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AN EXACT PENALTY APPROACH FOR MATHEMATICAL

PROGRAMS WITH EQUILIBRIUM CONSTRAINTS.

L. Abdallah1 and M. Haddou2

Abstract. We propose an exact penalty approach to solve the mathematical
problems with equilibrium constraints (MPECs). This work is based on the

smoothing functions introduced in [3] but we do not need any complicate

updating rule for the penalty parameter. We present some numerical results
to prove the viability of the approach. We consider two generic applications :
the binary quadratic programs and simple number partitioning problems.

Keywords: Optimization, nonlinear programming, exact penalty function.

1. Introduction

Mathematical programs with equilibrium constraints (MPECs) represent an op-
timization problem including a set of parametric variational inequality or com-
plementary constraints. In this paper, we consider optimization problems with
complementary constraints, in the following form

(1) (P )





f∗ = min f(x, y)
< x.y >= 0
(x, y) ∈ D

where f : R
2n → R is continuously differentiable and D = [0, v]2n. < . > denotes

the inner product on R
n.

We made this choice for D only to simplify the exposition. We can use only com-
pact set.
Due to the presence of complementarity constraints, there is no feasible point sat-
isfying all inequality constraints strictly which implies that the usual nonlinear
programming constraint qualification such as Mangasarian-Fromovitz constraint
qualification (MFCQ) is violated at any feasible point of MPECs. Many regu-
larization and relaxations techniques have already been proposed in the literature
[2, 5, 7, 8, 10]. In this study, we proposed smoothing technique to regularize the
complementary constraints based on [3], we replace each constraint

xiyi = 0

by

θε(xi) + θε(yi) ≤ 1

where the parameterized functions θε : R+ → [0, 1] are at least C2 and satisfy :

θε(x)

{
≃ 1 if x 6= 0
= 0 if x = 0

Then we define a penalty function to solve the problem. To avoid the updating
parameter ε, we will consider it as some new optimization variable.
This paper is organized as follows. In section 2, we present some preliminaries and
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assumptions on the smoothing functions. In Section 3, we consider a smooth con-
strained optimization problem and introduce a penalty function. We prove under
some mild assumptions an existence result for the approximate problem and an
exact penalty property. In section 4, we present numerical experiments concerning
academic MPECs of small sizes. The last section presents a large set of numerical
experiments considering binary quadratic programs and simple number partitioning
problems.

2. Preliminaries

In this section, we present some preliminaries concerning the regularization and
approximation process. We consider functions θε(ε > 0) with the following proper-
ties:

(1) θε is nondecreasing, strictly concave and continuously differentiable,
(2) ∀ε > 0, θε(0) = 0,

(3) ∀x > 0, lim
ε→0

θε(x) = 1,

(4) lim
ε→0

θ
′

ε(0) > 0,

(5) ∃ m > 0,∃ε0 > 0∀x ∈ [0, v],∀ε ∈]0, ε0], |∂εθε(x)| ≤ m

ε2

For ε = 0, we set θ0(0) = 0 and θ0(x) = 1, ∀ x 6= 0.

Examples of such functions are:

(θ1
ε) : θε(x) =

x

x + ε
(θw1

ε ) : θε(x) = (1 − e−( x

ε
))k, for k ≤ 1

(θlog
ε ) : θε(x) =

log(1 + x)

log(1 + x + ε)

Using function θε, we obtain the relaxed following problem :

(2) (Pε)





f∗

ε = min f(x, y)
θε(xi) + θε(yi) ≤ 1, i = 1, . . . , n

(x, y) ∈ D

Remark 2.1. < x.y >= 0 ⇒ ∀ε > 0, θε(xi) + θε(yi) ≤ 1. Thus any feasible point
for (Pε) is also feasible for (P ) and then ∀ε > 0, f∗

ε ≤ f∗.

We first transform the inequality constraints into equality constraints, by intro-
ducing some slacks variables ei:

(3) θε(xi) + θε(yi) + ei − 1 = 0, ei ≥ 0 i = 1, . . . , n.

The problem (Pε) becomes:

(4) (P̃ε)





min f(x, y)
θε(xi) + θε(yi) + ei − 1 = 0 i = 1, . . . , n

(x, y, e) ∈ D × [0, 1]n

Indeed each ei can not exceed 1.
The limit problem (P̃ε) for ε = 0

(5) (P̃ )





min f(x, y)
θ0(xi) + θ0(yi) + ei = 1, i = 1, . . . , n

ei ∈ [0, 1], i = 1, . . . , n

which is equivalent to (P ).
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Until now, this relaxation process was introduced in [3]. To avoid the updating
of parameters problem, we define the penalty functions fσ on D × [0, 1] × [0, ε]:

fσ(x, y, e, ε) =





f(x, y) if ε = ∆(x, y, e, ε) = 0;

f(x, y) +
1

2ε
∆(x, y, e, ε) + σβ(ε) if ε > 0,

+∞ if ε = 0 and ∆(x, y, e, ε) 6= 0

where ∆ measures the feasibility violation and the function β : [0, ε] → [0,∞)
is continuously differentiable on (0, ε] with β(0) = 0. ∆(z, ε) = ‖Gε(z)‖2 where
(Gε(z))i = (θε(x) + θε(y) + e − 1)i and z = (x, y, e).

Remark 2.2. ∀z ∈ D
′

,∆(z, 0) = 0 ⇔ z feasible for P̃ ⇔ (x, y) feasible for (P ).

Then we consider the following problem:

(6) (Pσ)

{
min fσ(x, y, e, ε)
(x, y, e, ε) ∈ D × [0, 1]n × [0, ε]

From now on, we will denote

(7) D
′

= D × [0, 1]n

Definition 2.1. We say that the Mangasarian-Fromovitz condition [9] for Pσ holds

at z ∈ D
′

if G
′

ε(z) has full rank and there exists a vector p ∈ R
n such that G

′

ε(z)p =
0 and

pi

{
> 0 if zi = 0
< 0 if zi = wi

with

wi =

{
v if i ∈ {1 . . . 2n}
1 if i ∈ {2n + 1 . . . 3n}

Remark 2.3. This regularity condition can be replaced by one of those proposed in
[11].

3. The smoothing technique

The following theorem yields a condition to find a solution for (Pσ). It also proves
a direct link to (P ):

Theorem 3.1. we suppose that z ∈ D
′

satisfies the Mangasarian-Fromovitz con-
dition, and that

β
′

(ε) ≥ β1 > 0 for 0 < ε < ε.

i) If σ is sufficiently large, there is no KKT point of Pσ with ε > 0.
ii) For σ sufficiently large, every local minimizer (z∗, ε∗), (z∗ = (x∗, y∗, e∗)) of the
problem (Pσ) has the form (z∗, 0), where (x∗, y∗) is a local minimizer of the problem
(P ).

Proof:
i) Let (z, ε) a Kuhn Tucker point of Pσ, then there exist λ and µ ∈ R

3n+1 such
that:

(8)
(i) ∇ℓ(z, ε) = ∇fσ(z, ε) + λ − µ = 0
(ii) min(λ, zi) = min(µ, wi − zi) = 0, i = 1 . . . 3n

(iii) µ3n+1 = min(λ3n+1, ε − ε) = 0,

where ∇fσ is the gradient of fσ with respect to (z, ε).
Assume that there exists a sequence of KKT points (zk, εk) of Pσk

with εk 6= 0,∀k
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and lim
k→+∞

σk = +∞.

Since D
′

is bounded and closed, up to a subsequence, we have

lim
k→+∞

εk = ε∗

lim
k→+∞

zk = z∗

(9.i) yields to ∂εfσk
(zk, εk) + λ3n+1 − µ3n+1 = 0. So that ∂εfσk

(zk, εk) ≤ 0.
Then, if we denote ∆k = ∆(zk, εk), we have

∂εfσk
= − 1

4ε2
k

∆k +
1

2εk

∂ε∆k + σkβ
′

(εk)

= − 1

4ε2
k

∆k +
1

εk

(θε(xk) + θε(yk) + ek + 1)(∂εθε(xk) + ∂εθε(yk)) + σkβ
′

(εk) ≤ 0

Multiplying by 4ε3, we obtain

4ε2
k(θε(xk) + θε(yk) + ek − 1)(∂εθε(xk) + ∂εθε(yk)) + 4ε3

kσkβ
′

(εk) ≤ εk∆k

Since ∆k, θε and ε2∂εθε are bounded (by definition (v)), σk → ∞ when k → ∞.
We have ε∗ = 0.
(ii) Let σ sufficiently large and (z∗, ε∗) a local minimizer for (Pσ). If (z∗, ε∗) satis-
fies the Magasarian-Fromovitz condition, then (z∗, ε∗) is a Kuhn-Tucker points for
fσ. By (i), we conclude that ε∗ = 0.

Let V a neighborhood of (z∗, 0), for any z feasible for P̃ such that (z, 0) ∈ V
we have

(9) fσ(z∗, 0) ≤ fσ(z, 0) = f(x, y) < +∞
(since ∆(z, 0) = 0).
We can conclude that ∆(z∗, 0) = 0, otherwise fσ(z∗, 0) would be +∞. So that
< x∗, y∗ >= 0 and (x∗, y∗) is a feasible point of (P ).

Back to (9) f(x∗, y∗) = fσ(z∗, 0) ≤ fσ(z, 0) = f(x, y).
Therefore (x∗, y∗) is a local minimizer for (P ). �

Remark 3.1. The previous theorem is still valid if we consider penalty functions
of the form

(10) fσ(x, y, e, σ) = f(x, y) + α(ε)∆(x, y, e, ε) + σβ(ε)

with α(ε) >
1

2ε
.

4. Numerical results

In this section we consider some preliminary results obtained with the approach
described in the previous section. We used the SNOPT solver [6] for the solution
on the AMPL optimization platform [1]. In all our tests, we take β(ε) :=

√
ε.

We consider various MPECs where the optimal value is know [4]. Tables 1 and 2
summarizes our different informations concerning the computational effort of the
SNOPT, by using respectively θw1 and θ1 function:

• Obj.value : is the optimal value
• it : correspond to the total number of iterations
• (Obj.) and (grad.) : correspond to the total number of objective function

evaluations and objective function gradient evaluation
• (constr.) and (jac.) : give respectively the total number of constraints and

constraints gradient evaluation.
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Problem Data Obj.val. it Obj. grad constr. Jac

bard1 no 17 331 193 192
desilva (0, 0) −1 892 655 656 655 656

(2, 2) −1 448 416 415 416 415
Df1 no 3.26e − 12 3 28 27 28 27

Bilevel1 (25, 25) 5 470 214 213
(50, 50) 5 295 168 169

Bilevel2 (0, 0, 0, 0) −6600 232 55 54
(0, 5, 0, 20) −6600 180 56 55
(5, 0, 15, 10) −6600 −6599.9 331 97 96

flp4 flp4-1.dat 1.9e − 29 66 9 8
flp4-2.dat 3.08e − 29 66 9 8
flp4-3.dat 1.1e − 28 66 9 8

gauvin no 0 184 71 70
jr1 no 0.5 1175 814 813

scholtes1 1 2 12 10 9 10 9
hs044 no 14.97 375 101 100
nash1 (0, 0) 0 0 2 1

(5, 5) 1.72e − 17 13 13 12
(10, 10) 2.24e − 12 12 12 11
(10, 0) 4.29e − 12 12 11 10
(0, 10) 1.46e − 13 13 12 11

qpec1 no 80 1249 443 442
liswet1-inv liswet1-050 0.0929361 215 126 125

Stack1 0 −3266.67 27 26
100 −3266.67 7 17 16
200 −3266.67 7 17 16

Water-net Water-net.dat 931.1 2070 886 885 886 885

Table 1. using the θw1 function

Problem Data Obj.val. it Obj. grad constr. Jac

bard1 no 17 433 248 247
desilva (0, 0) −1 7 255 254 255 254

Df1 no 0 657 961 960 961 960
gauvin no 9.5e − 05 164 82 81 82 81
Bilevel1 (25, 25) 5 401 190 198

(50, 50) 5 391 183 182
Bilevel2 (0, 0, 0, 0) −6600 2458 487 486 487 486

(0, 5, 0, 20) −6600 2391 727 721
(5, 0, 15, 10) −6600 2391 727 721

hs044 no 17.08 617 261 260 261 260
jr1 no 0.5 67 54 53

nash1 (0, 0) 3.35e − 13 203 111 110
(5, 5) 6.7e − 24 146 71 70

(10, 10) 2.3e − 17 133 85 84
(10, 0) 8.1e − 16 379 238 237
(0, 10) 2.37e − 18 1228 848 847

qpec1 no 80 1895 518 517
liswet1-inv liswet1-050 0.028 3559 462 461
scholtes1 1 2 51 106 105 106 105
Stack1 0 −3266.67 64 58 57

100 −3266.67 30 32 31
200 −3266.67 30 32 31

Water-net Water-net.dat 931.369 919 282 281 282 281

Table 2. using the θ1 function

We remark that by considering θw1 or θ1 we obtain the optimal know value in
almost all the considered test problems.

5. Application to simple partitioning problem and binary quadratic

problems

In this section, we consider two real applications : the simple number partition-
ing and binary quadratic problems. These two classes of problems are know to be
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NP hard. We propose here a simple heuristic to obtain local solutions.

5.1. Application to simple partitioning problem. The number partitioning
problem can be stated as a quadratic binary problem. We model this problem as
follows.
We consider a set of numbers S = {s1, s2, s3, . . . , sm}. The goal is to partition S

into two subsets such that the subset sums are as close to each other as possible.
Let xj = 1 if sj is assigned to subset 1, 0 otherwise. Then sum1, subset 1’s sum,

is sum1 =

m∑

j=1

sjxj and the sum for subset 2 is sum2 =

m∑

j=1

sj −
m∑

j=1

sjxj . The

difference in the sums is then given by

diff =
m∑

j=1

sj − 2

m∑

j=1

sjxj = c − 2

m∑

j=1

sjxj . (c =

m∑

j=1

sj)

We will minimize the square of this difference

diff2 := {c − 2
m∑

j=1

sjxj}2,

We can rewrite diff2 as

diff2 = c2 + 4xT Qx,

where

qii = si(si − c), qij = sisj .

Dropping the additive and multiplicative constants, our optimization problem be-
comes simply

UQP

{
min xT Qx

x ∈ {0, 1}n

We rewrite the problem as the follows:

UQP

{
min xT Qx

x.(1 − x) = 0

We can now, use the proposed algorithm to get some local solutions for (UQP).

The results reported here on modest-sized random problems of size m = 25 and
m = 75. An instance of each size are considered with the element drawn randomly
from the interval (50, 100).

Each of the problems was solved by our approach, using the two functions θ1
ε and

θw
ε . We present in the table 3 the number of optimal solution obtained with 100

different initial points generated randomly from the interval [0, 1]:

• Best sum diff : corresponds to the best value of |
100∑

i=1

(Q∗round(x[i])−0.5∗c|

• Integrality measure : correspond to the max
i

|round(xi) − xi|
• Nb: correspond to the number of tests such that the best sum is satisfied.
• Nb10 : correspond to the number of tests such that the sum :

|
100∑

i=1

(Q ∗ round(x[i]) − 0.5 ∗ c| ≤ 10
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Problem Best sum diff Nb Integrality measure Nb10

(θ1, θw1) (θ1, θw1) (θ1, θw1) (θ1, θw1)
NP25.1 (1, 0) (1, 2) (0.011, 0) (15, 15)
NP25.2 (0, 0) (2, 2) (0.0055, 0.005) (16, 14)
NP25.3 (0, 0) (1, 1) (0, 0) (16, 14)
NP25.4 (0, 0) (1, 2) (0, 0) (22, 22)
NP25.5 (0, 0) (1, 4) (0.008, 0.0045) (11, 10)
NP75.1 (0, 0) (1, 2) (0.003, 0) (14, 14)
NP75.2 (0, 0) (2, 1) (0, 0) (15, 15)
NP75.3 (0, 0) (1, 1) (0, 0) (17, 17)
NP75.4 (0, 0) (2, 2) (0, 0) (18, 18)
NP75.5 (0, 1) (1, 1) (0, 0) (17, 17)

Table 3. using the θ1 and θw1 function

5.2. Application to binary quadratic problems. We consider some test prob-
lems from the Biq Mac Library [12]. These problems are written in the simple
following formulation:

min yT Qy

y ∈ {0, 1}n

where Q is a symmetric matrix of order n. For the Q matrix, ten instances have
been generated. The parameters are the following:

• diagonal coefficients in the range [−100, 100]
• off-diagonal coefficients in the range [−50, 50],
• seeds 1, 2, . . . , 10.

We apply the technique described in section 2. We present in the table 4 the num-
ber of optimal solution obtained with 100 different initial points (Nbop) generated
randomly from the interval [0, 1], and for a size matrix equal 100. The fourth col-
umn precise the obtained value when different to know optimal value.

Problem Know. value Nbop (θ1, θw1) Found value (θ1, θw1)
be100.1 −19412 (17, 14)
be100.2 −17290 (14, 12)
be100.3 −17565 (9, 13)
be100.4 −19125 (9, 14)
be100.5 −15868 (2, 2)
be100.6 −17368 (31, 31)
be100.7 −18629 (0, 0) (−18473,−18475)
be100.8 −18649 (1, 1)
be100.9 −13294 (0, 0) (−13248,−13248)
be100.10 −15352 (11, 4)

Table 4. using the θ1 and θw1 functions

Using θw1 or θ1 we obtain the optimal know value in almost of our tests. We
obtain a local solutions for only two examples. For each instance, the algorithm
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found an optimal solution and needs < 1 s for the resolution.

6. conclusion

In this paper, we have introduced an exact penalty approach to solve the math-
ematical program with equilibrium constraints.
We have proved a convergence result under suitable constraint qualification condi-
tions. We performed a numerical computation by applying our approach to some
tests from the library MacMPEC. Then, we considered some examples from the
Biq Mac Library and some randomly generated partitioning problems. We used
two different smoothing functions and our limited numerical tests gave almost the
same result for each one.
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