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Abstract

Experienced bow makers empirically know the influence of wood, ta-

pering and camber on the playing and tonal qualities of a bow. How-

ever, the way each parameter affects the bow mechanical behavior is

not clearly established. An in-plane finite element model is developed

to highlight the link between the adjustable design parameters and the

mechanical behavior of a bow. This model takes into account geometric

nonlinearity as well as compliance of the hair. Its validity is discussed

from measurements on a bow. Results from simulations are compared

to experimental results from previous studies. The consequences of

adjusting hair tension and camber are then investigated.

PACS numbers: 43.75.De
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I. INTRODUCTION

In spite of an extensive scientific literature about the violin1,2, only few studies are exclu-

sively devoted to the bow. However, experienced players attach almost as much importance

to the choice of a bow as to the choice of a violin. They generally asses the quality of a

bow in terms of playing and tonal qualities. Playing qualities refer to the control of bow in

playing, tonal qualities to the influence on the tone. The question of a link between physical

properties and quality of bows was addressed by several authors3–10. Static properties such

as total mass, mass distribution, and bending stiffness, have generally been assumed to affect

the playing qualities, while dynamic properties such as hair and stick modes would relate to

the tonal qualities5,6,11. In most studies, some static and dynamic properties were measured

on different bows with various degrees of quality. Despite the seeming simplicity of the bow

compared to the violin, these studies showed that it is not yet possible to predict the quality

of a bow by measuring a set of physical properties. However, some authors pointed out the

plausible existence of an acceptable range for certain characteristics, out of which the bow

would be considered as not suitable for playing4,6.

When manufacturing a bow stick, the bow maker works with three main parameters:

wood, tapering and camber12. Regarding wood, high quality modern bows are made of

pernambuco (Caesalpinia Echinata), a Brazilian wood with high specific Young’s modulus

and low damping. However, this species has become rare and expensive. Tapering denotes

the gradually decreasing thickness along the stick. In general, the maker adjusts the taper

of the bow in order to reach the desired total mass, for a given wood density. Camber is

the concave curvature of the stick without hair tension. It is adjusted by heating a short

portion of the stick over a flame and bending it until it cools down. Once a bow is finished,

the only possible adjustment by the player is the hair tension.

This paper aims at highlighting the link between the adjustable design parameters and

the mechanical behavior of a bow. Emphasis is put on camber and hair tension, since both

a)Electronic address: frederic.ablitzer.etu@univ-lemans.fr

3



can be adjusted on a finished bow. For this purpose, an in-plane finite element model is

developed and validated from measurements on bow. It is then used to investigate the effects

of hair tension and camber on the mechanical behavior of a standard bow.

II. MODEL OF THE ASSEMBLED BOW

In previous work, various ways of modeling a bow have been proposed. Wegst and

Ashby13 made simple calculation from beam theory, considering a stick with a circular

cross-section of constant radius, to determine a typical range of Young’s modulus required

for violin bows. Pitteroff14 proposed an analytical model aimed at describing the static

behavior of the assembled bow, i.e. stick and hair, in the perpendicular plane. Despite

rather rough approximations, the model agreed well with experimentally observed behavior

for moderate bow forces. In his model, the stick was represented by its stiffness at the end,

which can be written analytically in the case of a simplified geometry. To take into account a

more realistic geometry, other authors employed numerical models. Carlsson and Tinnsten15

used a finite element model coupled to an optimization algorithm to calculate the change

in diameter along the stick needed to recover some of the static and dynamic properties

after changing density and Young’s modulus. The properties of the tightened bow were not

investigated in this study.

Caussé et al.7 made simulations based on the finite element model of an assembled bow

to highlight mode shapes of stick and hair and to evaluate the influence of hair tension on

corresponding eigenfrequencies. In their study, the stress field due to hair tension was taken

into account to determine the eigenmodes. This was done in a similar way as Mamou-Mani

et al.16 studied the effect of downbearing on piano soundboard eigenfrequencies, but the

geometrically nonlinear nature of the problem was not discussed in the case of the bow.

However, the change in geometry during the loading of the bow, e.g. when tightening

the hair, is strong enough to cause geometric nonlinearity, even under hypothesis of small

deformation and linear behavior of the material, as pointed out by Dauchez et al.8. In
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the present paper, a finite-element model of the bow including the hair and taking into

account geometric nonlinearity is now developed. As a starting point, only the in-plane

static behavior of the bow is considered.

A. General description

The bow as we know it today is the result of a progressive evolution through

centuries17,18. Renaissance bows had a short thick stick with convex curvature. As the mu-

sical style changed, the stick got longer and thinner, while its curvature was progressively

changed from convex to concave in order to withstand the hair tension without increasing

the mass too much. At the beginning of the 19th century, the french bow maker François-

Xavier Tourte brought the last significant improvements to the design of bows. Today he is

considered the father of the modern bow.

A modern violin bow is represented in Figure 1. The stick is traditionnally made of

wood. Its main function is to support a 65 cm hair ribbon under tension. The hair is

attached to the head of the stick at one end, and to the frog at the other. The hair enters

the head through a thin plate, traditionally made of ivory, which covers the underside of the

head. The position of the frog is adjusted by turning the button, which operates on a screw

mechanism located inside the stick. This allows the player to tighten the hair to suitable

tension for playing. The right tension is essentially determined by the transverse compliance

of the hair. If too loose, the hair tends to touch the stick in playing. If too tight, more effort

is needed to make the string vibrate, according to players and bow makers19,20. On early

bows, the frog was simply wedged between stick and hair. The resulting hair tension was

determined by the height of the frog and the length of the loose hair, both fixed by the bow

maker.

The model presented in this paper allows one to simulate, first, the tightening of the

bow from its initial state without hair tension [Fig. 2(a)] to its playing state at hair tension

T0 [Fig. 2(b)]; then, the loading by a normal force F. At this step, the hair tension T may
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FROG HAIR TIP
HEADSTICKBUTTON

FIG. 1. Modern violin bow.

differ from the initial hair tension T0 [Fig. 2(c)]. Throughout the simulation, the stick is

clamped at the frog end (x = 0 mm) and free at the other end.

The model just described is a simplified representation of actual playing conditions. In

reality, the bow is held in a finger grip which allows the pivoting around an axis located

somewhere near the cut up in the frog, at the position of the thumb. The normal force at

the contact point between the hair and the string is controlled by applying a moment with

the index finger on top of the stick, with the thumb acting as a support. Since the combined

action of index and thumb fingers takes place near the frog, on a thick part of the stick, it

is assumed that this modeling makes little difference with the actual static behavior of the

bow in playing.

The model takes into account the geometric nonlinearity of the bow as well as the

compliance of the hair. It is based on a finite element formulation coupled with an iterative

procedure.
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FIG. 2. Bow without tension (a), tightened (b) and loaded (c).
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B. Finite element model of the bow

In order to take into account the geometric nonlinearity, the model is based on the

corotational formulation for beams given by Crisfield21. The corotational formulation allows

the global displacements and rotations of a structure to be arbitrarily large, although the

local strain are assumed to remain small (Fig. 3). A local reference frame is attached to each

element and continuously rotates and translates with it. With respect to this local frame

a small-strain, small-displacement relationship is applied. Since a bow stick is slender, this

relationship can be derived from the Euler-Bernoulli beam theory.

l0

u l
θl21

1 2
2

y

x

θl1


urrent 
on�guration=rigid body motion+lo
al deformationinitial 
on�guration
FIG. 3. Initial and current configurations of a beam element.

For each beam element, the axial force N is related to the local axial displacement ul

by the relation

N = E A
ul

l0
, (1)

where E is the element Young’s modulus, A the element area and l0 the element initial

length. The internal bending moments M̄1 and M̄2 are related to the local nodal rotations

θl1 and θl2 by the relation
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where I is the element second moment of inertia.
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The original formulation developed by Criesfield leads to the following relationship be-

tween variation of global internal forces δqi and variation of global displacement δp,

δqi = (Kt1 +Ktσ) δp , (3)

where Kt1 is the standard tangent stiffness matrix, Ktσ the geometric stiffness matrix. Kt1

and Ktσ are displacement-dependent matrices.

In order to allow a sufficiently fine representation of tapering, the bow stick is discretized

into 20 beam elements. The head is represented by a single element with diameter 10 mm,

so as to make it sufficiently stiff. After assembling, the problem to solve takes the form:

K(u)u = f(u) , (4)

where u is the displacement vector, K(u) the assembled stiffness matrix and f(u) the external

force vector. The only external force in f(u) is the force T exerted by the hair on the

stick at the tip [see Fig. 2(c)], which varies in orientation and amplitude in function of

the displacement of the tip. The variation in orientation is due to the rotation of the

hair coordinate system. The variation in amplitude is due to the increase in hair tension

∆T = T − T0 as the tip moves away from its position at T0. Since K(u) and f(u) are

displacement-dependent, an iterative procedure is necessary to solve Eq. (4). Moreover,

an additional stiffness term for the last element, i.e. the head, has to be introduced to

take into account the variation in force orientation and amplitude between two successive

configurations. The additionnal stiffness term is expressed in a similar way as when follower

forces are involved22.

For the general case where the solution of the tightened and loaded bow is seeked, the

numerical procedure achieves good convergence when decomposing the computation into

two global load steps:

1. tightening of the bow, i.e. Tx = T0 and Ty = 0,

2. loading of the hair, i.e. Tx = T0 +∆Tx and Ty 6= 0,
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where Tx and Ty denote the components of T. For both steps, the Newton-Raphson algo-

rithm with several load increments is applied to reach the equilibrium.

Regarding the first step, a backward displacement of the frog relative to the stick (typ-

ically 3-3.5 mm) is normally needed to tighten a bow. This displacement counterbalances

the stretching of the hair (1 mm) and the decreasing distance between the frog and the

tip (2-2.5 mm) due to straightening of the stick and rotation of the head, as reported by

Pitteroff14. In the model, neither the stretching of the hair at this step, nor the displacement

of the frog is considered. Therefore, the distance between the frog and the tip decreases when

tightening the modeled bow, whereas it slightly increases on an actual bow, because of the

elongation of the hair. Although the increase in bow length is not fully negligible, it does

not affect the overall behavior examined in the second step. Once the bow is tightened, the

distance between frog and tip defines the hair length L0 corresponding to tension T0. In

order to compute the value of Tx and Ty to apply in the second load step, a model of the

hair is now defined.

C. Model of the hair

The ribbon of hair is assumed to behave like an equivalent single hair, represented in

Figure 4. When an external force F is applied at relative abscissa γ (0 < γ < 1), the hair

on either side is assumed to extend proportionally to the increase in tension ∆T = T − T0,

where T is supposed to be the same on either side, i.e. T = ||T|| = ||T′|| =
√

T 2
x + T 2

y . This

implies that the force F has a small tangential component Fx of unknown value (except for

γ = 0.5 where it is null).

It has to be noted that the distribution of forces in the x and y directions, respectively,

is slightly different under normal playing conditions. In this situation, the tangential com-

ponent of F corresponds to the friction force, i.e. Fx = µFy, where the coefficient of friction

µ varies within each cycle of Helmholtz motion23,24. As the force F is fully determined, the

tension may differ on either side of bowing point. Cremer1 reported a value of 0.24 for the
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average coefficient of friction. With a typical bow force of 1 N, the corresponding average

friction force is fairly small compared to hair tension. Thus, the difference between ||T|| and

||T′|| is likely to remain small, which gives support to the hypothesis made here.

L1
L
2

Lh

Fx

F

−Tx

−Ty

Fy

δh

frog
γL0 L0

tip(a)
(b)

T0 −T0

−T

T′

FIG. 4. Model of the hair. Tightened hair (a), deflection under loading (b).

The lengths of both sides are:

L1 = γ L0 (1 + ch ∆T )

L2 = (1− γ)L0 (1 + ch∆T ) ,

(5)

where ch is the compliance per unit length of the equivalent single hair. Considering a

ribbon of nh hairs having identical and homogeneous Young’s modulus Eh and diameter dh,

an estimation of ch can be obtained from:

ch =
4

nhEh π d2h
. (6)

Typical values for a violin bow are nh = 160-190, Eh = 4-7 GPa and dh = 0.2 ± 0.05 mm,

as reported by Askenfelt6. He also measured the stiffness constant of a complete ribbon and

found it to reach 30 N.mm−1 under a nominal tension of 60 N. With a length Lh = 650 mm,

the corresponding compliance per unit length is ch = 5.1× 10−5 N−1.

The hair deflection at the loading point is

δh = L2
Ty

T
. (7)

The distance between frog and tip is

Lh =
√

L2
1 − δ2h +

√

L2
2 − δ2h . (8)
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At this point, it can be shown that the normal component of T at the tip is simply given by

Ty = γ Fy . (9)

The tangential component cannot be expressed by a similar equation. Therefore, it is found

iteratively, starting from the initial guess Tx = T0. At each computation step of the Newton-

Raphson algorithm, the value of Lh is computed from Eq. (8) and compared to the distance

between frog and tip in the current configuration. As long as the two values differ, the value

of Tx is corrected for the next iteration.

D. Validation of the model

In this section, the ability of the finite element model to reproduce the deformed shape

of an actual bow is examined. A wooden student violin bow was tightened from zero to high

playing tension, by steps of two turns of the button. At each level, the shape of the stick was

determined from a picture, by means of image processing [Fig. 5(a-c)]. The resolution in the

measurement was about 0.3 mm. To keep the imaging conditions as identical as possible for

all pictures, the position of both the bow and the camera were held constant. The diameter

along the stick was measured with a digital caliper. The relative incertitude on the diameter

was less than 3%. The Young’s modulus was then determined from two measurements of

the dynamic response of the stick simply supported at its ends and loaded by a mass at its

center (200 g and 400 g), by means of the measuring platform Lutherie tools25. A value of

36 GPa was found.

Then, simulations were performed starting from the initial geometry. For each level

of hair tension, the value of T0 giving the best least-squares fit between measured shape

and model output was determined. The maximum difference between the experimental and

numerical results on the y-coordinate of the neutral axis was less than 0.2 mm. It should

be noted that this procedure can be considered as an indirect measurement of hair tension,

provided that the Young’s modulus is known. With the bow used in this experiment, values

of T0 = 20.1 N, 39.2 N, 54.9 N and 67.5 N (resp. at 2, 4, 6 and 8 turns of the button)
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FIG. 5. Bow used for validating the model. (a) Initial measured shape. (b) Successive

shapes of the bow from zero tension to high playing tension, by steps of two turns of the

button. The y-coordinate indicates the distance from the level of the bow hair to the neutral

axis of the stick. (c) Final measured shape. (d) Estimated hair tension T0 at each level vs.

minimum hair-stick distance.

were obtained. The levels of hair tension corresponding to 4 and 8 turns of the button

were considered as the lower and upper limits for playing, respectively. The optimal playing
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tension was found at 6 turns (T0 = 54.9 N). Although a typical value of 60 N is commonly

refered to as “normal” playing tension by authors14,26,27, the optimal value for each bow

probably depends on the stiffness of the stick and camber as well. Figure 5(d) shows the

nonlinear increase in minimum hair-stick distance with hair tension.

III. RESULTS

In this section, we first describe the geometry of a “standard bow” on which simulations

are performed. Then, general results from simulations are presented and discussed with

respect to experimental observations by other authors. Finally, the influence of initial hair

tension and camber on transverse bow compliance is examined.

A. Definition of a standard bow

The geometry of the modeled stick, which is basically defined by camber and tapering,

can be taken from measurements on a representative modern violin bow. In this study,

however, we define the geometry of a “standard bow” from criteria found in the litera-

ture. Similarly, the Young’s modulus E is fixed at 25 GPa, which is a typical value for

pernambuco15,28,29. Measurements of a set of bows in professional use today would be needed

to check whether this “standard bow” is representative of most bows available on the market.

1. Tapering

The tapered profile is derived from a formula given by Vuillaume. This violin maker of

the 19th century measured a great number of Tourte bows and found the diameter to decrease

logarithmically along the stick30. The corresponding curve is considered as a reference in

some studies4,31. The original formula applies to abscissa between 110 mm and 700 mm from

the stick origin and corresponds to a decrease in diameter from 8.6 mm to 5.3 mm, the first

110 mm of the stick having constant diameter of 8.6 mm. Since the origin of the modeled

bow is the front end of the frog, the formula is adapted so that it applies to abscissa between
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0 mm and 650 mm, neglecting the small portion of constant diameter [Fig. 6(a)]. Thus, the

diameter d at abscissa x is given by:

d(x) = d0

(

1 + ε ln

(

x∞ − x

x∞

))

, (10)

where d0 = 8.77 mm, x∞ = 825 mm and ε = 0.255. Interestingly, the second moment of

inertia I(x) following from Eq. (10) decreases almost linearly with abscissa for this set of

parameters. It can be approximated by

I(x) ≈ I0

(

x− x0

x0

)

, (11)

where I0 = 293 mm4 and x0 = 752 mm, with 3% maximum relative difference with that

deduced from Eq. (10). Since this observation has no obvious physical interpretation, one

may wonder whether this particular tapered profile is an optimum empirically found by

Tourte.

2. Camber

The concept of camber actually includes two aspects: distribution of camber, which

can be seen as shape of the stick; amount of camber, which represents how strong the

stick is bent. The distribution of camber is here defined so that the stick becomes straight

under a certain tension, which is a criteria commonly recognized by bow makers: “The

match between wood strength and camber can be tested by tightening the bow until the

stick is straight (...) If the stick is really straight, camber and wood strength are properly

matched” (Grütter19); “One reference: the axis of the stick should be perfectly parallel to

the line of hair at maximum tension of the bow” (Rolland20). The maximum tension, i.e.

the tension at which the stick is straight, is denoted by Tmax
0 . In this configuration, the

distance between hair and neutral axis of the stick is constant [Fig. 6(b)], assuming that the

frog and the head have the same height h. Thus, the bending moment resulting from hair

tension has a constant value Mmax
0 = hTmax

0 along the stick. Therefore, neglecting axial

compression of the stick as well as deformation of the head, the initial curvature of the stick

14
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FIG. 6. Geometry of the standard bow. (a) Tapering, - - after Vuillaume30, — from Eq. (10).

(b) Straight stick. (c) Cambered stick showing the case of a “full camber”.

can be determined by calculating the deformed shape of the initially straight stick subject

to moment Mmax
0 at its free end [Fig. 6(c)].

Following this reasoning and considering the approximation of Eq. (11), a simple ana-

lytical expression giving the initial shape of the stick y(x) can be provided by integrating

d2y

dx2
=

hTmax
0

E I(x)
(with y(0) = h and y′(0) = 0), which yields

y(x)− h =
hTmax

0 x0
2

E I0

(

x̄+ (1− x̄) ln(1− x̄)
)

, (12)

where x̄ =
x

x0
. The multiplying factor in Eq. (12), in terms of E, I0, and Tmax

0 , is considered

to be the amount of camber. The expression within the parentheses, dependent on x̄, gives

the generic shape of the stick without hair tension (distribution of camber).
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For a given bow, the maximum tension Tmax
0 is the input parameter that determines the

amount of camber of the modeled stick. Althought it corresponds to a physical quantity, a

more convenient way of quantifying the amount of camber is the minimal distance between

loosened hair and stick, denoted by κ. The smaller this distance, the more camber the stick

has. It is generally agreed among bow makers that this distance should be between 0 mm

and 2 mm and in any case not negative. The case where κ = 0 mm is called “full camber”.

In this study, four different amounts of camber are investigated. The value of Tmax
0 needed

to obtain each chosen value of κ is determined by means of the finite element model. The

corresponding values of κ and Tmax
0 are listed in Table I.

3. Comment on the relationship between tapering and camber

In playing conditions, the bow is never tightened up to complete straightening of the

stick. Therefore, the bending moment resulting from hair tension is a function of abscissa x,

M0(x) = T0 a(x), where a denotes the distance between hair and neutral axis of the stick. It

is maximum at the tip and at the frog (both head and frog have standard height on modern

bows) and minimum at the lowest point of the stick, generally near the middle. Moreover,

the stiffness of the stick is determined by the quantity E I, where Young’s modulus E is

supposed to be homogeneous along the stick, contrary to second moment of inertia I which

depends on tapering. For a circular section, I =
π d4

64
. Thus, the stick is far more compliant

at the tip than at the frog. The local bending radius ρ that counteracts the initial curvature

of the stick is given by:

1

ρ
=

M0

E I
. (13)

From Eq. (13) it is clearly apparent that the stick will bend more near the tip, where

the bending moment is maximum and the stiffness minimum. For this reason, camber is

particularly strong in the last portion of the stick. More generally, the role of distribution

of camber is to compensate for the decrease in diameter along the stick. In addition, the

more cambered the stick, the less it will straighten under the same tension. Since tapering is
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mostly adjusted so that the stick reaches a given mass, the bow maker has to adjust camber

accordingly, in order to get the right shape on the tightened bow. A physical model can

be useful to determine the proper camber for a given tapering, as pointed out by a recent

study32.

B. Variation in hair tension under transverse loading

In previous studies on violin bows, the influence of hair tension on different proper-

ties of the bow, e.g. bending stiffness along the stick6, stick mode frequencies7, bouncing

frequency26, has been examined. In most studies, the hair tension has been assumed not to

vary significantly from the initial value fixed by the player before playing. However, it has

been experimentally shown by Demoucron et al.27 that the hair tension does vary when the

bow is loaded by a normal force. The tension variation was found to be almost linear with

respect to relative abscissa γ and normal force Fy, leading to a simple empirical relation,

T = T0 + αT γ Fy , (14)

where αT is an experimentally determined coefficient.

Figure 7 shows the simulated hair tension variation when the bow is loaded by a normal

force Fy of increasing value at relative abscissa γ. The tension increases almost linearly with

relative abscissa and normal force, which is in agreement with the observations of Demou-

cron. For a normal force of 1.5 N at the middle and 1.0 N at the tip, which are moderate

values in violin playing, the hair tension increases by 20% and 25%, respectively. For a nor-

mal force of 1.5 N at the tip, it increases by 40%. As a comparison, Demoucron measured a

variation of 25% for the same load case. This discrepancy could be due to the higher stiffness

of the bow he used for the experiment (stiffness at the tip Ks = 91 N.m−1) compared to the

modeled bow (Ks = 72 N.m−1), since the increase in hair tension is essentially due to the

displacement of the tip under loading.
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FIG. 7. Variation in simulated hair tension for three values of normal force Fy (0.5 N, 1.0 N

and 1.5 N) applied at different places along the bow hair, shown as function of (a) relative

abscissa γ, and (b) force at the tip γ Fy. The simulations are performed on the standard

bow with full camber. The initial hair tension T0 is fixed at 45.0 N, which corresponds to

10 mm hair-stick distance.

C. Distribution of transverse compliance along the bow

When applying a normal force to the tightened bow hair, the observed deflection at the

loading point is the result of two effects: deflection of the hair and bending of the stick.

The force transmitted by the hair to the tip makes the stick bend. This results in a second

displacement term, in addition to the hair deflection.

Pitteroff14 considered the two effects separately to give an analytical relationship between

force and deflection. The contribution of the hair was the deflection δh of a string with fixed

length Lh and tension T0 under normal force Fy at relative abscissa γ. The contribution of

the stick was deduced from the deflection δs of a cantilever beam under normal force γFy

at its free end. The stick was assumed to be straight and have constant bending stiffness.

However, the formula remains valid when considering a more realistic geometry, simply by

introducing the equivalent stiffness constant at the tip Ks
27. The total deflection at the
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loading point was expressed as the sum of the two contributions:

δ = δh + δs =
γ(1− γ)Lh

T0
Fy +

γ2

Ks

Fy . (15)

When compared to experimental results, this relationship matched well with the behavior of

an actual bow in its lowest two thirds. However, a significant difference between experimental

and theoretical deflection was observed at the tip.

The model developed in the present article removes the hypothesis that the effects of

hair and stick are uncoupled. Yet, it is possible to estimate how hair and stick contribute to

the total deflection. The hair deflection is given by Eq. (7). The total deflection is deduced

from coordinates of the loading point before and after the force is applied. The contribution

of the stick is then given by the difference between total deflection and hair deflection.

Figure 8 shows the simulated total deflection at the loading point of the standard bow

loaded by a 1 N normal force plotted against relative abscissa of the force. Hair and stick

contributions are also plotted individually. The total deflection is null at the frog and

maximum at the tip. The stick deflection continuously increases along the bow, reaching

a maximum at the tip. On the contrary, the shape of the hair contribution is similar to

a parabola, though it is slightly asymmetrical: the maximum value is reached just before

the midpoint of the bow. This asymmetry is due to the rise in hair tension with relative

abscissa.

As a comparison, it is possible to estimate the parameters T0 and Ks used by Pitteroff

by fitting the total deflection with a second order polynomial of the same form as Eq. (15)

and identifying the coefficients. The third parameter, Lh, is known from the finite element

model. From this method, the estimated value of hair tension is found to be 24% higher

than its actual value, T0 = 45.0 N. The same operation was done for three other values

of Fy. The estimated values for T0 and Ks, as well as the maximum relative difference in

deflection between numerical results and the second order polynomial, are given in Table II.

Regarding the hair tension, the deviation from actual value increases with force Fy. Similarly,

the estimated value of Ks varies significantly with Fy. This shows that Eq. (15) does not
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force Fy = 1 N. — total deflection, - - hair deflection, -·- stick deflection. Standard bow

with full camber, initial hair tension T0 = 45 N.

reflect exactly the behavior of the bow.

Moreover, Pitteroff observed that the transverse compliance of the bow varies with the

normal force. In the lower half, the measured compliance was lower with a higher force (5 N

compared to 1 N). On the contrary, the compliance near the tip increased with the force.

The nonlinearity of transverse compliance close to the tip was also reported by Askenfelt6.

Figure 9 shows the simulated deflection of the bow as a function of normal force at three

different loading points. The normal force Fy is limited to the range between 0 N and 1.5 N.

Although the bow force generally remains low when playing near the tip, it may well reach

values around 1.5 N in this part of the bow33. A comparison with a linear case, indicated

by dotted lines in Figure 9 can be made. As seen, the simulated transverse compliance is

nonlinear. Close to the frog as well as in the middle, the compliance tends to diminish as

the force increases. This is due to the increase in hair tension with force. Near the tip, the

compliance increases with the force.
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D. Influence of initial hair tension on transverse compliance

Before playing, the player adjusts the initial hair tension by turning the button. As the

tension increases, the stick straightens progressivly, which increases the minimum distance

between hair and stick. The evolution of minimum hair-stick distance with tension for

four settings of camber (4 mm, 2 mm , 0 mm and −2 mm) is plotted in Figure 10. The

increase in hair-stick distance with tension is far from linear. This is due to the fact that

the straightening of the stick, which increases the hair-stick distance, is the consequence of

a bending moment which itself depends on the hair-stick distance.

To evaluate the influence of initial hair tension on the transverse compliance of the bow,

simulations were performed for four values of T0 on the standard bow with full camber.

The values of T0 (40.5 N, 45.2 N, 49.0 N, and 52.1 N) correspond to four plausible values

of hair-stick distance, from 8 mm to 14 mm, denoted by numbers (0) to (3) in Figure 10.

Because of nonlinearity, the transverse compliance depends on normal force. It is defined
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FIG. 10. Evolution of minimum hair-stick distance vs. hair tension for four settings of

camber (4 mm, 2 mm , 0 mm = full camber and −2 mm). Points denoted by letters (G)

to (J) represent playing tension T
play
0 for each camber giving a bow-hair distance of 10 mm.

Points denoted by numbers (0) to (3) indicate four settings of hair tension for the case of

full camber with (I) as a common reference. Note that rightmost curve represents negative

camber, meaning that the middle of the stick is below the level of the bow hair before

tightening.

by the slope of the force-deflection curve (see Fig. 9).

Figure 11 shows the transverse compliance along the bow with full camber corresponding

to the four chosen values of initial hair tension. For each setting, the two curves indicate the

compliance for small forces (just above 0 N) and high forces (around 1.5 N). The compliance

for small forces slightly decreases with initial hair tension. Increasing T0 from 40.5 N to

52.1 N (29%) lowers the compliance for small forces at the middle of the bow by 18% and

by 13% at the tip. Moreover, the nonlinearity is stronger for a low hair tension.
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cases correspond to points (0) - (3) in Figure 10.

E. Influence of camber on transverse compliance

When varying camber in the model, it is necessary to change the initial hair tension

accordingly so that the minimum hair-stick distance remains in a range which is suitable for

playing. For each setting of camber in Figure 10, the tension at which a 10 mm hair-stick

distance is reached is denoted by T
play
0 and called “playing tension”. Figure 10 shows the

four settings of camber, denoted by letters (G) to (J). Table I gives the corresponding values

of κ, T play
0 and tension for straight stick Tmax

0 . None of the different settings of camber

and hair tension led to contact between hair and stick within the chosen ranges of relative

abscissa and normal force.

The first noticeable effect of camber is a change in playing tension. Increasing camber

from κ = 4 mm up to κ = 0 mm, for example, increases the hair tension by 66% for the

same hair-stick distance. It is noteworthy that not only the minimum hair-stick distance is
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preserved, but also the hair-stick distance throughout the bow. Thus, the bow maker can

increase the playing tension of a bow without any consequence on its shape once tightened.

A second effect of camber is a change in transverse compliance (see Fig. 12). As camber

increases, the compliance at small forces decreases in the middle (−22% from κ = 4 mm to

0 mm), which is due to a higher playing tension. At the tip, the compliance at small forces

increases with camber (+10% from κ = 4 mm to 0 mm), contrary to what was observed by

increasing the hair tension at given camber (Fig. 11). This effect is due to prebending of

the stick.

Furthermore, if the bow is not cambered very much (G), the nonlinearity is fairly strong

around the middle: the higher the force, the lower the compliance. Close to the tip, the

reverse trend is observable though moderate. As camber increases, the nonlinearity tends to

decrease around the middle of the bow, whereas it increases near the tip. At full camber (I),

the compliance in the lower two-thirds is almost the same for small and high forces, whereas

the compliance near the tip significantly increases with force. Moreover, the range in length

for which the compliance increases with force becomes larger as camber increases. If the

bow has an unrealistically large amount of camber (negative κ, point J), the compliance for

high forces strongly increases in the last third.

IV. CONCLUSION

A finite element model of the assembled bow accounting for the geometrical nonlinearity

of both stick and hair has been presented. The model allows to reproduce the in-plane

nonlinear static behavior that is experimentally observed when the bow is loaded (Fig. 2).

The influence of the adjusting parameters (camber, hair tension) on the mechanical behavior

of the bow has been enlightened. Changing the hair tension does not affect the overall profile

of the transverse compliance of the bow. However, increasing the hair tension tends to reduce

the nonlinearity. On the contrary, different amounts of camber lead to very different profiles

of the compliance along the bow. The nonlinearity of the compliance near the tip is especially
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FIG. 12. Transverse compliance along the bow for different settings of camber (characterized

by minimal hair-stick distance without hair tension κ = 4 mm, 2 mm, 0 mm and −2 mm)

and playing tension T
play
0 , for two normal forces: around 0 N (- -) and 1.5 N (—).

apparent with increasing camber.

It remains to be seen if results from this study have direct applications in predicting

a player’s perception of bow performance. Compliance is generally assumed to be of par-

ticular importance for bow force control: if too low, the bow might be too sensitive to

small variations of hand movement; if too high, the bow would not be responsive enough6.

Measurements and playing tests of bows with different settings of camber and hair tension

will be performed to go deeper into this question. If significant trends emerge, the model

presented in this paper would be useful to assist bow makers. Furthermore, since the bow is

often tilted towards the fingerboard in playing34,35, a model based on spatial beam elements

is currently developed in order to take into account the out-of-plane bending of the stick.
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de type flambement” (Quality of violin bows and buckling instability), in 8e Congrès
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TABLE I. Standard bow. Relationship between amount of camber, characterized by min-

imum hair-stick distance κ, and maximal tension Tmax
0 (tension for straight stick). Corre-

sponding values of playing tension T
play
0 (tension for 10 mm hair-stick distance) are given.

κ (mm) Tmax
0 (N) T

play
0 (N)

4.0 41.6 27.2

2.0 48.4 36.2

0.0 55.1 45.2

−2.0 61.8 54.1
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TABLE II. Standard bow with full camber. Estimated values of T0 andKs [see Eq.(15)] from

simulation with the finite element model, for different values of normal force Fy. The last

column gives the maximum relative error between numerical simulations of the deflection

and fitted curve.

Fy (N) T0 (N) Ks (N.m
−1) max error (%)

0.1 46.1 72 2

0.5 49.9 70 8

1.0 56.1 66 17

1.5 65.5 61 27
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