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Computational neuroscience has produced a diversity of software for simulations of networks of 
spiking neurons, with both negative and positive consequences. On the one hand, each simulator 
uses its own programming or confi guration language, leading to considerable diffi culty in porting 
models from one simulator to another. This impedes communication between investigators and 
makes it harder to reproduce and build on the work of others. On the other hand, simulation 
results can be cross-checked between different simulators, giving greater confi dence in their 
correctness, and each simulator has different optimizations, so the most appropriate simulator 
can be chosen for a given modelling task. A common programming interface to multiple 
simulators would reduce or eliminate the problems of simulator diversity while retaining the 
benefi ts. PyNN is such an interface, making it possible to write a simulation script once, using 
the Python programming language, and run it without modifi cation on any supported simulator 
(currently NEURON, NEST, PCSIM, Brian and the Heidelberg VLSI neuromorphic hardware). PyNN 
increases the productivity of neuronal network modelling by providing high-level abstraction, 
by promoting code sharing and reuse, and by providing a foundation for simulator-agnostic 
analysis, visualization and data-management tools. PyNN increases the reliability of modelling 
studies by making it much easier to check results on multiple simulators. PyNN is open-source 
software and is available from http://neuralensemble.org/PyNN.

Keywords: Python, interoperability, large-scale models, simulation, parallel computing, reproducibility, computational 

neuroscience, translation

compiler standards and simulators develop. Another is that model 
source code is often not written with reuse and extension in mind, 
and so considerable rewriting to modularize the code is necessary. 
Probably the most important barrier is that code written for one 
simulator is not compatible with any other simulator.

Although many computational models in neuroscience are writ-
ten from the ground up in a general purpose programming lan-
guage such as C++ or Fortran, probably the majority use a special 
purpose simulator that allows models to be expressed in terms 
of neuroscience-specifi c concepts such as neurons, ion channels, 
synapses; the simulator takes care of translating these concepts 
into a system of equations and of numerically solving the equa-
tions. A large number of such simulators are available (reviewed in 
Brette et al., 2007), mostly as open-source software, and each has its 
own programming language, confi guration syntax and/or graphi-
cal interface, which creates considerable diffi culty in translating 
models from one simulator to another, or even in understanding 
someone else’s code, with obvious negative consequences for com-
munication between investigators, reproducibility of others’ models 
and building on existing models.

However, the diversity of simulators also has a number of positive 
consequences: (i) it allows cross-checking – the probability of two 

INTRODUCTION
Science rests upon the three pillars of open communication, repro-
ducibility of results and building upon what has gone before. In 
these respects, computational neuroscience ought to be in a good 
position, since computers by design excel at repeating the same 
task without variation, as many times as desired: reproducibility 
of computational results ought, then, to be a trivial task. Similarly, 
the Internet enables almost instantaneous transmission of research 
materials, i.e. source code, between labs.

However, in practice this theoretical ease of reproducibility and 
communication is seldom achieved outside of a single lab and a 
time frame of a few months or years. While a given scientist may 
easily be able to reproduce a result obtained a few months ago, 
precisely reproducing a result obtained several years ago is likely to 
be rather more diffi cult, and the general experience seems to be that 
reproducing the results of others is both diffi cult and time consum-
ing: very many published papers lack suffi cient detail to rebuild a 
model from scratch, and typographic errors are common.

Having available the source code of the model greatly improves 
the situation, but here still there are numerous barriers to reproduc-
ibility and to building upon previously published models. One is that 
source code can rapidly go out of date as computer  architectures, 
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different simulators having the same bugs or hidden assumptions 
is very small; (ii) each simulator has a different balance between 
effi ciency (how fast the simulations run), fl exibility (how easy it is 
to add new functionality; the range of models that can be simu-
lated), scalability (for parallel, distributed computation on clusters 
or supercomputers), and ease of use, so the most appropriate can 
be chosen for a given task.

Addressing the problems associated with an ecosystem of mul-
tiple simulators while retaining the benefi ts would greatly increase 
the ease of reproducibility of computational models in neuroscience 
and hence make it easier to verify the validity of published models 
and to build upon previous work.

There are at least two possible (and complementary) approaches 
to this. One is to enable direct, effi cient communication between 
different simulators at run-time, allowing different components 
of a model to be simulated on different simulators (Ekeberg and 
Djurfeldt, 2008). This approach addresses the problem of building a 
model from diverse components, but still leaves the problem of hav-
ing to use different programming languages, and does not enable 
straightforward cross-checking. The other approach is to develop 
a system for model specifi cation that is simulator-independent. 
Translation then only has to be done once for each simulator and 
not once for each model.

Here we can take advantage of the recent, rapid emergence of 
the Python programming language as an alternative interface to 
several of the more widely-used simulators. Thus, for example, both 
NEURON and NEST may be controlled either via their original, 
native interpreter (Hoc and SLI, respectively) or via Python. More 
recent simulators (e.g. PCSIM, Brian) have Python as the only avail-
able scripting language. This widespread adoption of Python is 
probably due to a number of factors, including the powerful data 
structures, clean and expressive syntax, extensive library, maturity 
of tools for numerical analysis and visualization (allowing use of a 
single language for the entire modelling workfl ow from simulation 
to analysis to graphing), and the ease-of-use of Python as a glue 
language which allows computation-intensive code written in a 
low-level language such as C to be transparently accessed within 
high-level Python code.

Python alone does not address the translation problem (although 
it does make the translation process easier, since at least simple data 
structures such as lists and arrays are the same for each simulator), 
since neuroscience-specifi c concepts are still expressed differently. 
However, it is now possible to defi ne a simulator-independent 
Python interface for neuronal network simulators and to implement 
automatic translation to any Python-enabled simulator. We have 
designed and implemented such an interface, PyNN (pronounced 
“pine”). In this paper we describe its design, concepts, implemen-
tation and use. We do not attempt here to provide a complete 
user guide – this may be found online at http:// neuralensemble.
org/PyNN.

DESIGN GOALS
When designing and implementing a common simulator interface, 
the following goals should be taken into account. These are the 
goals we have kept in mind when designing and implementing 
the PyNN interface, but they are equally applicable to any other 
such interface.

Write the code for a model once, run it on any supported simu-
lator or hardware device without modifi cation. This is the primary 
design goal for PyNN.

Support a high-level of abstraction. For example, it is often 
preferable to deal with a single object representing a population of 
neurons than to deal with all the individual neurons directly. Each 
single neuron can be accessed when necessary, but in many cases 
the population is the more useful abstraction. The advantages of 
this approach are that (i) it is easier to maintain a conceptual idea 
of the model, without being distracted by implementation details, 
and (ii) the internal implementation of an object can be optimized 
for speed, parallelization or memory requirements without chang-
ing the interface presented to the user.

Support any feature provided by at least two supported simula-
tors. The aim is to strike a balance between supporting all features 
of all simulators (unfeasible) and supporting only the subset of 
features common to all simulators (overly restrictive).

Allow mixing of PyNN and native simulator code. PyNN should 
not limit the range of models that can be implemented. Following 
the two-simulator rule, above, there will be things that are possible 
in one simulator and not in any other. Although a model imple-
mentation consisting of 100% PyNN is the best scenario for run-
ning on multiple simulators, an implementation with 50% PyNN 
code will be easier to convert between simulators than one with 
no PyNN code.

Facilitate porting of models between simulators. PyNN changes 
the process of porting a model between simulators from all-or-
 nothing, in which the validity of the translated model cannot be 
tested until the entire translation is complete, to an incremen-
tal approach, in which the native code is gradually replaced by 
 simulator-independent code. At each stage, the hybrid code remains 
runnable, and so it is straightforward to verify that the model 
behaviour has not been changed.

Minimize dependencies, to make installation as simple as pos-
sible and maximize fl exibility. There are no visualization and few 
data analysis tools built-in to PyNN, which means the user can use 
any such tools they wish.

Present a consistent interface on output as well as on input. 
The formats used for simulation outputs are consistent across 
simulator back-ends, making it a stable base upon which to build 
more complex systems of simulation control, data-analysis and 
visualization.

Prioritize compatibility over optimizations, but allow 
 compatibility-breaking optimizations to be selected by a deliber-
ate choice of the user (e.g. the compatible_output fl ag of the 
various print() methods is True by default, but can be set to 
False to get potentially-faster writing of data to fi le).

API Versioning. The PyNN API will inevitably evolve over time, 
as more simulators are supported and to take account of the pref-
erences of the community of users. To ensure backwards compat-
ibility, the API should be versioned so that the user can indicate 
which version was used for a particular implementation. Note that 
the examples given in this paper use version 0.4 of the API.

Transparent parallelization. Code that runs on a single processor 
should run on multiple processors (using MPI) without changes.

Some of these goals are somewhat contradictory: for exam-
ple, having a high level of abstraction and making porting easy. 
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Reconciling this particular pair of goals has led to the presence in 
PyNN of both a high-level, object-oriented interface and a low-
level, procedural interface that is more similar to the interface of 
many existing simulators. These will be discussed further below.

USAGE EXAMPLES
Before describing in detail the concepts underlying the PyNN 
interface, we will work through some examples of how it is used 
in practice: fi rst a simple example using the low-level, procedural 
interface and then a more complex example using the high-level, 
object-oriented interface.

For the simple example, we will build a network consisting of 
a single integrate-and-fi re (IF) cell receiving spiking input from a 
Poisson process.

First, we choose which simulator to use by importing the rel-
evant module from PyNN:

>>> from pyNN.neuron import *

If we wanted to use PCSIM, we would just import pyNN.pcsim, 
etc. Whichever simulator back-end we use, none of the code below 
would change.

Next we set global parameters of the simulator:

>>> setup(timestep=0.1, min_delay=2.0)

Now we create two cells: an IF neuron with synapses that respond 
to a spike with a step increase in synaptic conductance, which then 
decays exponentially, and a “spike source”, a simple cell that emits 
spikes at predetermined times but cannot receive input spikes.

>>> ifcell = create(IF_cond_exp,
…                  {'i_offset': 0.11,
…                   'tau_refrac': 3.0,
…                   'v_thresh' : -51.0})
>>> times = map(float, range(5,105,10))
>>> source = create(SpikeSourceArray,
…                  {'spike_times': times})

Behind the scenes, the create() function translates the stand-
ard PyNN model name, IF_cond_exp in this case, into the model 
name used by the simulator, Standard_IF for NEURON, iaf_
cond_exp for NEST, for example and also translates parameter 
names and units into simulator-specifi c names and units. To take 
one example, the i_offset parameter represents the amplitude of 
a constant current injected into the cell, and is given in nanoamps. 
The equivalent parameter of the NEST iaf_cond_exp model has 
the name I_e and units of picoamps, so PyNN both converts the 
name and multiplies the numerical value by 1000 when running 
with NEST. Standard cell models and automatic translation are 
discussed in more detail in the next section.

The create() function returns an ID object, which provides 
access to the parameters of the cell models, e.g.:

>>> ifcell.tau_refrac
3.0
>>> ifcell.tau_m = 12.5
>>> ifcell.get_parameters()
{'tau_refrac': 3.0, 'tau_m': 12.5,
 'e_rev_E': 0.0, 'i_offset': 0.11,

 'cm': 1.0, 'e_rev_I': -70.0,
 'v_init': -65.0, 'v_thresh': -51.0,
 'tau_syn_E': 5.0, 'v_rest': -65.0,
 'tau_syn_I': 5.0, 'v_reset': -65.0}

Having created the cells, we connect them with the connect() 
function:

>>> connect(source, ifcell, weight=0.006,
…          synapse_type='excitatory', delay=2.0)

Now we tell the system what variable or variables to record, run 
the simulation and fi nish.

>>> record_v(ifcell, 'ifcell.dat')
>>> run(200.0)
>>> end()

The result of running the above model is shown in Figure 1, 
which also shows the degree of reproducibility obtainable between 
different simulators for such a simple network.

The low-level, procedural interface, using the create(), 
 connect() and record() functions, is useful for simple models 
or when porting an existing model written in a different language 
that uses the create/connect idiom. For larger, more complex net-
works we have found that an object-oriented approach, with a 
higher-level of abstraction, is more effective, since it both clarifi es 
the conceptual structure of the model, by hiding implementation 
details, and allows behind-the-scenes optimizations.
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FIGURE 1 | Results of running fi rst example given in the text, with 

NEURON, NEST and PCSIM as back-end simulators. (A) Entire membrane 
potential trace with integration time-step 0.1 ms. (B) Zoom into a smaller 
region of the trace, showing small numerical differences between the results 
of the different simulators. (C) Results of a simulation with integration 
time-step 0.01 ms, showing greatly reduced numerical differences.
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To illustrate the high-level, object-oriented interface we turn 
now from the simple example of a few neurons to a more complex 
example: a network of several thousand excitatory and inhibitory 
neurons that displays self-sustained activity (based on the “CUBA” 
model of Vogels and Abbott (2005), and reproducing the bench-
mark model used in Brette et al. (2007)). This still is not a par-
ticularly complicated network, since it has only two cell types, no 
spatial structure and no heterogeneity of neuronal or connection 
properties, but in demonstrating how building such a network 
becomes trivial using PyNN we hope to convince the reader that 
building genuinely complex, structured and heterogeneous net-
works becomes manageable.

Again, we begin by choosing which simulator to use. We also 
import some classes from PyNN’s random module.

>>> from pyNN.nest2 import *
>>> from pyNN.random import (NumpyRNG,
…                           RandomDistribution)

We next specify the parameters of the neuron model (the same 
model and same parameters are used for both excitatory and inhibi-
tory neurons).

>>> cell_params = {
…     'tau_m':     20.0,  'tau_syn_E':   5.0,
…     'cm':         0.2,  'tau_syn_I':  10.0,
…     'v_rest':   -49.0,  'v_reset':   -60.0,
…     'v_thresh': -50.0,  'tau_refrac':  5.0
…     }

Parameters with dimensions of voltage are in millivolts, time in 
milliseconds and capacitance in nanofarads. The units convention 
is discussed further in the next section.

We now initialize the simulation, this time accepting the default 
values for the global parameters.

>>> setup()

Now, rather than creating each cell separately, we just create a 
Population object for each different type of cell:

>>> pE = Population(4000, IF_cond_exp,
…                  cell_params,
…                  label="Excitatory")
>>> pI = Population(1000, IF_cond_exp,
…                  cell_params,
…                  label="Inhibitory")

By default, all cells of a given Population are created with identi-
cal parameters, but these can be changed afterwards. Here we wish 
to randomize the value of the membrane potential at the start of 
the simulation to values between −50 and −70 mV.

>>> unif_distr = RandomDistribution('uniform',
…                                  [-50,-70])
>>> pE.randomInit(unif_distr)
>>> pI.randomInit(unif_distr)

randomInit() is a convenience method for randomizing the ini-
tial membrane potential. For the more general case of randomizing 
any cell parameter use rset().

Just as individual neurons are encapsulated within Populations, 
connections between neurons are encapsulated within Projections. 
To create a Projection object, we need to specify how the neurons will 
be connected, either via an algorithm or via an explicit list. Different 
algorithms are encapsulated in different Connector classes, e.g. 
FixedProbabilityConnector, AllToAllConnector. An explicit 
list of connections can be provided via a FromListConnector or a 
FromFileConnector.

>>> FPC = FixedProbabilityConnector
>>> exc_conn = FPC(0.02, weights=0.004,
…                 delays=0.1)
>>> inh_conn = FPC(0.02, weights=0.051,
…                 delays=0.1)

Note that weights are in microsiemens and delays in millisec-
onds. Where the delay is not specifi ed, the global minimum delay 
specifi ed in the setup() function is used. Here we set all weights 
and delays of a Projection to the same value, but it is equally 
possible to pass the constructor a RandomDistribution object, 
as we did above for the initial membrane potential, or an explicit 
list of values.

To create a Projection, we need to specify the pre- and post-
synaptic Populations, a Connector object, and a synapse type. 
The standard IF cells each have two synapse types, “excitatory” 
and “inhibitory”. User-defi ned models can use arbitrary names, 
e.g. “AMPA”, “NMDA”.

>>> e2e = Projection(pE, pE, exc_conn,
…                   target='excitatory')
>>> e2i = Projection(pE, pI, exc_conn,
…                   target='excitatory')
>>> i2e = Projection(pI, pE, inh_conn,
…                   target='inhibitory')
>>> i2i = Projection(pI, pI, inh_conn,
…                   target='inhibitory')

Having constructed the network, we now need to instrument 
it, using the record() (for recording spikes) and record_v() 
(membrane potential) methods of the Population objects. Here 
we choose to record spikes from 1000 of the excitatory neurons 
(chosen at random) and all of the inhibitory neurons, and to record 
the membrane potential of two specifi c excitatory neurons. We then 
run the simulation for 1000 ms.

>>> pE.record(1000)
>>> pI.record()
>>> pE.record_v([pE[0], pE[1]])
>>> run(1000.0)

After running the simulation, we can access the results or write 
them to fi le.

>>> pI.getSpikes()[:5]
array([[ 715. ,     1.5],
       [ 609. ,     1.6],
       [ 708. ,     1.7],
       [ 796. ,     1.7],
       [  34. ,     1.8]])
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>>> pE.get_v()[:5]
array([[  0.   ,     0.1  ,  -55.073],
       [  1.   ,     0.1  ,  -50.163],
       [  0.   ,     0.2  ,  -55.098],
       [  1.   ,     0.2  ,  -50.212],
       [  0.   ,     0.3  ,  -55.122]])
>>> end()

The results of running simulations of the above network with 
two different simulator back-ends are shown in Figure 2.

PRINCIPAL CONCEPTS
To achieve the goal of “write the code for a model once, run it 
on any supported simulator without modifi cation” requires (i) a 
 common interface, (ii) neuron and synapse models that are stand-
ardized across simulators, (iii) consistent handling of physical 
units, (iv) consistent handling of (pseudo-)random numbers. To 
achieve the twin goals of supporting a high-level of abstraction 

and  facilitating porting of models between simulators requires 
both an object- oriented and a procedural interface. The imple-
mentation of all these requirements is described in more depth in 
the following. We also illustrate the mixing of PyNN and native 
simulator code, and how PyNN can support features that are found 
in only a single simulator back-end, by describing support for 
multi- compartmental models.

STANDARD CELL MODELS
A fundamental concept in PyNN is the cell type – a given model 
of a neuron, representable by a set of equations, and comprising 
sub-threshold behaviour, spiking mechanism and post-synaptic 
response. The public interface of a cell type is mainly defi ned by its 
parameters. Different neurons of the same cell type may have very 
different behaviour if they have different values of the parameters. 
For example, the Izhikevich model (Izhikevich, 2003), can repro-
duce a wide range of spiking patterns, from fast-spiking through 
regular spiking to multiple types of bursting, depending on the 
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FIGURE 2 | Results of running the second example given in the text, 

with NEURON and NEST as back-end simulators. Note that the network 
connectivity and initial conditions were identical in the two cases. 
(A) Membrane potential traces for two excitatory neurons. Note that the 
NEST and NEURON traces are very similar for the fi rst 50 ms, but after that 
diverge rapidly due to the effects of network activity, which amplifi es the 

small numerical integration differences. (B) Spiking activity of excitatory (black) 
and inhibitory (green) neurons. Each dot represents a spike and each row of 
dots a different neuron. All 5000 neurons are shown. (C) Distribution of 
pooled inter-spike intervals (ISIs) for excitatory and inhibitory neurons. 
(D) Distribution over neurons of the coeffi cient of variation of 
the ISI [CV(ISI)].
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parameter values chosen. A cell type is therefore a model type rather 
than a biologically defi ned cell type (such as “Layer V pyramidal 
neuron”, for example).

When using a given simulator back-end, PyNN can work with 
any cell type that is supported by that simulator. In this case, the cell 
type is generally represented by a string, holding a model name that 
is meaningful for that simulator, e.g. “iaf_neuron” in NEST.

Of course, such a cell type will only work with one simulator. To 
create a model that will run on different simulators requires you to 
use one of PyNN’s built-in, standard cell models, each represented 
by a sub-class of the StandardCell class. The models provided 
by PyNN include various simple IF models, the Izhikevich-like 
adaptive exponential IF model (Brette and Gerstner, 2005), a single-
compartment neuron with Hodgkin–Huxley sodium and potas-
sium channels, and various models that emit spikes (e.g. according 
to a Poisson process) but cannot receive them.

The StandardCell class contains machinery for translating 
model names, parameter names and parameter units between 
PyNN standardized values and simulator-specifi c values. This is 
particularly useful when the underlying simulators use different 
unit systems or different parameterizations of the same set of equa-
tions, e.g. when one simulator expects the membrane time constant 
and another the membrane leak conductance. An example of the 
translations performed by PyNN is given in Table 1.

Currently, all the standard cell types are single-compartment 
or point neuron models, since PyNN currently supports only one 
simulator for multi-compartmental models (NEURON). Further 
details on using multi-compartmental models with PyNN’s 
NEURON back-end are given below. We plan in future to allow 
specifying multi-compartmental cell types using a NeuroML 
description (Crook et al., 2005).

UNITS
As is clear from the previous section, each simulator back-end has 
its own convention for which units to use for which physical quanti-
ties. The exception to this is Brian, which has a system for explicitly 
specifying units and for checking that equations are dimensionally 
consistent. In the future, we plan to adopt Brian’s system for PyNN, 
but for now we have chosen to use a convention, which is similar to 

that of NEURON and NEST in that the units are those that tend to 
be used by experimental physiologists. An alternative would have 
been the convention used by PCSIM (and also by the GENESIS 
simulator) of using pure SI units with no prefi xes. The advantage of 
the latter convention is that there is no need for checking equations 
for dimensional consistency. The disadvantage is that numerical 
values in such a system are often very large or very small, and hence 
the human intuition for reasonable and unreasonable parameter 
values is mostly lost.

Irrespective of the relative merits of different conventions, the 
most important thing is that PyNN now provides a single conven-
tion which is valid across simulators. In detail, the convention is as 
follows: voltage – mV, current – nA, conductance – µS, time – ms, 
capacitance – nF.

STANDARD SYNAPSE MODELS
In PyNN, the shape and time-course of the elementary post- synaptic 
current or conductance change in response to a pre-synaptic spike 
are considered to be a part of the post-synaptic neuron model, while 
all other properties of a synaptic connection, notably its weight (the 
peak current or conductance of the synaptic response), delay (for 
point models, this implicitly includes axonal propagation, chemical 
transmission and dendritic propagation; more morphologically 
and/or biophysically detailed models may model explicitly some 
or all of these sources of delay), and short- and long-term plas-
ticity, are considered to depend on both pre- and post-synaptic 
neurons, and so are encapsulated in the concept of “synapse type” 
that  mirrors the “cell type” discussed above.

The default type of synaptic connection in PyNN is static, with 
fi xed synaptic weights. To model dynamic synapses, for which the 
synaptic weight (and possibly other properties, such as rise-time) 
varies depending on the recent history of post- and/or pre- synaptic 
activity, we use the same idea as for neurons, of standardized, 
named models that have the same interface and behaviour across 
simulators, even if the underlying implementation may be very 
different.

Where the approach for dynamic synapses differs from that 
for neurons is that we attempt a greater degree of compositional-
ity, i.e. we decompose models into a number of components, for 

Table 1 | Comparison of parameter names and units for different implementations of a leaky integrate-and-fi re model with a fi xed fi ring threshold 

and current-based, alpha-function synapses. This model is called IF_curr_alpha in PyNN, iaf_psc_alpha in NEST, LIFCurrAlphaNeuron in PCSIM 

and StandardIF in NEURON (this is a model template distributed with PyNN and is not in the standard NEURON distribution). Manual conversion of names 

and units is straightforward but error-prone and time-consuming. PyNN takes care of such conversions transparently.

Parameter PyNN NEST NEURON PCSIM

Resting membrane potential v_rest mV E_L mV v_rest mV Vresting V

Reset membrane potential v_reset mV V_reset mV v_reset mV Vreset V

Membrane capacitance cm nF C_m pF CM nF Cm F

Membrane time constant tau_m ms tau_m ms tau_m ms taum s

Refractory period tau_refrac ms t_ref ms t_refrac ms Trefrac s

Excitatory synaptic time constant tau_syn_E ms tau_syn_ex ms tau_e ms TauSynExc s

Inhibitory synaptic time constant tau_syn_I ms tau_syn_in ms tau_i ms TauSynInh s

Spike threshold v_thresh mV V_th mV v_thresh mV Vthresh V

Injected current amplitude i_offset nA I_e pA i_offset nA Iinject A
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example for short-term and long-term dynamics, or for the  timing-
dependence and the weight-dependence of STDP rules, that can 
then be composed in different ways.

The advantage of this is that if we have n different models for 
component A and m models for component B, then we require only 
n + m models rather than n × m, which had advantages in terms 
of code-simplicity and in shorter model names. The disadvantage 
is that not all combinations may exist, if the underlying simula-
tor implements composite models rather than using components 
itself: in this situation, PyNN checks whether a given composite 
model AB exists for a given simulator and raises an Exception if 
it does not. The composite approach may be extended to neuron 
models in future versions of the PyNN interface depending on the 
experience with composite synapse models.

Currently only a single model exists in PyNN for the short-term 
plasticity component, the Tsodyks–Markram model (Markram et al., 
1998). For long-term plasticity there is a spike-timing-dependent 
plasticity STDP component, which itself is composed of separate 
timing-dependence and weight-dependence components.

LOW-LEVEL, PROCEDURAL INTERFACE
We refer to the procedural interface as “low-level” because it deals 
with a lower level of abstraction – individual neurons and indi-
vidual synapses – than the object-oriented interface. The procedural 
interface consists of the functions create(), connect(), set(), 
record() (for recording spikes) and record_v() (for record-
ing membrane potential). Each of these functions operates on, or 
returns, either individual cell ID objects or lists of such objects. As 
was described in the Usage Examples section, as well as being passed 
around as arguments, the ID object may be used for accessing/
modifying the parameters of individual neurons, and takes care 
of parameter translation using the StandardCell mechanisms 
described above.

It is possible to some extent to mix the low-level and high-level 
interfaces. For example, it is possible to access individual neurons 
within a Population as ID objects and then use the connect() 
function to connect them, instead of using a Projection object.

Why have both a low-level and high-level interface? Having 
both is a potential source of confusion for users and is defi nitely a 
maintenance burden for developers. The main reason is to support 
the use of PyNN as a porting tool. The majority of neuronal net-
work models using existing simulators use a procedural approach, 
and so conversion to PyNN is easier if PyNN supports the same 
approach. In addition, when developing a PyNN interface for a 
simulator, or for neuromorphic hardware, that deals primarily with 
individual cells and synaptic connections, it is easier to implement 
only the low-level interface, since the high-level interface can be 
built upon it.

HIGH-LEVEL, OBJECT-ORIENTED INTERFACE
Object-oriented programming has been used for many years in 
computer science as a method for reducing program complexity. As 
the ambition and scope of large-scale, biologically detailed neuronal 
network modelling increases, reducing program complexity will 
become more and more critical, as the limiting factor in computa-
tional neuroscience becomes the productivity of the programmer 
and not the capacity of the computer (Wilson, 2006). It is for this 

reason that the preferred interface in PyNN for developing new 
models is an object-oriented one.

The object-oriented interface is built around three main 
classes:

Population – a group of cells all with the same cell type (model 
type). It is generally considered that the cells in a Population 
should all represent the same biological cell type, i.e. although 
parameter values may vary between cells in the group, all cells 
should have qualitatively the same fi ring response. This is not 
enforced, but is a good guideline to follow for producing under-
standable code. The Population class eliminates tedious itera-
tion over lists of neurons and enables more effi cient, array-based 
management of neuron properties.

Projection – the set of connections of a given synapse type 
between two Populations. Creating a Projection requires speci-
fying the pre- and post-synaptic Populations, the synapse type, 
and the algorithm used to determine which neurons connect to 
which.

Connector – an encapsulation of the connection algorithm 
used in creating a Projection. Simple examples of such algorithms 
are “all-to-all”, “one-to-one” and “connect-each-pre-and-post-
 synaptic-cell-with-a-fi xed-probability”. It is also possible to provide 
an explicit list of which cells are to be connected to which others. 
Each algorithm is defi ned within a subclass of the Connector class. 
PyNN contains a number of such classes, but it is fairly straight-
forward for a user to defi ne their own algorithms.

In future development of PyNN, we plan to extend the interface 
to still higher-level abstractions, such as layers, cortical columns, 
brain areas and inter-areal projections. We also aim to use the high-
level interface as a link between spiking network models and more 
abstract models that do not represent individual neurons, such as 
mean-fi eld models.

RANDOM NUMBERS
The central nervous system contains many sources of noise, and 
activity patterns are often suffi ciently complex, and possibly cha-
otic, to make a stochastic representation a reasonable model.

This can become a problem when comparing the behaviour of a 
given model run on different simulators, since random differences 
might obscure real inconsistencies between implementations of the 
model. Similarly, when performing distributed computations on 
parallel machines, the model behaviour should not depend on the 
number of processors used (Morrison et al., 2005), and random 
differences can conceal real differences between the parallel and 
serial implementations.

For these reasons, it is important to be able to use identical 
sequences of random numbers in different simulators, and to have 
the random number used at a particular point in the program 
execution be independent of which processor it is running on.

Another consideration is that simulations in most cases use only 
pseudo-random sequences, and low-quality random number gen-
erators (RNGs) may have correlations between different elements of 
the sequence that can signifi cantly affect the qualitative behaviour 
of a network. Hence it is necessary to be able to test the simulation 
with different RNGs.

PyNN supports simulator-independent RNGs and use of dif-
ferent generators – currently any of the generators provided by 
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the numpy package or by the GNU Scientifi c Library (GSL) can 
be used.

This is done by wrapping the numpy and GSL RNGs in classes 
with a common interface. PyNN’s random module contains the 
classes NumpyRNG and GSLRNG, which both have a single method, 
next(n, distribution, parameters), which returns n ran-
dom numbers from a distribution of type distribution with 
parameters parameters, e.g.

>>> from pyNN.random import NumpyRNG, GSLRNG
>>> rngN = NumpyRNG(seed=76847376)
>>> rngG = GSLRNG(seed=87548753)
>>> rngN.next()
0.91457981651574294
>>> rngG.next(5)
array([ 0.02518011, 0.79118205, 0.16679516, 
…      0.1902914, 0.66204769])
>>> rngN.next(3, 'gamma', [2.0, 0.5])
array([ 0.48903019, 0.63129009, 0.70428452])
>>> rngG.next(distribution='uniform')
0.93618978746235371

Since all PyNN code that uses random numbers accesses the 
RNG classes only through this next() method, a user can substi-
tute their own RNG simply by defi ning a wrapper class with such 
a method.

Since very often one wishes to use the same random distribution 
repeatedly, rather than changing distribution each time, the random 
module also provides the RandomDistribution class, which is 
initialized with the distribution name and parameters, and there-
after the next() method is simplifi ed to take a single argument, 
the number of values to draw from the distribution, e.g.

>>> from pyNN.random import (NumpyRNG,
…                           RandomDistribution)
>>> rng = NumpyRNG(seed=8745753)
>>> gamma_distr = RandomDistribution('gamma',
…                                   [2.0, 0.5],
…                                   rng=rng)
>>> gamma_distr.next(3)
array([ 0.72682412, 0.82490159, 1.03882654])

Note that NumpyRNG and GSLRNG distributions may not 
have the same names, e.g. “normal” for NumpyRNG and “gaussian” 
for GSLRNG, and the arguments may also differ. One of our future 
plans is to extend the random module in order to harmonize names 
across RNGs.

MULTI-COMPARTMENTAL MODELS
PyNN currently supports only a single simulator, NEURON, that 
is suitable for many-compartment models. Given the principle 
of supporting simulator-independence only for features that are 
shared by at least two of the supported simulators, and given 
PyNN’s focus on network modelling, PyNN does not provide an 
API for specifying simulator-independent multi-compartmental 
models. This is a possible future development – preliminary work 
has been done on a PyNN interface to the MOOSE simulator (Ray 
and Bhalla, 2008) – but a more likely path would be to make use 

of the NeuroML standards for specifying multi-compartmental 
 models. In this scenario, the fi lename of a NeuroML level 2 fi le, 
specifying a single cell type, would be passed as the cellclass 
argument to the PyNN create() function or Population 
constructor.

However, since native and PyNN code can be mixed, the 
pyNN.neuron module already supports simulations with multi-
 compartmental models. The pre-synaptic compartment whose 
voltage is watched to trigger synaptic transmission (e.g. axon 
terminal) can be specifi ed using the source argument to the 
Projection constructor, and the post-synaptic mechanism speci-
fi ed with the target argument.

DEBUGGING
Should an error occur in a PyNN simulation, a good fi rst step is to 
re-run it on another simulator back-end and so narrow down the 
source of the problem to one back-end in particular. Nevertheless, 
it has proven to be the case that the additional layers of abstrac-
tion provided by PyNN sometimes make it harder to track down 
sources of errors. To counterbalance this, PyNN traps errors coming 
from the simulator core and employs Python’s introspection capa-
bilities to provide additional information about the error context. 
For example, if an invalid parameter name is provided to a neu-
ron model, the error message lists all the valid parameter names 
for that model. Furthermore, logging can be switched on via the 
init_logging() function in the pyNN.utility module, causing 
detailed information about what the system is doing to be written 
to fi le, a valuable resource for tracking down bugs.

IMPLEMENTATION
PyNN is both a defi nition of a common simulator interface and 
an implementation of this interface for each supported simulator. 
PyNN is implemented as a Python package containing a common 
module, which defi nes the API and contains functionality common 
to all simulator back-ends, a random module (described above), 
and a module for each simulator back-end, as shown in Figure 3. 
Each simulator module separately implements the API, although 
it can make use of much shared code in common. In most cases, 
the simulator modules have been implemented by, or in close col-
laboration with, the simulator developers.

PyNN currently fully supports the following simulators: 
NEURON (Carnevale and Hines, 2006; Hines and Carnevale, 
1997; Hines et al., 2008), NEST (Eppler et al., 2008; Gewaltig and 
Diesmann, 2007), PCSIM (http://www.lsm.tugraz.at/pcsim/) and 
Brian (Goodman and Brette, 2008). Support for MOOSE (Ray 
and Bhalla, 2008) and for export in NeuroML format (Crook et al., 
2005) is under development.

PyNN also supports the Heidelberg neuromorphic hardware 
system (Schemmel et al., 2007). This illustrates a major benefi t of 
the existence of a common neuronal simulation interface: novel 
simulation or emulation systems do not need to develop their own 
programming interface, but can benefi t from an existing one that 
guarantees interoperability with existing tools. Using PyNN as the 
interface to neuromorphic hardware systems provides the possi-
bility of closing the gap between the two domains of numerical 
simulation and physical emulation, which have so far coexisted 
rather separately.
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LIMITATIONS ON REPRODUCIBILITY
For a given model with a given parameter set run on a given version 
of a given simulator, it should be possible to exactly reproduce a 
simulation result, independent of computer architecture (except 
where this affects the precision of the fl oating-point representa-
tion) or operating system. For parallel systems, results should also 
be independent of how many threads or processes are used in the 
computation, although here exact quantitative reproduction is 
harder to achieve. Reproducibility across different versions of a 
given simulator is not essential provided the precise version used 
to generate a given result is specifi ed, but it is of course highly 
desirable. When running a model on different simulators, exact 
reproduction is impossible to achieve, except in simple cases, due 
to round-off errors in fl oating point calculations. When validating 
a model implementation by running it on two or more simulators, 
therefore, what level of reproducibility is achievable, and how can 
we tell whether any differences are due to round-off error or to 
implementation errors?

To get a preliminary handle on this problem, we have com-
pared the difference in model activity between two simulators to 
the difference due to two different initial conditions with the same 
simulator.

Our test case is the balanced random network, based on Vogels 
and Abbott (2005), whose implementation was shown above. The 
activity pattern of this network is very sensitive to initial condi-
tions (chaotic or near-chaotic), and so we cannot use differences in 
the precise spike pattern to measure reproducibility: we are more 
interested in the statistical properties of the activity, and so we 
have chosen to take the distribution of inter-spike intervals (ISIs) 
of excitatory neurons (see Figure 2C) as a measure of network 
activity.

To measure the difference between the distributions from two 
different runs we use the Kolmogorov–Smirnov two-sample test. 
We ran the simulation ten times, each time with a different seed 
for the RNG used to generate the initial membrane potential 
distribution, with both NEURON and NEST back-ends. This gave 
values for the Kolmogorov–Smirnov D-statistic between 0.008 
and 0.026 (n � 19000) with a mean of 0.015, with associated 

p-values (probability that the two distributions are the same) 
between 6.3 × 10−5 and 0.68 with mean 0.15.

We then ran the simulation twenty times just on NEURON, each 
time with a different RNG seed, to give 10 pairs of distributions. In 
this case the D-values were in the range 0.007–0.026, mean 0.015, 
and the p-values in the range 2.8 × 10−5 to 0.77, mean 0.20.

In summary, the differences due to different simulators are in 
almost exactly the same range as those due to different initial con-
ditions, suggesting that the differences between the simulators are 
indeed due to round-off errors and that there are not, therefore, 
any implementation errors in this case.

It is also interesting to note that in most cases the null hypothesis 
is supported, i.e. the distributions are the same, but that for some 
initial conditions there are highly signifi cant differences between 
the ISI distributions. The ISI distribution may not therefore be the 
best measure for reproducibility in this case.

DISCUSSION
In this article we have presented PyNN, a Python-based common 
simulator interface, which allows simulator-independent model 
specifi cation. PyNN is already in use in a number of research groups, 
and has been a key technology enabling improved communication 
between labs in a pan-European collaborative project with a major 
component of modelling and of neuromorphic hardware develop-
ment (the FACETS project: http://www.facets-project.org).

By providing a standard simulation platform, PyNN also has 
the potential to act as the foundation for other, simulator agnostic 
but neuroscience-specifi c, tools such as analysis, visualization and 
data-management software.

PyNN is not the only project to address simulator- independent 
model specifi cation and simulator interoperability (review in 
Cannon et al., 2007). neuroConstruct (Gleeson et al., 2007) is a 
tool to develop networks of morphologically-detailed neurons 
using a graphical user interface (GUI), that can generate code 
for both the NEURON and GENESIS simulators. A limitation 
with respect to PyNN is that since it uses code generation rather 
than a direct interface, neuroConstruct cannot receive informa-
tion back from the simulator except by reading the data fi les it 
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generates. A second limitation is that features that are not avail-
able through the GUI cannot be incorporated in a model. The 
NeuroML standards (Crook et al., 2005, http://www.neuroml.org) 
are intended to provide an infrastructure for exchanging model 
specifi cations between groups in a simulator-independent way. 
Their scope includes much more detailed levels of modelling, e.g. 
membrane ion channels and detailed dendritic morphology, than 
are supported by PyNN. They have the advantage over PyNN of 
being language-independent, since specifi cations are written in 
XML, for which tools exist in all major programming languages. 
The major disadvantage of purely declarative specifi cations is lack 
of fl exibility: if a concept or entity is not defi ned in the standard, 
it is not possible to specify models that use it, whereas with a 
procedural/imperative or mixed declarative-procedural specifi -
cation such as is achievable with PyNN, arbitrary specifi cations 
are possible.

Although we emphasize here the differences between the 
GUI, pure-declarative, and programming-interface approaches 
to  simulator-independent model specifi cation, in fact they are 
highly complementary. Graphical interfaces are particularly 
good for beginners, for teaching, for giving high-level overviews 
of a system, and for integrating analysis and visualization tools. 
It would be very useful for neuroConstruct to be able to gener-
ate PyNN code, for example, in addition to code for NEURON 
and GENESIS. Declarative specifi cations reach the highest levels 

of system- independence, for the range of concepts that are sup-
ported. They are also particularly suitable for transformation into 
human-readable formats and for automated GUI generation. As 
such, they seem to be best suited for domains in which the model-
ling approach is fairly stable, e.g. for describing neuron morpholo-
gies or non- stochastic ion channel models. In PyNN, we plan to 
support  simulator-independent multi-compartmental models 
using NeuroML: in this scenario cell models would be specifi ed in 
NeuroML while PyNN would be used for network specifi cation 
and for simulation setup and control.

Our main priorities for future development of PyNN are to 
increase the number of supported simulators (simulator  developers 
who are interested in PyNN support for their simulator are encour-
aged to contact us), improve the support for multi-compartmental 
modelling, and extend the interface towards higher-level abstrac-
tions, such as cortical columns and more abstract modelling 
approaches. PyNN is open source software (CeCILL licence, http://
www.cecill.info) and has an open development model: anyone who 
wishes to contribute is welcome and invited to do so.
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