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Abstract – The turbulence of superfluid helium is investigated numerically at finite temperature.
Direct numerical simulations are performed with a “truncated HVBK” model, which combines the
continuous description of the Hall-Vinen-Bekeravich-Khalatnikov equations with the additional
constraint that this continuous description cannot extend beyond a quantum length scale
associated with the mean spacing between individual superfluid vortices. A good agreement is
found with experimental measurements of the vortex density. Besides, by varying the turbulence
intensity only, it is observed that the intervortex spacing varies with the Reynolds number
as Re−3/4, like the viscous length scale in classical turbulence. In the high-temperature limit,
Kolmogorov’s inertial cascade is recovered, as expected from previous numerical and experimental
studies. As the temperature decreases, the inertial cascade remains present at large scales while, at
small scales, the system evolves towards a statistical equipartition of kinetic energy among spectral
modes, with a characteristic k2 velocity spectrum. The accumulation of superfluid excitations on
a range of mesoscales enables the superfluid to keep dissipating kinetic energy through mutual
friction with the residual normal fluid, although the later becomes rare at low temperature. It is
found that most of the superfluid vorticity can concentrate on these mesoscales at low temperature,
while it is concentrated in the inertial range at higher temperature. This observation should have
consequences on the interpretation of decaying turbulence experiments, which are often based on
vortex line density measurements.

Copyright c© EPLA, 2011

Introduction. – The turbulence of quantum fluids,
such as Bose-Einstein condensates, superfluid helium and
neutron stars, has attracted much attention over the last
decade thanks to experimental progresses in flow genera-
tion and characterisation (e.g. [1,2]). In particular, experi-
ments performed with superfluid 4He generate turbulence
which is intense enough to allow a statistical characterisa-
tion of the fluctuations of “quantum turbulence”.
According to Landau and Tisza, the superfluid state of

4He (He II) can be described as an intimate mixture of two
fluids: a viscous normal fluid and an inviscid superfluid
with quantized circulation of velocity. A mutual coupling
allows for an exchange of momentum between these two
fluid components. The relative fraction of each component
strongly depends on the temperature: the normal fluid
vanishes at 0K while the superfluid extinguishes at the
superfluid transition, around 2.17K [2–4].
Like in ordinary fluids, intense turbulence can be gener-

ated in He II by mechanical means, for example by

shearing the flow with counter-rotating propellers [5], by
imposing an external pressure difference in pipes [6–9]
or by destabilizing the flow with an obstacle, usually a
grid [10,11]. This study addresses this type of turbulence
at finite temperature, where the presence of normal fluid
cannot be neglected.
At the largest scales of such turbulent flows, the normal

fluid and the superfluid are nearly locked together as a
result of the mutual coupling, which tends to minimize
the velocity difference between these two components.
Both fluids undergo a common inertial cascade, similar
to Kolmogorov cascade in ordinary fluids. This cascade
carries kinetic energy from the largest scales of the flow
down to smaller scales. Experimental [5,11] and numerical
results [9], as well as theoretical arguments [2], support
this widely accepted picture.
At smaller scales, it is unclear what happens to the

superfluid energy which has cascaded from the largest iner-
tial scales. Indeed, the superfluid can loose kinetic energy
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through mutual coupling with the normal fluid but this
coupling becomes less efficient at low temperature since
it is proportional to the normal-fluid fraction. The moti-
vation of this study is to understand the response of the
superfluid to dissipate energy and reach a (statistically)
stationary state when the normal-fluid density is low.
High-resolution numerical simulations are performed to

solve the dynamical equations at four different temper-
atures, corresponding to significantly different fractions
of the normal-fluid and superfluid components. A modi-
fied version of the Hall-Vinen-Bekeravich-Khalatnikov
(HVBK) model is considered to account for the cut-off
length scale associated with the quantization of superfluid
vortices. At low temperature, we observe that a new
phenomenon emerges between the inertial length scales
and the vortex quantization length scale. In this range
of mesoscales, the superfluid kinetic energy piles up,
which indirectly increases the mutual coupling and
compensates for the reduced fraction of normal fluid.
The superfluid eventually reaches a stationary state in
which the energy distribution tends towards equipartition
with a characteristic k2 spectrum (in the continuation of
the k−5/3 spectrum related to the Kolmogorov’s energy
cascade). Interestingly, the amount of superfluid vorticity
which accumulates in these mesoscales can be much
larger than the amount of vorticity held in the inertial
scales. This supports a recent prediction [12] and should
be of importance for the interpretation of decaying
quantum turbulence experiments, which are all based on
measurements of the superfluid vortex density.

A truncated HVBK model. – The Hall-Vinen-
Bekeravich-Khalatnikov model (HVBK) describes the
dynamics of He II by continuous equations: a Navier-
Stokes equation (for the normal fluid) and an Euler
equation (for the superfluid) [3]. The Euler equation is
derived by coarse-graining the superfluid field: the details
of the vortex tangle are averaged out by smoothing the
velocity field on a scale corresponding to the typical
intervortex spacing δ. Thus, this original model removes
all the information about the quantification of vortices
and, by construction, does not account physically for
the possible propagation of some superfluid excitations
(through Kelvin waves along vortices, for instance) at
scales smaller than δ. As a first approximation, we neglect
these effects and therefore impose that the cut-off scale
of the simulation corresponds to the quantum scale δ.
A mutual coupling term allows a consistent exchange of
momentum between the normal fluid and the superfluid.
The HVBK model has been widely used to simulate
quantum fluids (helium and neutron stars) in numerical
studies (e.g. see [13–19]) For a discussion of models
proposed for Bose-Einsein condensates, see [20]. The
simulated equations are

Dvn
Dt
=−

1

ρn
∇pn+

ρs
ρ
Fns+ ν∇

2vn+ f
ext
n , (1)

Dvs
Dt
=−

1

ρs
∇ps−

ρn
ρ
Fns+ f

ext
s , (2)

where the indices n and s refer to the normal fluid and
superfluid, respectively, fextn and fexts are external forcing
terms, ν is the kinematic viscosity (ν = µ/ρn), ρn and ρs
are the normal-fluid and superfluid densities, ρ= ρn+ ρs,
pn = (ρn/ρ)p+ ρsST and ps = (ρs/ρ)p− ρsST are partial
pressures, S, T and p are specific entropy, temperature
and pressure, and vn and vs satisfy the incompressibility
conditions ∇ ·vn = 0 and ∇ ·vs = 0. The mutual coupling
term is

Fns =
B

2

ωs

|ωs|
× (ωs×vns)+

B′

2
ωs×vns, (3)

where vns = vn−vs is the slip velocity, ωs =∇×vs is
the superfluid vorticity. Unless otherwise specified, this
mutual coupling was approximated at first order:

Fns =−
B

2
|ωs|vns. (4)

A simple analytical derivation proposed in [18] (for a
slightly different derivation, see [21]) showed that this
first-order approximation allows to account for effective
viscosity measurements over a large range of temperature
in turbulent 4He. This supports the use of eq. (4) as a
reasonable approximation for the mutual coupling.
As already mentioned, the originality of our HVBK

modeling consists in preventing the superfluid energy to
cascade beyond length scales smaller than an estimated
mean intervortex spacing δ. In other words, the spectral
domain is truncated to wave vectors such that k! 2π/δ.
The intervortex scale δ is estimated from the quantum of
circulation κ around a single superfluid vortex and from
the average vorticity

κ= δ2
(

1

V
·

∫

V
ω
2
sdv

)1/2

= δ2
(

ω
2
s

)1/2
. (5)

Physically, this truncation procedure is justified as
long as the energy cascade on scales smaller than δ is
less efficient than the dissipation processes occurring on
scales of order δ or larger. According to the present
understanding of quantum turbulence, this is the case if
the temperature is typically larger than 1K, thanks to
mutual friction [2].
For reference, we first note that a similar truncation

of the spectral domain has already been implemented in
EDQNM simulations of the HVBK equations [19] but, in
this later study, the superfluid kinetic energy was also
forced to leak out the spectral domain in such a way
that the superfluid velocity spectrum would scale as k−5/3

down to the smallest scales. This differ from our modelling,
where no energy leaks to scales smaller than δ. In another
related study [18], an artificial superfluid viscosity was
introduced in the HVBK model to force damping at small
scales. This allowed to obtain an extended inertial cascade
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by direct numerical simulations, but at the expense of an
artificial modeling of the small scales.
The computational domain is cubic (size 2π) with

periodic boundary conditions in the three directions.
The spatial resolution is 5123, unless otherwise specified.
A random forcing (acting in the shell of wave vectors
1.5< |k|< 2.5) is imposed on the normal fluid alone at the
two highest simulated temperatures and on the superfluid
alone at the two lowest ones [18].
The parallel code has been adapted from an exist-

ing validated code [18,22], based on a pseudo-spectral
method with 2nd-order accurate Adams-Bashforth time
stepping. Usual checks have been done on the simulations
(solenoidal condition, balance of the various energy fluxes,
robustness to the anti-aliasing procedure). We also checked
that the normal fluid is well damped at cut-off wave vector,
in other words that our truncation procedure, which is
motivated by the superfluid physics but imposed to both
fluids, is not biasing the normal-fluid dynamics. Finally,
the more complete HVBK coupling term eq. (3) was also
implemented to make sure that second-order contributions
to the mutual coupling do not alter the conclusion of this
study.
Calculations were performed with density ratios
ρs/ρn 0.1 (∼ 2.1565K), 1 (∼ 1.96K), 10 (∼ 1.44K) and
40 (∼ 1.15K). The corresponding temperatures will be
referred as high, intermediate, low and very low. To
simplify the analysis, we set B = 2 (unless otherwise
specified) omitting a twofold temperature dependence of
this parameter.

Equipartition of superfluid energy at mesoscales.
– Figure 1 presents the velocity spectra of the super-
fluid and the normal fluid at various temperatures. At
high temperature, where the normal fluid is dominant
(ρs/ρn = 1/10), we recognize the inertial spectra, with a
−5/3 scaling at large scales and a sharper and sharper
cut-off at small scales. As the temperature decreases,
the −5/3 scaling remains present at the largest scales in
agreement with experimental [5,11] and numerical [16,18]
findings in such conditions, but a new behaviour appears
at small scales. A first feature of this new behaviour is
the upward inflection of the normal-fluid spectra (e.g. for
k% 60 on the thin black line of fig. 1), which contrasts
with the exponential decay for ordinary fluids. A second
feature is the increase of superfluid spectra vs. k. The scal-
ing of the superfluid spectra tends toward k2 at the lowest
temperature, where the superfluid is dominant. Such a
scaling is typical of equipartition of energy among the
hydrodynamic modes [23]. The range of scales over which
the system exhibits this new behaviour will be called the
mesoscales, as it sits between the large scales of inertial
cascade and the microscopic scales associated with indi-
vidual quantum vortices. We note that an accumulation
of superfluid excitations at small scales has already been
predicted [12] to interpret experimental results [9].
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Fig. 1: (Colour on-line) Velocity power spectra of the superfluid
(thick lines) and normal fluid (thin lines) at high (red solid
line), intermediate (green dash-dotted line) low (blue dashed
line) and very low (black solid line) temperatures. The wave
number 2π/δ! 256 associated with the intervortex spacing is
marked by a triangle. Insert: similar spectra at low temperature
only for different strength of the mutual coupling constant
B. From top to bottom, the thick solid lines correspond to
B = 0.02 (red), 0.1 (purple), 0.5 (blue), 1 (green). The thin
black lines corresponds to a more complete expression of the
HVBK mutual coupling (eq. (3) with B = 2 and B′ = 0.6).

Physically, the emergence of this range of mesoscales at
low temperature results from the difficulty of dissipating
the superfluid kinetic energy at the bottom of the inertial
cascade. We already pointed that the mutual coupling
force (Bρn/2ρ)|ωs|vns is proportional to the normal-
fluid fraction, which tends to zero at low temperature.
As a result, the superfluid kinetic energy piles up at
small scales, leading —in return— to an increase of
the |ωs| and vns factors in the mutual coupling. The
resulting stationary equilibrium exhibits a mesoscale bath
of superfluid excitations.
To verify that the trend to equipartition only results

from weakening of the coupling term, and not indirectly
from other effects, we artificially reduced by steps the
mutual coupling coefficient B keeping all other parameters
constant1. This procedure also allows to check that the
k2 scaling is truly the asymptotic limit of the mesoscale
superfluid spectrum. The resulting spectra, obtained for
ρs/ρn = 10, are presented in the insert of fig. 1. They
confirm the trend to the equipartition k2 scaling in the
limit of low coupling. This insert also presents simulations
carried out with the more sophisticated coupling term,
matching the complete HVBK expression with zero vortex
tension. The emergence of mesoscales is found to be robust
to such a change of the coupling term.

1In particular, we no longer impose that the numerical resolution
cut-off matches the estimated quantum cut-off, which varies from
2π/δ= 781 to 1507.
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Fig. 2: (Colour on-line) Lower plot: power spectral density
P (ωs) of the superfluid vorticity. Upper plot: corresponding
quantity in the normal fluid. The k compensation on the
vertical axis, associated with the log-linear representation,
allows to interpret the area below the curves as the total square
vorticity (enstrophy). High (red and grey lines), intermediate
(green dash-dotted line), low (blue dashed line) and very low
(black line) temperatures. The grey data have been obtained
at lower resolution (2563 instead of 5123) and with a reduced
external forcing of the fluid such that the new cut-off wave
vector k= 128 still matches the estimated quantum cut-off
scale.

For reference, we first note that simultaneous observa-
tion of a k−5/3 inertial cascade and a k2 equipartition
at small scales have already been reported in truncated
Euler simulations (e.g. [24,25]). In contrast with our trun-
cated HVBK model, a truncated Euler system can never
reach a stationary state due to the absence of dissipation.
In recent work [26], a truncated version of the Gross-
Pitaevskii equation was implemented to describe turbu-
lent Bose-Einstein condensates, and a transient k2 scaling
was also evidenced at small scale. A spectrum with both a
k−5/3 and k2 scaling was also predicted in [27] to account
for superfluid turbulence at zero temperature2. Finally, a
stationary k2 spectrum is observed in the near-dissipation
range when replacing the standard viscous dissipation
process by a higher-order hyperviscous dissipation in the
hydrodynamical equations [29].

The superfluid vortex bath. – The vorticity spectra
are plotted in fig. 2. This figure illustrates that most of the
superfluid vorticity is concentrated at large scales at high
temperature, and at small scales at low temperature3. As a
consequence regarding superfluid turbulence experiments,
second sound measurements of the vortex line density
should carry a different piece of information about the
flow in each of these temperature limits.

2The observation of equipartion is in apparent disagreement with
the minimal model in [28], but this study stresses in its conclusion
that it left “the exact details of applicability to He II [. . .] for future
work”.
3In contrast, the superfluid kinetic energy remains mostly local-

ized in the inertial range.

Inhomogeneities of the mesoscales bath. Figure 3
presents a thin slice of the simulation box in the low-
temperature case (ρn = ρs/10). Using the same color code
(see legend), it displays the normal-fluid (left image)
and superfluid (right image) square vorticity fields. As
expected from the spectra, a significant amount of vortic-
ity has accumulated in the superfluid, compared to the
normal fluid. A less obvious result is the large-scale orga-
nization of the superfluid vorticity, which remains spatially
correlated with the normal-fluid one. The mesoscale bath
of superfluid excitations does not uniformly fill the flow
independently of the large scale dynamics of the flow.

Intervortex spacing vs. Reynolds number. – It
is tempting to relate the simulated superfluid vorticity
and the quantum vortex line density L measured in
experiments. To do so, we compiled measurements of
L obtained in various channel and pipe flows within a
narrow temperature range (1.5<T < 1.6K corresponding
to 7.6> ρs/ρn > 4.9) ([7,9,30,31]). We estimate the mean
intervortex spacing in experiments as δ=L−1/2 and in
simulations from the vorticity using eq. (5). Then, this
spacing δ is made dimensionless using the integral length
scale L of the flows4. In fig. 4, δ/L is plotted against the
Reynolds numbers

Reκ =
LVrms
κ
, (6)

where Vrms is the root-mean-square velocity of the flow.
When Vrms was not available experimentally ([7,30,31]),
it was estimated as 5% of the mean velocity in the
channel/pipe. Figure 4 evidences an excellent agreement
between the simulations and the experiments, both in
magnitude and scaling vs. the Reynolds numbers. At first,
the quality of this agreement may be surprising, given
the arbitrariness of the numerical truncation k! 2π/δ.
In fact, the value of |ωs|, and therefore δ, adjusts itself
to dissipate the cascade of superfluid energy by mutual
friction. For a given power supply at large scales, |ωs|
remains independent —at first order— of the precise
truncation criteria. After having checked this property, we
used it to extend the range of δ/L explored numerically.
This result justifies a posteriori the use of eq. (5) to
truncate our HVBK model. A fit at 1.6K is also plotted:

δ/L% 0.5Re−3/4κ . (7)

It is interesting to note that the power law scaling

Re−3/4κ is similar to the one found in classical turbulence
for the Kolmogorov dissipative scale, made dimensionless
with the integral scale of the flow. To the best of our
knowledge, this result has never been reported. The insert
of the figure gathers simulations results of δ/L compen-

sated by Re−3/4κ . It suggest that —at a given Reκ— the
intervortex spacing increases with the temperature till a
saturation which roughly corresponds to the disappear-
ance of the range of mesoscales (see spectra). As expected

4When L is not available experimentally, it is estimated as the
half of the flow channel/pipe width.
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Fig. 3: (Colour on-line) Square vorticity field of normal fluid (left) and superfluid (right) at low temperature (ρn = ρs/10). The
in-between sketch shows the simulation box (white) and the slice of fluid being displayed (green). The coloring evidences the
regions with the highest vorticity. The color threshold Z2 (respectively, Z1) is such that 75% (85%) of the superfluid total
square vorticity is concentrated in the Zs >Z2 (respectively, Zs >Z1) region. The threshold Z2

′ (respectively, Z1′) is such
that 75% (85%) of the normal total square vorticity is concentrated in the Zn >Z2

′ (respectively, Zn >Z1
′) region. (Figure

generated with vapor: http://www.vapor.ucar.edu/.)
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Fig. 4: (Colour on-line) Intervortex spacing δ (or its numerical
ansatz) normalised by the integral scale L vs. Reκ. Present
simulations at low temperature (T ! 1.44K): blue discs.
Experimental results within 1.5–1.6K: purple stars [30], char-
treuse pointing-up triangles [7], turquoise diamonds [31], lilac
pointing-down triangles: unpublished measurements obtained
with the apparatus and probe described in [9]. Dashed line: fit.
Insert: compensated intervortex spacing for the present simula-
tions at high (red squares), intermediate (green star), low (blue
discs) and very low (black diamonds) temperatures.

from the analysis of fig. 2, the intervortex spacing carries
two types of information: one about the inertial cascade
and the other one about the mesoscales. We recall that the
mutual coefficient B was taken constant in these simula-
tions: its (weak) temperature dependence should be taken

into account to predict the temperature dependence of δ/L
at given Reκ more precisely.

The vortex density spectrum. – One of the unex-
pected experimental results in superfluid turbulence is
related to the spectrum of the vortex line density. Local
measurements performed near 1.6K with a miniature
second sound probe evidenced a decreasing spectrum at
large scales [9] with a scaling behavior close to a k−5/3 (see
also the possibly related study [32]). In classical turbu-
lence, the one-dimensional spectrum of the absolute value
of the vorticity is rather flat or slightly decreasing [12].
This results suggests that both superfluid and classi-
cal turbulence can be distinguished from hydrodynam-
ics measurement performed at large scales. This contrasts
with existing experimental results which have always been
interpreted assuming that both types of turbulence were
identical at large scales.
The interpretation proposed in [9] for the vortex density

−5/3 spectrum at 1.6K predicts the existence of an
unpolarised bath of superfluid excitations at low scales
and predicts that it contributes to most of the vortex
line density signal. It then predicts that the unpolarised
bath is inhomogeneous and —to some extent— advected
by the large-scale flow. This leads to the characteristic
k−5/3 power spectrum reminiscent of passive-scalar turbu-
lence [33]. Importantly, the present simulations confirms
several of these qualitative predictions, in particular the
existence of an “unpolarised bath” which corresponds to
the mesoscale excitations.
Figure 5 reports the simulations spectra of |ωs| at

different temperatures using the same color code as fig. 1.
At large scales, we find that the spectrum is rather flat
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Fig. 5: (Colour on-line) Power spectral density of the modulus
of the superfluid vorticity at high (red and grey lines), interme-
diate (green dot-dashed line) low (blue dashed line) and very
low (black line) temperatures. The wave number 2π/δ! 256
associated with the intervortex spacing is marked by a trian-
gle. Insert: similar spectra at low temperature only for different
strength of the mutual coupling constant B (same colour code
as in fig. 1).

at high temperature, as expected in classical turbulence,
but becomes more and more decreasing as the temperature
gets lower, without exactly reaching the−5/3 power law in
the present conditions (Reynolds numbers in simulations
are typically 2 decades smaller than in experiments).
A k−5/3 scaling is better evidenced when decreasing
the mutual force constant B (see insert). This result is
therefore qualitatively consistent with the experimental
results. Interestingly, it seems that this k−5/3 scaling
develops in an intermediate range of scales between the
inertial scales and the so-called meso-scales, therefore
suggesting that interesting dynamics (possibly related to
passive-scalar dynamics) may happen in this range of
scales. This requires further investigations, in particular
through simulations at larger Reynolds numbers allowing
for a better separation of different ranges of scales.

Perspective. – It would be interesting to experimen-
tally confirm the existence of a range of mesoscales with
equipartition of energy. This test is presently difficult with
the state-of-the-art instrumentation, as the smallest veloc-
ity probes ever operated in a superfluid (∼ 500µm in [11])
are too large. Nevertheless, observation of these mesoscales
is certainly within reach of a dedicated micro-machined
probe operated in a large enough flow.
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