+2
− 1

∣

∣

∣

∣

∣

α(f)pα(
1

g
)p

≤ unα(f)
pα(

1

g
)p3.5
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This achieves the proof of the Lemma. This shows that the unbiased
quadratic form Qn may actually be understood as a correction of the er-
ror between Kn(f)Kn(g) and Kn(fg).

7.2 Proofs of theorem 3.1

Recall that the theorem relies on two lemmas. Lemma 3.2 states a condition
for deterministic sequences to provide the convergence of the maximizer of
this sequence.

Proof. of Lemma 3.2
Let x∞ be an accumulation point of the sequence xn, and xnk

be a sub-

sequence of limit x∞. As the function x 7→ 1
2

∫

− log(
fθ0
fx
) − 1 +

fθ0
fx
dµ is

continuous on Θ, and the convergence is uniform in x, we have

ℓnk
(θ0)− ℓnk

(xnk
)

k→∞−−−→ 1

2

∫

− log(
fθ0
fx∞

)− 1 +
fθ0
fx∞

dµ.

But we can notice that, thanks to the definition of xn, ℓnk
(θ0)− ℓnk

(xnk
) ≤ 0

So, since the function x 7→ − log(x) + x − 1 ≥ 0 and is equal to zero only
when x = 1, we get that fθ0 = fx∞

. By injectivity of the function x→ fx, we
get x∞ = θ0, for any accumulation point x∞ of the sequence (xn)n∈N, which
ends the proof of this first lemma.

Lemma 3.1 provides the uniform convergence of the contrast to the Kull-
back information. The proof may be cut into several lemmas.

Proof. of Lemma 3.1
First, notice that by construction, we have,

IK(f, g) = lim
n

E

[

1

mn

(Ln(f,XGn
)− Ln(g,XGn

))

]

when it exists. Then, we can compute

ln(f,X)− ln(g,X) = − 1

2mn

(log det(KGn
(f))− log det(KGn

(g)))

− 1

2mn

(

XTKGn
(f)−1X −XTKGn

(g)−1X
)

Let f, g ∈ Fρ, ρ > 0, we will now provide several lemmas which, together
ensure, the desired convergences.
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Lemma 7.3 (Weak convergence of the measure). For any φ a continuous
bounded function from Im(g) in R, we get that

1

mn

(Tr(φ(Kn(g)))−Kn(φ(g)))
n→∞−−−→ 0.

Corollary 7.2 (Determinant lemma). It holds that

∣

∣

∣

∣

1

mn

log(det(KGn
(g)))−

∫

log(g)dµ

∣

∣

∣

∣

n→∞−−−→ 0.

Lemma 7.4 (Concentration lemma). We get, the following convergence, for
respectively Γ = KGn

(1
g
), Γ = (KGn

(g))−1 and Γ = Qn(
1
g
) the unbiased

operator.

Pfθ0
− a.s,XTΓX

n→∞−−−→
∫

f

g
dµ

Lemma 7.4 ensures the convergence of l̃n(f) − l̃n(g), l̄n(f) − l̄n(g) and

l
(u)
n (f)− l

(u)
n (g) to IK(f, g). Combined with lemma 7.2, it leads to the con-

vergence of ln(f)− ln(g) to IK(f, g). Now, only the uniform convergence of
this expressions remains to be shown. It is sufficient to provide the equicon-
tinuity of the sequence of function.

Lemma 7.5 (Equicontinuity lemma). For all n ≥ 0, the functions ln(f) −
ln(g) are equicontinuous over {gθ, θ ∈ Θ}. This property remains if we sub-

stitute ln by either l̄n,l̃n or l
(u)
n

We can now achieve the proof of the theorem :
First, notice that the considered function space is compact. So there

exists a sequence gθp, θp ∈ Θ dense in this space. All the lemmas above
ensure the convergence almost sure of ln(f) − ln(gθp) to IK(f, gθp). The

same result holds for l̄n, l̃n and l
(u)
n .

The equicontinuity of this sequence leads to, since (gθp)p∈N is dense, the
convergence for every θ ∈ Θ, of ln(f) − ln(gθ) to IK(f, gθ), and the corre-

sponding difference with l̄n, l̃n and l
(u)
n .

By compacity and equicontinuity of {gθ, θ ∈ Θ}, this convergence is fur-
thermore uniform on Θ. This ends the proof of the main lemma.

7.3 Proof of the technical lemmas

Proof. of Lemma 7.3 Since the functions have compact support, it is sufficient
to prove the result for φ(x) = xk, k > 0. Using α(g) ≤ ρ < +∞ and Lemma
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7.1, we get

1

mn

Tr((Kn(g))
k −Kn(g

k)) ≤ δn

mn

kα(g)k
k→∞−−−→ 0.

Proof. of Lemma 7.4 First, consider the case Γn = Kn

(

1
g

)

. We compute the

Laplace transform of XT
n ΓnXn :

EPf

[

e
λXT

n Kn(
1

g
)Xn

]

=
1

(
√
2π)mn

√

det(Kn(f))

∫

e
1

2
XT

n ((Kn(f))
−1−2λKn(

1

g
))Xn

=
1

(
√
2π)mn

√

det(Kn(f))

√

√

√

√det

(

[

(Kn(f))
−1 − 2λKn(

1

g
)

]−1
)

(
√
2π)mn

=
1

√

det
(

IGn
− 2λKn(

1
g
)Kn(f)

)

.

These equalities hold as soon as IGn
− 2λKn(

1
g
)Kn(f) is positive, which is

ensured for λ small enough.
Then, we can write

φn(λ) =
1

mn

log ( EPf

[

eλX
T
n Kn(

1

g
)Xn

])

= − 1

2mn

log det

(

IGn
− 2λKn(

1

g
)Kn(f)

)

.

And we obtain, using γ(log(f)) < +∞, γ(log(g)) < +∞,

lim
n
φn(λ) = −1

2
lim
n

1

mn

log ( EPf

[

e
λXT

n Kn(
1

g
)Xn

])

= −1

2

∫

log

(

1− 2λ
f

g

)

= φ(λ).

We can also compute

φ′′(λ) =

∫

2(f
g
)2

(1− 2λf

g
)2
dµ > 0.

So, as soon as φ is convex, φ∗(λ) > 0, for any λ 6= φ′(0) =
∫

f

g
dµ.
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We can now write

1

mn

log(P(
1

mn

XT
n ΓnXn ≥ t)) =

1

mn

log(P(eλX
T
n ΓnXn ≥ emnλt))

≤ 1

mn

log
(

e−mnλt
)

+
1

mn

log
(

E[eλX
T
n ΓnXn]

)

≤ −λt + φn(λ).

Then we get, ∀t >
∫

f

g
dµ,

lim sup
n

(

1

mn

log(P(
1

mn

XT
n ΓnXn ≥ t))

)

≤ −λt + φ(λ) = φ∗(λ) > 0.

We can obtain the same bound for t <
∫

f

g
. By Borel-Cantelli theorem,

we get the Pf -almost sure convergence of 1
mn
XT

n ΓnXn to
∫

f

g
dµ.

To prove the same convergence with Γn = (Kn(g))
−1, we have to prove

that the difference between the spectral empirical measure of Kn(f)Kn(
1
g
)

and Kn(f)(Kn(g))
−1 converges weakly to zero. It is sufficient to control the

convergence of every moment, because they have compact support.
For this, we make use of the Schatten norms defined, if sk(A) are the

singular values of A, by

‖A‖Sch,p =
(

∑

sk(A)
p
)

1

p

.

Note that

|Tr(AB)| ≤ ‖AB‖Sch,1 ≤ ‖A‖Sch,1 ‖B‖Sch,∞ .

Hence, we can compute, for any p ≥ 1,

1

mn

∣

∣

∣

∣

Tr
(

Kp
n(
1

g
)Kp

n(f) − K−p
n (g)Kp

n(f)
)∣

∣

∣

≤ 1

mn

∥

∥Kn(g)
−p
Kp

n(f)
∥

∥

Sch,∞

∥

∥

∥

∥

(

Kp
n(
1

g
)Kp

n(g)− IGn

)∥

∥

∥

∥

Sch,1

≤ δn

mn

M2p

m2p
α(g)2pα(

1

g
)2p → 0.

To prove the same bound with Γn = Qn(
1
g
), we have to prove that

the difference between the spectral empirical measures of Kn(f)Kn(
1
g
) and

Kn(f)Qn(
1
g
) converge weakly to zero. It is a direct consequence of lemma

7.2. So, we get
XT

n ΓnXn → 0, a.s.
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Proof. of Lemma 7.5 We can first write :

1

mn

|log det(Kn(f))− log det(Kn(g))| ≤ 1

mn

∑

|log(λi)− log(µi)|

≤ 1

m
sup |λi − µi|

≤ 1

m
‖Kn(f)−Kn(g)‖2,op

≤ M

m
‖f − g‖∞ .

and
∫
∣

∣

∣

∣

log(f)dµ−
∫

log(g)dµ

∣

∣

∣

∣

≤ 1

m
‖f − g‖∞ .

Then, notice that we have

1

mn

∣

∣XT
nBXn

∣

∣ ≤ 1

mn

‖B‖2,op
∣

∣XTX
∣

∣ .

So it is sufficient to bound the quadratic form in norm 2 to ensure the equicon-
tinuity of the sequences of function above.

So let us compute
∥

∥

∥

∥

Kn(
1

f
)−Kn(

1

g
)

∥

∥

∥

∥

2,op

≤ 1

m2
‖f − g‖∞ .

and

∥

∥(Kn(f))
−1 − (Kn(g))

−1
∥

∥

2,op
≤
∥

∥(Kn(f))
−1(Kn(g))

−1
∥

∥

2,op
‖(Kn(f))− (Kn(g))‖2,op

1

m2
‖f − g‖∞ .

and

∥

∥

∥

∥

Qn(
1

f
)−Qn(

1

g
)

∥

∥

∥

∥

2,op

≤
∥

∥

∥

∥

Qn(
1

f
)−Qn(

1

g
)

∥

∥

∥

∥

1,op

≤ (1 + C
δn

mn
)
∑

k

|ψk − φk| .

Here, we denote ψ = 1
f
and φ = 1

g
.

Since the map g 7→ 1
g
is continuous over Fρ, which is a compact subspace of l1,

we get the uniform equicontinuity of the map g 7→ XTQn(
1
g
)X. We have proved

this lemma, and the equicontinuity of the sequence of functions ln(f)− ln(g).
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Proof. of Lemma 3.3
To prove the assertion, it is sufficient to prove that

lim
n

E
[

exp
(

i
√
mnt

(

(l(u)n )′(θ0)
))]

= exp

(

−
∫

1

4
t2
(f ′

θ0
)2(t)

f 2
θ0
(t)

dµ(t)

)

, with

(l(u)n )′(θ) = −1

2

∫

f ′
θ

fθ
dµ+

1

2mn

XTQn(
f ′
θ

f 2
θ

)X.

So

√
mnE

[

(l(u)n )′(θ0)
]

=
√
mn

(

−1

2

∫

f ′
θ0

fθ0
dµ+

1

2mn

Tr

(

Kn(fθ0)Qn(
f ′
θ

f 2
θ

)

))

=
√
mn

(

−1

2

∫

f ′
θ0

fθ0
dµ+

1

2mn

Tr

(

Kn

(

fθ0
f ′
θ0

f 2
θ0

)))

≤ Cvn
√
mn

n→∞−−−→ 0.

The equality holds here only if fθ0 is polynomial, or if all the fθ, θ ∈ Θ are
polynomial. This brings out that the second theorem holds only for the ARK

orMAK case. It also explains the denomination of unbiased estimator of the
approximate likelihood for θ(u). The equality can be obtained by derivation
of the equality, true in both ARK and MAK cases,

Kn(fθ0)Qn(
1

fθ
) = Kn(

fθ0
fθ

).

We can define

Zn = t
1

2mn

XTQn(
f ′
θ

f 2
θ

)X.

We have proven that, if

Z = t
1

2

∫

f ′
θ

fθ
dµ.

then √
mn (E [Zn]− Z) → 0.

Then, it is sufficient to prove

lim
n

E [exp (i
√
mn (Zn − E [Zn]))] = exp

(

−
∫

1

4
t2
(f ′

θ0
)2(t)

f 2
θ0
(t)

dµ(t)

)

.

If τk denotes the eigenvalues of the symmetric matrix

Mn :=
t

2
Kn(fθ0)

1

2Qn(
f ′
θ0

f 2
θ0

)Kn(fθ0)
1

2 ,
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then we can write

Zn =
1

mn

mn
∑

k=1

τkY
2
k .

where (Yk)k∈Gn
is a standard Gaussian vector.

The independence of Yk leads to

log (E [exp (i
√
mn (Zn − E [Zn]))]) = −

mn
∑

k=1

(

i
τk√
mn

+
1

2
log(1− 2i

τk√
mn

)

)

.

The τk are bounded, thanks to the following inequality :

‖Mn‖2,op =

∥

∥

∥

∥

t

2
Kn(fθ0)

1

2Qn(
f ′
θ0

f 2
θ0

)Kn(fθ0)
1

2

∥

∥

∥

∥

2,op

≤
∥

∥

∥

∥

t

2
Kn(fθ0)

1

2

∥

∥

∥

∥

2,op

∥

∥

∥

∥

Qn(
f ′
θ0

f 2
θ0

)

∥

∥

∥

∥

2,op

∥

∥

∥
Kn(fθ0)

1

2

∥

∥

∥

2,op

≤
∥

∥

∥

∥

t

2
Kn(fθ0)

1

2

∥

∥

∥

∥

2,op

∥

∥

∥

∥

Qn(
f ′
θ0

f 2
θ0

)

∥

∥

∥

∥

1,op

∥

∥

∥
Kn(fθ0)

1

2

∥

∥

∥

2,op

≤ Mα(f ′
θ0
)α(fθ0)

2(1 +
δn

mn

).

The Taylor expansion of log(1− 2 τk√
mn

) gives

log (E [exp (i
√
mn (Zn − E [Zn]))]) = − 1

mn

mn
∑

k=1

τ 2k +Rn.

With |Rn| ≤ C 1
mn

√
mn

∑mn

k=1 |τk|
3

Since the τk are bounded the assertion is proven if we prove that

1

mn

Tr(M2
n) =

1

mn

mn
∑

k=1

τ 2k
n→∞−−−→

∫

1

4
t2
(f ′

θ0
)2(t)

f 2
θO
(t)

dµ(t)

The convergence is due to Lemmas 7.1 and 7.2.

Proof. of Lemma 3.4 We have

(l(u)n )′′(θ) = − 1

2mn

(
∫

f ′′
θ fθ − (f ′

θ)
2

f 2
θ

dµ+XTQn

(

2(f ′
θ)

2 − f ′′
θ fθ

f 3
θ

)

X

)

,

which leads to

(l(u)n )′′(θ)
n→∞−−−→ 1

2

∫
(

f ′′
θ fθ − (f ′

θ)
2

f 2
θ

+
fθ0 (2(f

′
θ)

2 − f ′′
θ fθ)

f 3
θ

)

dµ. (1)
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Since the sequence l
(u)
n is equicontinuous and θ̆n

n→∞−−−→ θ0, we get the following
convergence :

(l(u)n )′′(θ̆n)
n→∞−−−→ 1

2

∫
(

(f ′
θ0
)2

f 2
θ0

)

dµ.

Proof. of Lemma 3.5 As usually, it is sufficient to compute

1

mn

Var (L′
n(θ0)) = lim

1

2mn

Tr(Mn(θ0)
2),

where Mn(θ) = Kn(fθ)
−1Kn(f

′
θ)Kn(fθ)

−1Kn(fθ0).
This leads to

1

mn

Var (L′
n(θ0)) →

1

2

∫

(f ′
θ0
)2

f 2
θ0

dµ.

That ends the proof of this lemma and the theorem.
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