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We propose an exact penalty approach to solve the mathematical problems with equilibrium constraints (MPECs). This work is based on the smoothing functions introduced in [3] but we do not need any complicate updating rule for the penalty parameter. We present some numerical results to prove the viability of the approach. We consider two generic applications : the binary quadratic programs and simple number partitioning problems.

Introduction

Mathematical programs with equilibrium constraints (MPECs) represent an optimization problem including a set of parametric variational inequality or complementary constraints. In this paper, we consider optimization problems with complementary constraints, in the following form [START_REF] Ampl | A Modeling Language for Mathematical Programming[END_REF] (P )

   f * = min f (x, y) < x.y >= 0 (x, y) ∈ D
where f : R 2n → R is continuously differentiable and D = [0, v] 2n . < . > denotes the inner product on R n . We made this choice for D only to simplify the exposition. We can use only compact set.

Due to the presence of complementarity constraints, there is no feasible point satisfying all inequality constraints strictly which implies that the usual nonlinear programming constraint qualification such as Mangasarian-Fromovitz constraint qualification (MFCQ) is violated at any feasible point of MPECs. Many regularization and relaxations techniques have already been proposed in the literature [START_REF] Birbil | An entropic approach for mathematical programs with equilibrium constraints[END_REF][START_REF] Facchinei | A smoothing method for mathematical programs with equilibrium constraints[END_REF][START_REF] Lin | Some exact penalty results for nonlinear programs and mathematical programs with equilibrium constraints[END_REF][START_REF] Liu | Partial exact penalty for mathematical programs with equilibrium constraints[END_REF][START_REF] Mangasarian | Exact penalty functions for mathematical programs with linear complementarity constraints[END_REF]. In this study, we proposed smoothing technique to regularize the complementary constraints based on [START_REF] Haddou | A new class of smoothing methods for mathematical programs with equilibrium constraints[END_REF], we replace each constraint

x i y i = 0 by θ ε (x i ) + θ ε (y i ) ≤ 1 where the parameterized functions θ ε : R + → [0, 1] are at least C2 and satisfy :

θ ε (x) ≃ 1 if x = 0 = 0 if x = 0
Then we define a penalty function to solve the problem. To avoid the updating parameter ε, we will consider it as some new optimization variable. This paper is organized as follows. In section 2, we present some preliminaries and assumptions on the smoothing functions. In Section 3, we consider a smooth constrained optimization problem and introduce a penalty function. We prove under some mild assumptions an existence result for the approximate problem and an exact penalty property. In section 4, we present numerical experiments concerning academic MPECs of small sizes. The last section presents a large set of numerical experiments considering binary quadratic programs and simple number partitioning problems.

Preliminaries

In this section, we present some preliminaries concerning the regularization and approximation process. We consider functions θ ε (ε > 0) with the following properties:

(1) θ ε is nondecreasing, strictly concave and continuously differentiable, (

) ∀ε > 0, θ ε (0) = 0, ( 2 
) ∀x > 0, lim ε→0 θ ε (x) = 1, 3 
lim ε→0 θ ′ ε (0) > 0, (5) ∃ m > 0, ∃ε 0 > 0 ∀x ∈ [0, v], ∀ε ∈]0, ε 0 ], |∂ ε θ ε (x)| ≤ m ε 2 For ε = 0, we set θ 0 (0) = 0 and θ 0 (x) = 1, ∀ x = 0. (4) 
Examples of such functions are:

(θ 1 ε ) : θ ε (x) = x x + ε (θ w1 ε ) : θ ε (x) = (1 -e -( x ε ) ) k , for k ≤ 1 (θ log ε ) : θ ε (x) = log(1 + x) log(1 + x + ε)
Using function θ ε , we obtain the relaxed following problem :

(2)

(P ε )    f * ε = min f (x, y) θ ε (x i ) + θ ε (y i ) ≤ 1, i = 1, . . . , n (x, y) ∈ D Remark 2.1. < x.y >= 0 ⇒ ∀ε > 0, θ ε (x i ) + θ ε (y i ) ≤ 1.
Thus any feasible point for (P ε ) is also feasible for (P ) and then ∀ε > 0, f * ε ≤ f * . We first transform the inequality constraints into equality constraints, by introducing some slacks variables e i :

(3)

θ ε (x i ) + θ ε (y i ) + e i -1 = 0, e i ≥ 0 i = 1, . . . , n.
The problem (P ε ) becomes:

(4)

( P ε )    min f (x, y) θ ε (x i ) + θ ε (y i ) + e i -1 = 0 i = 1, . . . , n (x, y, e) ∈ D × [0, 1] n
Indeed each e i can not exceed 1.

The limit problem ( P ε ) for ε = 0

(5) ( P )    min f (x, y) θ 0 (x i ) + θ 0 (y i ) + e i = 1, i = 1, . . . , n e i ∈ [0, 1], i = 1, . . . , n
which is equivalent to (P ).

Until now, this relaxation process was introduced in [START_REF] Haddou | A new class of smoothing methods for mathematical programs with equilibrium constraints[END_REF]. To avoid the updating of parameters problem, we define the penalty functions

f σ on D × [0, 1] × [0, ε]: f σ (x, y, e, ε) =      f (x, y) if ε = ∆(x, y, e, ε) = 0; f (x, y) + 1 2ε ∆(x, y, e, ε) + σβ(ε) if ε > 0, +∞ if ε = 0 and ∆(x, y, e, ε) = 0
where ∆ measures the feasibility violation and the function β

: [0, ε] → [0, ∞) is continuously differentiable on (0, ε] with β(0) = 0. ∆(z, ε) = G ε (z) 2 where (G ε (z)) i = (θ ε (x) + θ ε (y) + e -1) i and z = (x, y, e).
Remark 2.2. ∀z ∈ D ′ , ∆(z, 0) = 0 ⇔ z feasible for P ⇔ (x, y) feasible for (P ).

Then we consider the following problem:

(6) (P σ ) min f σ (x, y, e, ε) (x, y, e, ε) ∈ D × [0, 1] n × [0, ε]
From now on, we will denote ( 7)

D ′ = D × [0, 1] n Definition 2.1.
We say that the Mangasarian-Fromovitz condition [START_REF] Mangasarian | The Fritz John necessary optimality conditions in the presence of equality and inequality constraints[END_REF] for

P σ holds at z ∈ D ′ if G ′ ε (z) has full rank and there exists a vector p ∈ R n such that G ′ ε (z)p = 0 and p i > 0 if z i = 0 < 0 if z i = w i with w i = v if i ∈ {1 . . . 2n} 1 if i ∈ {2n + 1 . . . 3n}
Remark 2.3. This regularity condition can be replaced by one of those proposed in [START_REF] Ralph | Some properties of regularization and penalization schemee for MPECS[END_REF].

The smoothing technique

The following theorem yields a condition to find a solution for (P σ ). It also proves a direct link to (P ):

Theorem 3.1. we suppose that z ∈ D ′ satisfies the Mangasarian-Fromovitz condition, and that

β ′ (ε) ≥ β 1 > 0 for 0 < ε < ε. i) If σ is sufficiently large, there is no KKT point of P σ with ε > 0.
ii) For σ sufficiently large, every local minimizer (z * , ε * ), (z * = (x * , y * , e * )) of the problem (P σ ) has the form (z * , 0), where (x * , y * ) is a local minimizer of the problem (P ).

Proof: i) Let (z, ε) a Kuhn Tucker point of P σ , then there exist λ and µ ∈ R 3n+1 such that:

(8) (i) ∇ℓ(z, ε) = ∇f σ (z, ε) + λ -µ = 0 (ii) min(λ, z i ) = min(µ, w i -z i ) = 0, i = 1 . . . 3n (iii) µ 3n+1 = min(λ 3n+1 , ε -ε) = 0,
where ∇f σ is the gradient of f σ with respect to (z, ε). Assume that there exists a sequence of KKT points (z k , ε k ) of P σ k with ε k = 0, ∀k and lim k→+∞ σ k = +∞.

Since D

′ is bounded and closed, up to a subsequence, we have

lim k→+∞ ε k = ε * lim k→+∞ z k = z * (9.i) yields to ∂ ε f σ k (z k , ε k ) + λ 3n+1 -µ 3n+1 = 0. So that ∂ ε f σ k (z k , ε k ) ≤ 0. Then, if we denote ∆ k = ∆(z k , ε k ), we have ∂ ε f σ k = - 1 4ε 2 k ∆ k + 1 2ε k ∂ ε ∆ k + σ k β ′ (ε k ) = - 1 4ε 2 k ∆ k + 1 ε k (θ ε (x k ) + θ ε (y k ) + e k + 1)(∂ ε θ ε (x k ) + ∂ ε θ ε (y k )) + σ k β ′ (ε k ) ≤ 0
Multiplying by 4ε 3 , we obtain

4ε 2 k (θ ε (x k ) + θ ε (y k ) + e k -1)(∂ ε θ ε (x k ) + ∂ ε θ ε (y k )) + 4ε 3 k σ k β ′ (ε k ) ≤ ε k ∆ k Since ∆ k , θ ε and ε 2 ∂ ε θ ε are bounded (by definition (v)), σ k → ∞ when k → ∞.
We have ε * = 0.

(ii) Let σ sufficiently large and (z * , ε * ) a local minimizer for (P σ ). If (z * , ε * ) satisfies the Magasarian-Fromovitz condition, then (z * , ε * ) is a Kuhn-Tucker points for f σ . By (i), we conclude that ε * = 0.

Let V a neighborhood of (z * , 0), for any z feasible for P such that (z, 0) ∈ V we have

(9) f σ (z * , 0) ≤ f σ (z, 0) = f (x, y) < +∞ (since ∆(z, 0) = 0).
We can conclude that ∆(z * , 0) = 0, otherwise f σ (z * , 0) would be +∞. So that < x * , y * >= 0 and (x * , y * ) is a feasible point of (P ).

Back to (9) f (x * , y * ) = f σ (z * , 0) ≤ f σ (z, 0) = f (x, y). Therefore (x * , y * ) is a local minimizer for (P ).

Remark 3.1. The previous theorem is still valid if we consider penalty functions of the form

(10) f σ (x, y, e, σ) = f (x, y) + α(ε)∆(x, y, e, ε) + σβ(ε) with α(ε) > 1 2ε . 

Numerical results

In this section we consider some preliminary results obtained with the approach described in the previous section. We used the SNOPT solver [START_REF] Gill | SNOPT, A large-scale smooth optimization problems having linear or nonlinear objectives and constraints[END_REF] for the solution on the AMPL optimization platform [START_REF] Ampl | A Modeling Language for Mathematical Programming[END_REF]. In all our tests, we take β(ε) := √ ε. We consider various MPECs where the optimal value is know [START_REF] Macmpec | Ampl collection of Mathematical Programs with Equilibrium Constraints[END_REF]. Tables 1 and2 summarizes our different informations concerning the computational effort of the SNOPT, by using respectively θ w1 and θ 1 function:

• Obj.value : is the optimal value • it : correspond to the total number of iterations • (Obj.) and (grad.) : correspond to the total number of objective function evaluations and objective function gradient evaluation • (constr.) and (jac.) : give respectively the total number of constraints and constraints gradient evaluation. We remark that by considering θ w1 or θ 1 we obtain the optimal know value in almost all the considered test problems.

Application to simple partitioning problem and binary quadratic problems

In this section, we consider two real applications : the simple number partitioning and binary quadratic problems. These two classes of problems are know to be NP hard. We propose here a simple heuristic to obtain local solutions. 5.1. Application to simple partitioning problem. The number partitioning problem can be stated as a quadratic binary problem. We model this problem as follows.

We consider a set of numbers S = {s 1 , s 2 , s 3 , . . . , s m }. The goal is to partition S into two subsets such that the subset sums are as close to each other as possible. Let x j = 1 if s j is assigned to subset 1, 0 otherwise. Then sum 1 , subset 1's sum, We will minimize the square of this difference

diff 2 := {c -2 m j=1 s j x j } 2 ,
We can rewrite diff 2 as diff 2 = c 2 + 4x T Qx, where q ii = s i (s ic), q ij = s i s j . Dropping the additive and multiplicative constants, our optimization problem becomes simply

U QP min x T Qx x ∈ {0, 1} n
We rewrite the problem as the follows:

U QP min x T Qx x.(1x) = 0 We can now, use the proposed algorithm to get some local solutions for (UQP).

The results reported here on modest-sized random problems of size m = 25 and m = 75. An instance of each size are considered with the element drawn randomly from the interval (50, 100).

Each of the problems was solved by our approach, using the two functions θ 1 ε and θ w ε . We present in the table 3 the number of optimal solution obtained with 100 different initial points generated randomly from the interval [0, 1]:

• Best sum diff : corresponds to the best value of | 100 i=1 (Q * round(x[i])-0.5 * c| • Integrality measure : correspond to the max i |round(x i ) -x i |
• Nb: correspond to the number of tests such that the best sum is satisfied.

• N b 10 : correspond to the number of tests such that the sum : Table 3. using the θ 1 and θ w1 function 5.2. Application to binary quadratic problems. We consider some test problems from the Biq Mac Library [START_REF] Wiegele | Biq Mac Library -A collection of Max-Cut and quadratic 0-1 programming instances of medium size[END_REF]. These problems are written in the simple following formulation:

| 100 i=1 (Q * round(x[i]) -0.5 * c| ≤ 10 Problem Best sum diff Nb Integrality measure N b 10 (θ 1 , θ w1 ) (θ 1 , θ w1 ) (θ 1 , θ w1 ) (θ 1 , θ w1 ) N P 25.1 (1, 0) (1,
min y T Qy y ∈ {0, 1} n
where Q is a symmetric matrix of order n. For the Q matrix, ten instances have been generated. The parameters are the following:

• diagonal coefficients in the range [-100, 100]

• off-diagonal coefficients in the range [-50, 50],

• seeds 1, 2, . . . , 10. We apply the technique described in section 2. We present in the table 4 the number of optimal solution obtained with 100 different initial points (Nbop) generated randomly from the interval [0, 1], and for a size matrix equal 100. The fourth column precise the obtained value when different to know optimal value. Problem Know. value N bop (θ 1 , θ w1 ) Found value (θ 1 , θ w1 ) be100. 1 -19412 (17, 14) be100. [START_REF] Birbil | An entropic approach for mathematical programs with equilibrium constraints[END_REF] -17290 (14, 12) be100. [START_REF] Haddou | A new class of smoothing methods for mathematical programs with equilibrium constraints[END_REF] -17565 (9, 13) be100. [START_REF] Macmpec | Ampl collection of Mathematical Programs with Equilibrium Constraints[END_REF] -19125 (9, 14) be100. [START_REF] Facchinei | A smoothing method for mathematical programs with equilibrium constraints[END_REF] -15868 (2, 2) be100. [START_REF] Gill | SNOPT, A large-scale smooth optimization problems having linear or nonlinear objectives and constraints[END_REF] -17368 (31, 31) be100. [START_REF] Lin | Some exact penalty results for nonlinear programs and mathematical programs with equilibrium constraints[END_REF] -18629 (0, 0) (-18473, -18475) be100. [START_REF] Liu | Partial exact penalty for mathematical programs with equilibrium constraints[END_REF] -18649

(1, 1) be100.9

-13294 (0, 0) (-13248, -13248) be100. [START_REF] Mangasarian | Exact penalty functions for mathematical programs with linear complementarity constraints[END_REF] -15352 [START_REF] Ralph | Some properties of regularization and penalization schemee for MPECS[END_REF][START_REF] Macmpec | Ampl collection of Mathematical Programs with Equilibrium Constraints[END_REF] Table 4. using the θ 1 and θ w1 functions Using θ w1 or θ 1 we obtain the optimal know value in almost of our tests. We obtain a local solutions for only two examples. For each instance, the algorithm found an optimal solution and needs < 1 s for the resolution.

conclusion

In this paper, we have introduced an exact penalty approach to solve the mathematical program with equilibrium constraints.

is sum 1

 1 = m j=1 s j x j and the sum for subset 2 is sum 2 =

Table 1 .

 1 using the θ w1 function

	Problem		Data		Obj.val.		it	Obj. grad constr. Jac
	bard1		no		17		331	193	192
	desilva		(0, 0)		-1		892	655	656	655	656
			(2, 2)		-1		448	416	415	416	415
	Df1		no	3.26e -12		3	28	27	28	27
	Bilevel1		(25, 25)		5		470	214	213
			(50, 50)		5		295	168	169
	Bilevel2		(0, 0, 0, 0)		-6600		232	55	54
			(0, 5, 0, 20)		-6600		180	56	55
			(5, 0, 15, 10)		-6600	-6599.9	331	97	96
	flp4		flp4-1.dat		1.9e -29		66	9	8
			flp4-2.dat	3.08e -29		66	9	8
			flp4-3.dat		1.1e -28		66	9	8
	gauvin		no		0		184	71	70
	jr1		no		0.5		1175	814	813
	scholtes1		1		2		12	10	9	10	9
	hs044		no		14.97		375	101	100
	nash1		(0, 0)		0		0	2	1
			(5, 5)	1.72e -17		13	13	12
			(10, 10)	2.24e -12		12	12	11
			(10, 0)	4.29e -12		12	11	10
			(0, 10)	1.46e -13		13	12	11
	qpec1		no		80		1249	443	442
	liswet1-inv		liswet1-050	0.0929361		215	126	125
	Stack1		0		-3266.67		27	26
			100		-3266.67		7	17	16
			200		-3266.67		7	17	16
	Water-net	Water-net.dat		931.1		2070	886	885	886	885
	Problem		Data		Obj.val.		it	Obj. grad constr. Jac
	bard1		no		17		433	248	247
	desilva		(0, 0)		-1		7	255	254	255	254
	Df1		no		0		657	961	960	961	960
	gauvin		no		9.5e -05		164	82	81	82	81
	Bilevel1		(25, 25)		5		401	190	198
			(50, 50)		5		391	183	182
	Bilevel2		(0, 0, 0, 0)		-6600		2458	487	486	487	486
			(0, 5, 0, 20)		-6600		2391	727	721
			(5, 0, 15, 10)		-6600		2391	727	721
	hs044		no		17.08		617	261	260	261	260
	jr1		no		0.5		67	54	53
	nash1		(0, 0)		3.35e -13	203	111	110
			(5, 5)		6.7e -24		146	71	70
			(10, 10)		2.3e -17		133	85	84
			(10, 0)		8.1e -16		379	238	237
			(0, 10)		2.37e -18 1228	848	847
	qpec1		no		80		1895	518	517
	liswet1-inv	liswet1-050		0.028		3559	462	461
	scholtes1		1		2		51	106	105	106	105
	Stack1		0		-3266.67		64	58	57
			100		-3266.67		30	32	31
			200		-3266.67		30	32	31
	Water-net	Water-net.dat	931.369		919	282	281	282	281

Table 2 .

 2 using the θ 1 function
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We have proved a convergence result under suitable constraint qualification conditions. We performed a numerical computation by applying our approach to some tests from the library MacMPEC. Then, we considered some examples from the Biq Mac Library and some randomly generated partitioning problems. We used two different smoothing functions and our limited numerical tests gave almost the same result for each one.