Darmon’s points and quaternionic Shimura varieties
Jerome Gartner

To cite this version:
Jerome Gartner. Darmon’s points and quaternionic Shimura varieties. 2011. hal-00586532

HAL Id: hal-00586532
https://hal.science/hal-00586532
Preprint submitted on 17 Apr 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
DARMON’S POINTS AND QUATERNIONIC SHIMURA VARIETIES

JÉRÔME GÄRTNER

Abstract. In this paper, we generalize a conjecture due to Darmon and Logan (see [DL03] and [Dar04], chapter 8) in an adelic setting. We study the relation between our construction and Kudla’s works on cycles on orthogonal Shimura varieties. This relation allows us to conjecture a Gross-Kohnen-Zagier theorem for Darmon’s points.

1. Introduction

The theory of complex multiplication gives a collection of Heegner points on elliptic curves over \(\mathbb{Q} \), which are defined over class fields of imaginary quadratic fields. These points allow us to prove Birch and Swinnerton-Dyer’s conjecture over \(\mathbb{Q} \) for analytic rank 1 curves, thanks to the work of Gross-Zagier and Kolyvagin.

Let us briefly recall the construction of Heegner points. If \(E \) is an elliptic curve over \(\mathbb{Q} \) then we know that \(E \) is modular. Let \(N \) be the conductor of \(E \). There exists a modular form \(f \in S_2(N) \) such that \(L(E, s) = L(f, s) \). Denote by \(\Phi_N : \Gamma_0(N) \backslash \mathcal{H} \to E(\mathbb{C}) \) the modular uniformization which is obtained by taking the composition of the map \(z_0 \in \mathcal{H} \mapsto c \int_{z_0}^{\infty} 2\pi i f(z) dz \) (here \(c \) denotes the Manin constant) with the Weierstrass uniformization. Let \(z_0 \in \mathcal{H} \cap K \), where \(K/\mathbb{Q} \) is an imaginary quadratic field. A Heegner point is given essentially by \(z_0 \) in \(\mathbb{C}/A_E \cong E(\mathbb{C}) \). The theory of complex multiplication shows that these points are defined over class fields of \(K \).

In [Dar04], Darmon gives a conjectural construction of Stark-Heegner points, which is a generalization of classical Heegner points. These points should help us to understand, on one hand the Birch and Swinnerton-Dyer conjecture, on the other hand Hilbert’s twelfth problem.

In more concrete terms, assume that \(F \) is a totally real number field of narrow class number 1. Let \(\tau_j \) be its archimedean places, and \(K/F \) some quadratic “ATR” extension (i.e. \(K \) has exactly one complex place). Darmon defines a collection of points on elliptic curves \(E/F \) which are expected to be defined over class fields of \(K \). In this case, the (conjectural, but partially proved by Skinner-Wiles) modularity of \(E \) gives the existence of a Hilbert modular form \(f \) on \(\mathcal{H} \) whose periods appear as a tensor product of periods of \(E_{\tau_j} = E \otimes_{F, \tau_j} \mathbb{C} \). The construction explained in [DL03] can be seen as an exotic Abel-Jacobi map.

In this paper, we generalize Darmon’s construction by removing the hypothesis “ATR” on \(K \) (but we assume that \(K \) is not CM) and the technical hypothesis that \(F \) has narrow class number 1. We replace the Hilbert modular variety used in the “ATR” case by a general quaternionic Shimura variety and define a suitable Abel-Jacobi map. We are able to specify the invariants of the quaternion algebra using local epsilon factors and to give a conjectural Gross-Zagier formula for these points. We conclude the paper by establishing a relation to Kudla’s study of cycles on orthogonal Shimura varieties, in order to give a Gross-Kohnen-Zagier type conjecture.

Let us summarize the main construction of this paper. Let \(F \) be a totally real field of degree \(d \) and let \(\tau_1, \ldots, \tau_d \) be its archimedean places. Fix \(r \in \{2, \ldots, d\} \), and a quadratic extension \(K/F \) such that the set of archimedean places of \(F \) that split completely in \(K \) is \(\{\tau_2, \ldots, \tau_r\} \). Let \(B/F \) be a quaternion algebra which splits at \(\tau_1, \ldots, \tau_r \) and ramifies at \(\tau_{r+1}, \ldots, \tau_d \). Let \(G = \text{Res}_{F/Q} B^\times \). We will denote by \(\text{Sh}_H(G, X) \) the quaternionic Shimura variety of level \(H \) (a compact open subgroup of \(G(\mathbb{A}_f) \)) whose complex points are given by

\[
\text{Sh}_H(G, X)(\mathbb{C}) = G(\mathbb{Q}) \backslash (\mathbb{C} \times \mathbb{R}^r) \times G(\mathbb{A}_f)/H.
\]

Date: April 17, 2011.

2000 Mathematics Subject Classification. Primary 11G05; Secondary 14G35, 11F67, 11G40.

Key words and phrases. Elliptic curves, Stark-Heegner points, quaternionic Shimura varieties.
Fix an embedding \(q : K \hookrightarrow B \). There is an action of \((K \otimes \mathbf{R})^+/(F \otimes \mathbf{R})^+\) on \((C \otimes \mathbf{R})^+\). By considering a suitable orbit of this action, we obtain a real cycle \(T_b \) of dimension \(r - 1 \) on \(\text{Sh}_H(G, X)(C) \). Using the theorem of Matsushima and Shimura, we deduce that there exists an \(r \)-cycle \(\Delta_b \) on \(\text{Sh}_H(G, X)(C) \) such that \(\partial \Delta_b \) is an integral multiple of \(\beta_0 \).

Let \(E/F \) be an elliptic curve, assumed modular, i.e., there exists a Hilbert modular eigenform \(\tilde{\varphi} \) satisfying \(L(E, s) = L(\tilde{\varphi}, s) \). We will assume that this form corresponds to an automorphic form \(\varphi \) on \(B \) by the Jacquet-Langlands correspondence. There exists a holomorphic differential form \(\omega_\varphi \) of degree \(r \) on \(\text{Sh}_H(G, X)(C) \) naturally attached to \(\varphi \). In general, the set of periods of \(\omega_\varphi \) is a dense subset of \(C \). Fix some character \(\beta \) of the set of connected components of \((K \otimes \mathbf{R})^+/(F \otimes \mathbf{R})^+\).

Following Darmon we define a modified differential form \(\omega_\varphi^\beta \) whose periods are, assuming Yoshida’s period conjecture, a lattice, homothetic to some sublattice of the Neron lattice of \(E \).

The image of (a suitable multiple of) the complex number \(\int_{\Delta_b} \omega_\varphi^\beta \) is independent of the choice of \(\Delta_b \). Hence it defines by Weierstrass uniformization a point \(P_b^\beta \) in \(E(C) \). We conjecture

Conjecture (5.1.1). \(P_b^\beta = \Phi \left(\int_{\Delta_b} \omega_\varphi^\beta \right) \in E(C) \) lies in \(E(K^{ab}) \) and

\[
\forall a \in A_K^\times \quad \text{rec}_K(\alpha) P_b^\beta = \beta(\alpha_\infty) P_{\alpha(\alpha)b}^\beta.
\]

Let us assume this conjecture is true and denote by \(K_b^+ \) the field of definition of \(P_b^\beta \). Let \(\pi = \pi(\varphi) \) be the automorphic representation generated by \(\varphi \); fix a character \(\chi : \text{Gal}(K_b^+)/K \rightarrow \mathbf{C}^\times \). Denote by \(\epsilon(\pi \times \chi, \frac{1}{2}) \) the sign in the functional equation of the Rankin-Selberg \(L \)-function \(L(\pi \times \chi, s) \) and by \(\eta_K : F_b^+/F_b^\times N_{F/K}(K_b^+) \rightarrow \{\pm 1\} \) the quadratic character of \(K/F \). The following proposition proves that \(b \) is uniquely determined by \(K \) and the isogeny class of \(E/F \).

Proposition (5.3.1). Let \(b \in \hat{B}^\times \) and assume conjecture 5.1.1. If

\[
\epsilon(\pi^\beta) = \sum_{\sigma \in \text{Gal}(K_b^+)/K} \chi(\sigma) \otimes P_b^\beta \in E(K_b^+)^+ \otimes \mathbf{Z}[\chi]
\]

is not torsion, then :

\[
\forall v \mid \infty \quad \eta_{K,v}(-1)\epsilon(\pi_v \times \chi_v, \frac{1}{2}) = \text{inv}_v(B_v) \quad \text{and} \quad \epsilon(\pi \times \chi, \frac{1}{2}) = -1.
\]

The last part of this paper is focused on a conjecture in the spirit of the Gross-Kohnen-Zagier theorem. Assume that \(E(F) \) has rank 1. Denote by \(P_b \) some generator modulo torsion. For each totally positive \(t \in O_F \) such that \((t) \) is square free and prime to \(d_{K/F} \), denote by \(K[t] \) the quadratic extension \(K[t] = F(\sqrt{\pm D_t}) \), where \(D_t \in F \) satisfies \(\tau_j(D_t) > 0 \) if and only if \(j \in \{1, r + 1, \ldots, d\} \).

Let \(P_{t,1} \) be Darmon’s point obtained for \(K[t] \) and \(b = 1 \), and set

\[
P_t = \text{Tr}_{K[t]/F} P_{t,1}.
\]

The point \(P_t \) is in \(E(F) \) and there exists some integer \([P_t] \in \mathbf{Z} \) such that \(P_t = [P_t] P_0 \). In the spirit of conjecture 5.3 of [DT08] we conjecture that :

Conjecture (6.3.5). There exists a Hilbert modular form \(g \) of level \(3/2 \) such that the \([P_t] \) are proportional to some Fourier coefficients of \(g \).

In our attempt to adapt Yuan, Zhang and Zhang’s proof in the CM case [YZZ09] to prove this conjecture, we obtained a relation between Darmon’s points and Kudla’s program, see Proposition 5.5.3.2.

Acknowledgments. This work grew out of the author’s thesis at University Paris 6. The author is grateful to J. Nekovář for his constant support during this work, and to C. Cornut for many useful conversations.

2. Quaternionic Shimura varieties

In this section we recall some properties of Shimura varieties associated to quaternion algebras. The standard references are Reimann’s book [Rei97] and [Mil05]. The content of this section is more or less the transcription to Shimura varieties of what is done for curves in [CV07] and [Nek07].
Let F be a totally real field of degree $d = [F : \mathbb{Q}]$ and τ_1, \ldots, τ_d its archimedean places. Denote by $\overline{\mathbb{Q}} \subset \mathbb{C}$ the algebraic closure of \mathbb{Q} in \mathbb{C} so $\tau_j : F \hookrightarrow \overline{\mathbb{Q}}$. Fix $r \in \{2, \ldots, d\}$ and a finite set S_B of non-archimedean primes satisfying

$$|S_B| \equiv d - r \mod 2.$$

Let B be the unique quaternion algebra over F ramified at the set $\text{Ram}(B) = \{\tau_{r+1}, \ldots, \tau_d\} \cup S_B$.

For each $j \in \{1, \ldots, d\}$ we put $B_{\tau_j} = B \otimes_{F, \tau_j} \mathbb{R}$. It is not necessary but more convenient to fix for each $j \in \{\tau_1, \ldots, \tau_r\}$ an \mathbb{R}-algebra isomorphism

$$B_{\tau_j} \sim M_2(\mathbb{R}).$$

The constructions given in this paper are independent on the choice of these isomorphisms, as in the author’s PhD thesis [Gär11].

Let G be the algebraic group over \mathbb{Q} satisfying $G(\mathbb{A}) = (B \otimes_{\mathbb{Q}} A)^{\times}$ for every commutative \mathbb{Q}-algebra A. We will denote by $\text{nr} : G(\mathbb{A}) \rightarrow (F \otimes_{\mathbb{Q}} A)^{\times}$ the reduced norm and by Z the center of G. For $j \in \{1, \ldots, d\}$ let G_j be the algebraic group over \mathbb{R} given by $G_j = G \otimes_{F, \tau_j} \mathbb{R}$; thus $G_\mathbb{R}$ decomposes as $G_1 \times \cdots \times G_d$. For any abelian group A, denote by \hat{A} the group $A \otimes \hat{\mathbb{Z}}$.

Let X be the $G(\mathbb{R})$-conjugacy class of the morphism $h : S = \text{Res}_{\mathbb{C}/\mathbb{R}}(G_{m, \mathbb{C}}) \rightarrow G(\mathbb{R}) = G_1(\mathbb{R}) \times \cdots \times G_d(\mathbb{R})$ defined by

$$x + iy \mapsto \left(\begin{array}{ccc} x & y & \vdots & \vdots \\ -y & x & \ddots & \vdots \\ \vdots & \ddots & \ddots & y \\ \vdots & \ddots & \ddots & -y \\ 1 & \cdots & 1 & 1 \end{array} \right)_r \times \cdots \times \left(\begin{array}{ccc} 1 & \cdots & 1 \\ \vdots & \ddots & \ddots \\ \vdots & \ddots & \ddots & x \\ 1 & \cdots & 1 & 1 \end{array} \right)_r^{-d}. \quad \text{times}$$

The set X has a natural complex structure [Mil90] and the following map is a holomorphic isomorphism between X and $(\mathbb{C} \setminus \mathbb{R})^r$:

$$ghg^{-1} \mapsto g \cdot (i, \ldots, i) = \left(\begin{array}{c} a_1i + b_1 \\ c_1i + d_1 \\ \vdots \\ a_ri + b_r \\ c_ri + d_r \end{array} \right),$$

where $g = (g_1, \ldots, g_d) \in G(\mathbb{R})$ and for $j \in \{1, \ldots, r\}$ g_j is identified with $\left(\begin{array}{c} a_j \\ c_j \\ b_j \\ d_j \end{array} \right)$.

Quaternionic Shimura varieties. Let H be an open-compact subgroup of \tilde{B}^{\times}. The quaternionic Shimura varieties considered in this paper are algebraic varieties $\text{Sh}_H(G, X)$ whose complex points are given by

$$\text{Sh}_H(G, X)(\mathbb{C}) = B^{\times} \backslash (X \times \tilde{B}^{\times} / H),$$

where the left-action of B^{\times} and the right-action of H are given by

$$\forall k \in B^{\times} \quad \forall h \in H \quad \forall (x, b) \in X \times \tilde{B}^{\times} \quad k \cdot (x, b) \cdot h = (kx, bkh).$$

Such Shimura varieties are defined over some number field called the reflex field. In our case this number field is

$$F' = \mathbb{Q} \left(\sum_{j=1}^{r} \tau_j(\alpha), \quad \alpha \in F \right) \subset \overline{\mathbb{Q}} \subset \mathbb{C}.$$

We will denote by $[x, b]_H$ the element of $\text{Sh}_H(G, X)(\mathbb{C})$ represented by (x, b) and by $[x, b]_{H \tilde{F}^{\times}}$ the corresponding element of the modified variety $\text{Sh}_H(G/Z, X)(\mathbb{C}) = B^{\times} \backslash (X \times \tilde{B}^{\times} / HZ)$.

Remark 2.1.1. The complex Shimura varieties are compact whenever $B \neq M_2(F)$. The Hilbert modular varieties used by Darmon in [Dar04] chapter 7 and 8 are obtained when $B = M_2(F)$ and $r = d$.

The Shimura varieties form a projective system $\{\text{Sh}_H(G, X)\}_H$ indexed by open compact subgroups in \tilde{B}^{\times}. The transition maps $\text{pr} : \text{Sh}_H(G, X) \rightarrow \text{Sh}_H'(G, X)$ are defined on complex points by

$$[x, b]_H \mapsto [x, b]_{H'}.$$
There is an action of \hat{B}^\times on the projective system $\{\text{Sh}_H(G, X)\}_H$. The right multiplication by $g \in B^\times$ induces an isomorphism $[g] : \text{Sh}_H(G, X) \xrightarrow{\sim} \text{Sh}_H(G, X)_g^{-1}H_g$, defined on complex points by

$$[g][x, b]_H = [x, bg]_{g^{-1}H_g}.$$

Complex conjugation. Fix $j \in \{1, \ldots, r\}$. Let $h_j : S \to G_{j, R}$ be the morphism obtained by composing h with the j-th projection $G_{R} \to G_{j, R}$ and X_j the $G_{j, R}$-conjugacy class of h_j. For $x_j = g_j h_j g_j^{-1} \in X_j$, the set $\text{Im}(g_jh_jg_j^{-1})$ is a maximal anisotropic R-torus in $G_{j, R}$. The map $t_j : x_j \mapsto \text{Im}(x_j)$ satisfies $|t_j^{-1}(x_j(x_j))| = 2$, thus there exists a unique antiholomorphic and $G_{j, R}$-equivariant involution

$$t_j : X_j \longrightarrow X_j$$

such that

$$\forall x_j \in X_j \quad t_j^{-1}(x_j) = \{x_j, t_j(x_j)\}.$$

More precisely, under the identification $X_j \xrightarrow{\sim} C \times R$, the map t_j satisfies $t_j(x+iy) = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$

and $t_j^{-1}(x+iy) = \{x+iy, x-iy\}$. Note that the map t_j can be extended to complex points of the Shimura varieties by $t_j([x, b]_H) = [t_j(x), b]_H$; t_j acts trivially on X_k for $k \neq j$.

Differential forms. In this section we recall some facts concerning differential forms on Shimura varieties. We will denote by $\Omega_H = \Omega_{H^F}$ the sheaf of differentials of degree r on $\text{Sh}_H(G, X)$ and by Ω_H^n the sheaf of holomorphic r-differentials on $\text{Sh}_H(G, X)(C)$, provided that $\text{Sh}_H(G, X)$ is smooth. Recall that the GAGA principle gives us the following isomorphism between global sections

$$\Gamma(\text{Sh}_H(G, X), \Omega_H) \otimes_{F} C \xrightarrow{\sim} \Gamma(\text{Sh}_H(G, X)(C), \Omega^n_H).$$

Notice that in general, $\text{Sh}_H(G, X)$ is not smooth. In this last case we will fix some integer $n \geq 3$ such that for each p in $\text{Ram}(B)$ we have $p \nmid nO_F$ and for each $v \nmid nO_F$ isomorphisms $\iota_v : B_v \xrightarrow{\sim} M_2(F_v)$. The group

$$H' = \left\{ (h_v) \in H, \text{ s.t. } \forall v \mid nO_F \quad h_v \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ mod } nO_{F_v} \right\}$$

is of finite index in H and $\text{Sh}_{H'}(G, X)$ is smooth. The map $\text{Sh}_{H'}(G, X) \to \text{Sh}_H(G, X)$ is a finite covering. We define $\Omega_{H'} = \prod_{H' \to H} \Omega_{H'} = (\Omega_H)^H$. By abuse of language, we shall call an element of $\Gamma(\Omega_{H'}) = \Gamma(\text{Sh}_{H'}(G, X), \Omega_{H'}) = (\prod_{H' \to H} \Gamma(\text{Sh}_H(G, X), \Omega_{H'}))$ a global r-form on $\text{Sh}_H(G, X)$. Remark that the space of global holomorphic r-forms $\lim_{\longrightarrow H} \Gamma(\Omega^n_{H'})$ is equipped with a canonical action of \hat{B}^\times given by pull-backs $[g]^*$.

Let $\varepsilon \in \{\pm 1\}^r$ and denote by $\Gamma((\Omega^n_{H'})^\varepsilon)$ the space of r-forms on $\text{Sh}_{H'}(G, X)(C)$ which are holomorphic (resp. anti-holomorphic) in z_j if $\varepsilon_j = +1$ (resp. if $\varepsilon_j = -1$). The maps t_j pulled-back on $\Gamma((\Omega^n_{H'})^\varepsilon)$ satisfy

$$t_j^* : \Gamma((\Omega^n_{H'})^\varepsilon) \longrightarrow \Gamma((\Omega^n_{H'})^{\varepsilon^j})$$

where $\varepsilon'_k = \varepsilon_k$ for $k \neq j$ and $\varepsilon'_j = -\varepsilon_j$.

When $\sigma \in \prod_{j=2}^{r} \{\pm 1\}$ we will define $e_j \in \{0, 1\}$ by $\sigma_j = (-1)^{e_j}$ and $t_j^* \prod_{j=2}^{r} (t_j^*)^{e_j}$. Let $\beta : \prod_{j=2}^{r} \{\pm 1\} \to \{\pm 1\}$ be a character and $\omega \in \Gamma((\Omega^n_{H'})^\beta)$. We shall denote by ω^β the element $\omega^\beta = \sum_{\sigma \in \prod_{j=2}^{r} \{\pm 1\}} \beta(\sigma) t_j^{e_j}(\omega)$ of $\bigoplus_{H' \to H} \Gamma((\Omega^n_{H'})^\varepsilon)$.

Automorphic forms. Let $S^H_{2, \ldots, 2, 0, \ldots, 0}(B_{\Lambda})$ be the space $S^H_{2, \ldots, 2, 0, \ldots, 0}(B_{\Lambda})$ of functions $\varphi : B_{\Lambda}^\times \simeq G(R) \times \hat{B}^\times \longrightarrow C$ satisfying the following properties:

1. $\forall g \in B_{\Lambda}^\times \forall b \in B_{\Lambda}^\times \varphi(gb) = \varphi(b)$,
2. $\forall g \in (R^\times)^r \times G_{r+1}(R) \times \cdots \times G_2(R) \subset G(R) \forall b \in B_{\Lambda}^\times \varphi(bg) = \varphi(b),$
3. $\forall h \in H \forall b \in B_{\Lambda}^\times \varphi(hb) = \varphi(b),$
4. $\forall g \in B_{\Lambda}^\times \forall (\theta_1, \ldots, \theta_r) \in R^r$

$$\varphi \left(g \begin{pmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{pmatrix}, \ldots, \begin{pmatrix} \cos \theta_r & -\sin \theta_r \\ \sin \theta_r & \cos \theta_r \end{pmatrix}, 1, \ldots, 1 \right) = e^{-2i\theta_1} \times \cdots \times e^{-2i\theta_r} \varphi(g),$$
Let \(B_{\mathbb{A}} \) be the ring of adeles over \(\mathbb{Q} \).

There is an action of \(M \) on \(B_{\mathbb{A}} \) defined by:

\[
\forall g \in B_{\mathbb{A}}, \forall \varphi \in S_2, \forall x \in B_{\mathbb{A}}^x, \quad g \cdot \varphi(x) = \varphi(xg);
\]

thus \(S_2^H \) is the space of \(H \)-invariant functions in \(S_2 \).

By modifying the properties 4 and 5 above we obtain the following new definition:

Definition 2.1.2. Let \(\varepsilon : \{\tau_1, \ldots, \tau_r\} \rightarrow \{\pm 1\} \) and \(\varepsilon_i = \varepsilon(\tau_i) \). The space \((S_2^H)^{\varepsilon} \) is the space of maps \(\varphi : B_{\mathbb{A}}^x \approx G(\mathbb{R}) \times B_{\mathbb{A}}^x \rightarrow \mathbb{C} \) satisfying 1-3 above and

4'. for all \(g \in B_{\mathbb{A}}^x \) and \((\theta_1 \ldots \theta_r) \in \mathbb{R}^r \)

\[
\varphi\left(g \left(\begin{array}{cccc}
\cos \theta_1 & -\sin \theta_1 & \ldots & -\sin \theta_r \\
\sin \theta_1 & \cos \theta_1 & \ldots & \cos \theta_r \\
0 & 0 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array} \right) \right) = e^{-2i\varepsilon_1 \theta_1} \ldots \ldots e^{-2i\varepsilon_r \theta_r} \varphi(g)
\]

5'. for all \(g \in B_{\mathbb{A}}^x \) the map

\[
(x_1 + iy_1, \ldots, x_r + iy_r) \mapsto \frac{1}{y_1 \ldots y_r} \varphi\left(g \left(\begin{array}{cccc}
y_1 & x_1 & \ldots & x_r \\
0 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array} \right) \right)
\]

is holomorphic (resp. anti-holomorphic) in \(z_j = x_j + iy_j \in \mathcal{H} \) if \(\varepsilon_j = 1 \) (resp. \(\varepsilon_j = -1 \)).

We will denote by \(S_2^{\varepsilon} \) (resp. \((S_2^H)^{\varepsilon} \)) the space of elements in \(S_2 \) (resp. \(S_2^H \)) which are \(\hat{F}^{\varepsilon} \)-invariant.

We are now able to affirm the existence of relations between \(r \)-forms on \(Sh_{H}(G, X)(\mathbb{C}) \) and automorphic forms:

Proposition 2.1.3. There exist bijections compatible with the \(\hat{B}^x \)-action between the following spaces:

\[
\begin{align*}
\Gamma(\Omega_0^{2H}) & \quad and \quad S_2^{\varepsilon} \\
\Gamma((\Omega_0^{2H})^{\varepsilon}) & \quad and \quad (S_2^{H})^{\varepsilon} \\
\Gamma(Sh_{H}(G/Z, X)(\mathbb{C})), (\Omega_0^{2H})^{\varepsilon} & \quad and \quad (S_2^{H})^{\varepsilon} \hat{F}^{\varepsilon}
\end{align*}
\]

This statement is completely analogous to section 3.6 of [CV07], see [Gär11], Propositions 1.2.2.4 and 1.2.2.5 for more details.

Matsushima-Shimura theorem. The decomposition of the cohomology of quaternionic Shimura varieties given by Matsushima-Shimura theorem will be useful in the following sections. Let us recall this result when \(B \neq M_2(F) \) [MS63] and [Pre90]. Denote by \(h_F^+ \) the narrow class number of \(F \).

Theorem 2.1.4. Let \(m \in \{0, \ldots, 2r\} \). We have the following decomposition:

\[
H^m(Sh_{H}(G, X)(\mathbb{C})), \mathbb{C}) \simeq \left\{ \begin{array}{ll}
\text{Vect } \bigwedge_{i \in \{1, \ldots, r-1\}} \frac{dz_i \wedge d\bar{z}_i}{y^2_i} \bigg| \frac{a}{m/2} \bigg) & \quad \text{if } m \neq r \\
\text{Vect } \bigwedge_{i \in \{1, \ldots, r-1\}} \frac{dz_i \wedge d\bar{z}_i}{y^2_i} \bigg| \frac{a}{m/2} \bigg) \oplus \bigoplus_{\varepsilon \in \{\pm 1\}^r} (S_2^H)^{\varepsilon} & \quad \text{if } m = r
\end{array} \right.
\]

and

\[
H^m(Sh_{H}(G/Z, X)(\mathbb{C})), \mathbb{C}) \simeq \left\{ \begin{array}{ll}
\text{Vect } \bigwedge_{i \in \{1, \ldots, r-1\}} \frac{dz_i \wedge d\bar{z}_i}{y^2_i} \bigg| \frac{a}{m/2} \bigg) & \quad \text{if } m \neq r \\
\text{Vect } \bigwedge_{i \in \{1, \ldots, r-1\}} \frac{dz_i \wedge d\bar{z}_i}{y^2_i} \bigg| \frac{a}{m/2} \bigg) \oplus \bigoplus_{\varepsilon \in \{\pm 1\}^r} (S_2^H)^{\varepsilon} \hat{F}^{\varepsilon} & \quad \text{if } m = r
\end{array} \right.
\]

where \(s \) (resp. \(s' \)) is the number of connected components of \(Sh_{H}(G, X)(\mathbb{C}) \) (resp. of \(Sh_{H}(G/Z, X)(\mathbb{C}) \)).
3. Periods

3.1. Yoshida’s conjecture. Let E/F be an elliptic curve, assumed modular in the sense that there exists a cuspidal, parallel weight two Hilbert modular form $\tilde{\varphi} \in S_2(\text{GL}_2(F_\lambda))$ satisfying $L(E, s) = L(\tilde{\varphi}, s)$. We shall assume that the automorphic representation generated by $\tilde{\varphi}$ is obtained by the Jacquet-Langlands correspondence from $\varphi \in S_2^J(F_\lambda^\vee)(B_\lambda^\vee)$.

Denote by $\pi = \pi_\infty \otimes \pi_f$ the automorphic representation of $B_\lambda^\vee/F_\lambda^\vee$ generated by φ. We shall assume until section 3.3, only for simplicity, that $\dim \pi_f^j = 1$.

Let $M = h^1(E)$ be the motive over F with coefficients in \mathbb{Q} associated to E. Yoshida [Yos94] conjectures the existence of a rank 2 motive M' over the reflex field F', with coefficients in \mathbb{Q}, satisfying $M' = \bigotimes_{\{\tau_1, \ldots, \tau_r\}} \text{Res}_{F/F'} M$. This motivic conjecture is the following:

Conjecture 3.1.1 (Yoshida, [Yos94]). The motive M' over F' is isomorphic to the motive associated to the part $H^*(\text{Sh}_{HFA}(G, X))^{(E)}$ of the cohomology for which Hecke eigenvalues are the same as E.

While looking at the ℓ-adic realization, this conjecture is in fact the Langlands cohomological conjecture. This case is known, up to semi-simplification, thanks to Brylinski and Labesse in the case $B = M_2(F)$ [BL84], Langlands in the case $B \neq M_2(F)$ for primes of good reduction, [Lan79] and Reimann (+ Zink) [Rei97, RZ91] for a more general cases.

Recall the following decompositions given by Yoshida in [Yos94] section 5.1, when we focus on $\tau' : F' \rightarrow \mathbb{C}$ induced by $\tilde{\tau}' : \overline{\mathbb{Q}} \rightarrow \mathbb{C}$.

Betti cohomology. There exists an isomorphism of \mathbb{Q}-vector spaces

$$\mathcal{J} : M_B' \sim \bigotimes_{j=1}^r M_{B, \tau_j}$$

de Rham cohomology. The map

$$\mathcal{J} : M'_{\text{dR}} \sim \left(\bigotimes_{j=1}^r (M_{\text{dR}} \otimes_{F, \tau_j} \overline{\mathbb{Q}}) \right)^{\text{Gal}(\overline{\mathbb{Q}}/F')},$$

is an isomorphism of F'-vector-spaces. The right hand side is a tensor product of $\overline{\mathbb{Q}}$-vector spaces and the action of $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/F')$ is given by $\bigotimes_{x \in \{\tau_1, \ldots, \tau_r\}} (x_\sigma \otimes_{F, \tau_j} a_\sigma) \mapsto \bigotimes_{x \in \{\tau_1, \ldots, \tau_r\}} (x_\sigma \otimes_{F, \tau_j} a_\sigma)$.

Comparison isomorphisms. Let $I = \bigotimes_{j=1}^r I_{\tau_j}$, where

$$I_{\tau_j} : M_{B, \tau_j} \otimes_{\mathbb{Q}} \mathbb{C} \sim M_{\text{dR}} \otimes_{F, \tau_j} \mathbb{C}$$

are isomorphisms of \mathbb{C}-vector spaces, and I' be the following isomorphism over \mathbb{C}:

$$I' : M'_B \otimes_{\mathbb{Q}} \mathbb{C} \sim M'_{\text{dR}} \otimes_{F'} \mathbb{C}.$$

The maps $I \circ (\mathcal{J} \otimes_{\mathbb{Q}} \text{id}_C)$ and $(\mathcal{J} \otimes_{F'} \text{id}_C) \circ I'$ satisfy:

$$(*) \quad I \circ (\mathcal{J} \otimes_{\mathbb{Q}} \text{id}_C) = (\mathcal{J} \otimes_{F'} \text{id}_C) \circ I' : M'_B \otimes_{\mathbb{Q}} \mathbb{C} \sim \bigotimes_{j=1}^r (M_{\text{dR}} \otimes_{F, \tau_j} \mathbb{C}).$$

Yoshida’s period conjecture consists of the isomorphisms \mathcal{J}, \mathcal{J}, I and I' satisfying $(*)$. It is the Hodge-de Rham realization of the motivic conjecture above.

Complex conjugation : Let c_{τ_j} be the complex conjugation on M_{B, τ_j}. We will need the following hypothesis, which allows us to compare c_{τ_j} with $t_{\tau_j}^*$ on $M'_{B, \tau_j} \otimes_{F'} \mathbb{C}$.

Hypothesis 3.1.2. The action of $t_{\tau_j}^*$ on $M'_{\text{dR}} \otimes_{F'} \mathbb{C}$ corresponds via the isomorphism

$$(\mathcal{J} \otimes_{\mathbb{Q}} \text{id}_C) \circ (I')^{-1} : M'_{\text{dR}} \otimes_{F'} \mathbb{C} \sim M'_B \otimes_{\mathbb{Q}} \mathbb{C} \sim \left(\bigotimes_{k=1}^r (M_{B, \tau_k} \otimes_{\mathbb{Q}} \mathbb{C}) \right) \otimes_{\mathbb{Q}} \mathbb{C},$$

to the action of c_{τ_j} on M_{B, τ_j}.
3.2. Lattices and periods. Fix some $\omega_\varphi \neq 0$ in $F^r M_{dR}'$. By definition of M', there exists a finite set of places S of F such that for $v \notin S$, $T_v \omega_\varphi = a_v(E) \omega_\varphi$.

Let $\Omega_{E/F}$ be the sheaf of differentials on E/F. Fix $\eta \neq 0 \in H^0(E, \Omega_{E/F}) = F^1 M_{dR}$. For $j \in \{1, \ldots, n\}$, let

$$\eta_j = \eta \otimes_{F, r_j} 1 \in H^0 \left(E \otimes_{F, r_j} \mathbb{Q} \Omega_{(E \otimes_{F, r_j} \mathbb{Q})/\mathbb{Q}} \right) \cong (F^1 M_{dR}) \otimes_{F, r_j} \mathbb{Q}.$$

Then

$$\bigotimes_{j=1}^r \eta_j \in \bigotimes_{j=1}^r (F^1 M_{dR} \otimes_{F, r_j} \mathbb{Q}) = \mathcal{J} (F^r M_{dR}'),$$

and there exists $\alpha \in F^r \times$ such that

$$\mathcal{J} (\alpha \omega_\varphi) = \eta_1 \otimes \cdots \otimes \eta_r.$$

Let $j \in \{1, \ldots, r\}$ and $E_j = E \otimes_{F, r_j} \mathbb{C}$. We shall denote by $H_1(E_j, \mathbb{Z})^\pm$ the eigenspaces of the complex conjugation action on $H_1(E_j, \mathbb{Z})$. Then

$$\left\{ \int_{\mathcal{T}} \eta_j, \: \mathcal{T} \in H_1(E_j, \mathbb{Z})^\pm \right\} = \mathbb{Z} \Omega_j^\pm,$$

where $\Omega_j^+ \in \mathbb{R} \setminus \{0\}$ and $\Omega_j^- \in i \mathbb{R} \setminus \{0\}$ are determined up to a sign. We fix the signs by imposing, e.g., $\text{Re} (\Omega_j^+) > 0$ and $\text{Im} (\Omega_j^+) > 0$.

Fix a character $\beta : \{1\} \times \prod_{j=2}^r \{\pm 1\} \to \{\pm 1\}$, and write $\beta = \prod_{j=2}^r \beta_j$. We set

$$\omega_\varphi^\beta = \left(\sum_{\sigma \in \{1\}} \prod_{j=2}^r \beta_j(\sigma) t_j^* \right) \omega_\varphi = \prod_{j=2}^r (1 + \beta_j(-1) t_j^*) \omega_\varphi$$

and

$$\Omega^\beta = \prod_{j=2}^r \Omega_j^\beta(-1).$$

The following identities

$$\left(\bigotimes_{j=1}^r M_{B, r_j} \right) \otimes_{\mathbb{Q}} \mathbb{C} = \bigotimes_{j=1}^r \text{Hom}_{\mathbb{Z}}(H_1(E_j, \mathbb{Z}), \mathbb{C}) = \text{Hom}_{\mathbb{Z}} \left(\bigotimes_{j=1}^r H_1(E_j, \mathbb{Z}), \mathbb{C} \right)$$

and Yoshida’s conjecture show that the image of $\alpha \omega_\varphi^\beta$ under the map

$$(\mathcal{J} \otimes_{\mathbb{Q}} \text{id}_{\mathbb{C}}) \circ I^{-1} = I^{-1} \circ (\mathcal{J} \otimes_{F^r} \text{id}_{\mathbb{C}}) : M_{dR}' \otimes_{F^r} \mathbb{C} \to \left(\bigotimes_{j=1}^r M_{B, r_j} \right) \otimes_{\mathbb{Q}} \mathbb{C}$$

is identified with the linear form

$$(1) \quad \left\{ \bigotimes_{j=1}^r H_1(E_j, \mathbb{Z}), \mathbb{C} \right\} \to \bigotimes_{j=1}^r H_1(E_j, \mathbb{Z}), \mathbb{C} \quad \text{by} \quad \int_{\mathcal{T}_1 \otimes \cdots \otimes \mathcal{T}_r} \bigotimes_{j=1}^r (1 + \beta_j(-1) t_j^*) \eta_j$$

Hypothesis 3.1.2 allows us to be more explicit. Let $\mathcal{T}_1 \otimes \cdots \otimes \mathcal{T}_r \in \bigotimes_{j=1}^r H_1(E_j, \mathbb{Z})$, then

$$\int_{\mathcal{T}_1 \otimes \cdots \otimes \mathcal{T}_r} \bigotimes_{j=1}^r (1 + \beta_j(-1) t_j^*) \eta_j = \left(\int_{\mathcal{T}_1} \eta_1 \right) \prod_{j=2}^r \left(\int_{\mathcal{T}_j} (1 + \beta_j(-1) t_j^*) \eta_j \right)$$

and the linear form (1) takes values in $A_1 \Omega^\beta = (\mathbb{Z} \Omega_1^+ + \mathbb{Z} \Omega_1^-) \Omega^\beta$.

Under the dual isomorphism \mathcal{J}^* of \mathcal{J}, the lattices

$$\bigotimes_{j=1}^r \mathbb{Q} H_1(E_j, \mathbb{Z}) \subset \bigotimes_{j=1}^r \mathbb{Q} M_{B, r_j}^*$$

and $\text{Im} (H_r(\text{Sh}_{H}(G/Z, X)(\mathbb{C}), \mathbb{Z}) \to (M_{B})^*)$
are commensurable. Thus there exists $\xi \in \mathbb{Z} \smallsetminus \{0\}$ such that
\[
\xi \text{ Im } (H_r(\text{Sh}_H(G/Z,X)(C),Z) \longrightarrow (M'_B)^* \subset \mathcal{G}_r^*(\bigotimes_{j=1}^r \Omega^j(E_j,Z)).
\]

This proves the following proposition:

Proposition 3.2.1. Under the hypothesis made in this section (E is modular, the multiplicity one in Yoshida’s motivic conjecture and 3.1.2), there exist $\alpha \in F'^\infty$ and $\xi \in \mathbb{Z} \smallsetminus \{0\}$ such that
\[
\forall \gamma \in H_r(\text{Sh}_H(G,X)(C),Z), \forall \beta : \prod_{j=2}^r \{\pm 1\} \to \{\pm 1\}, \quad \xi \int_\gamma \alpha \omega_\beta^\beta \in \Lambda_1 \Omega^\beta.
\]

3.3. General case. When $m_H(\pi) = \dim \pi^H_1(\phi) > 1$ Yoshida’s conjecture is the following

Conjecture 3.3.1. The motive $H'(\text{Sh}_H(G,X))^{(E)}$ is isomorphic to
\[
\left(\bigotimes_{\{1,\ldots, \tau_r\}} \text{Res}_{\overline{F}/F} M \right)^{m_H(\pi)}.
\]

In general the motive $H'(\text{Sh}_H(G,X))^{(E)}$ has rank $\neq 2^r$. We shall provide Betti and de Rham realizations of a submotive $M' \subset H'(\text{Sh}_H(G,X))^{(E)}$ of rank 2^r and an isomorphism $M' \sim \bigotimes_{\{1,\ldots, \tau_r\}} \text{Res}_{\overline{F}/F} M$.

We need $0 \neq \omega_\phi \in F'^rH'_r(\text{Sh}_H(G/Z,X)/F't)^{(E)}$ satisfying de Rham cohomology. The F'-vector space
\[
M'_B := \left(\bigoplus_{\omega_\phi \in \{\pm 1\}^r} \text{C}^* \phi (\omega_\phi \otimes 1) \right) \cap H'_r(\text{Sh}_H(G/Z,X)/F'^t)^{(E)}
\]
has dimension 2^r.

Thus
\[
F'^rM'_B := M'_B \cap F'^rH'_r(\text{Sh}_H(G/Z,X)/F'^t)^{(E)} = F'^r \omega_\phi.
\]

Betti cohomology. Let
\[
I' : H'_{B}(\text{Sh}_H(G/Z,X)(C),Q)(E) \otimes_{\mathbb{Q}} \mathbb{C} \sim \bigotimes_{\{1,\ldots, \tau_r\}} H'_r(\text{Sh}_H(G/Z,X)/F'^t)^{(E)} \otimes_{\mathbb{F}'} \mathbb{C}.
\]

The \mathbb{Q}-vector space
\[
M'_B := I'^{-1}(M'_B \otimes_{\mathbb{F}'} \mathbb{C}) \cap H'_r(\text{Sh}_H(G/Z,X)(C),Q)^{(E)}
\]
has dimension 2^r.

Definition 3.3.2. An element $\omega_\phi \in F'^rH'_r(\text{Sh}_H(G/Z,X)/F'^t)^{(E)}$ is said rational if it satisfies the equations above.

Comparison isomorphisms. There exist isomorphisms
\[
\mathcal{G} : M'_B \sim \bigotimes_{j=1}^r \text{M}_{B,\tau_j},
\]
\[
\mathcal{G} : M'_B \sim \left(\bigotimes_{j=1}^r (\text{M}_{B,\tau_j} \otimes_{F',\tau_j} \overline{\mathbb{Q}}) \right)^{\text{Gal}(\overline{\mathbb{Q}}/F')},
\]

and
\[
I_\tau_j : \text{M}_{B,\tau_j} \otimes_{\mathbb{Q}} \mathbb{C} \sim \text{M}_{B,\tau_j} \otimes_{F,\tau_j} \mathbb{C}.
\]

Set $I = \bigotimes_{j=1}^r I_\tau_j$. We have
\[
(*) \quad I \circ (\mathcal{G} \otimes_{\mathbb{Q}} \text{id}_\mathbb{C}) = (\mathcal{G} \otimes_{\mathbb{F}'} \text{id}_{\mathbb{C}}) \circ I' : M'_B \otimes_{\mathbb{Q}} \mathbb{C} \sim \bigotimes_{j=1}^r \text{M}_{B,\tau_j} \otimes_{F,\tau_j} \mathbb{C}.
\]

As in Proposition 3.2.1 we have
Proposition 3.3.3. Let $\omega_\varphi \in F'^{H'_{\text{dR}}}(\text{Sh}_H(G/Z, X)/F')^{(E)}$ be rational. If E is modular and if Yoshida's conjecture is true, then there exist $\alpha \in F'^{X}$ and $\xi \in \mathbb{Z} \smallsetminus \{0\}$ such that

$$\forall \gamma \in H_r(\text{Sh}_H(G, X)(C), Z), \forall \beta : \prod_{j=2}^r \{\pm 1\} \to \{\pm 1\}, \quad \xi \int_\gamma \alpha \omega_\varphi^\alpha \in \Lambda_1 \Omega^\beta.$$

Example. Let $H_1, H_2 \subset \hat{B}^\times$ be compact open subgroups such that there exists $g \in \hat{B}^\times$ satisfying $g^{-1}H_1g \subset H_2$. Let $\omega_\varphi \in F'^{H'_{\text{dR}}}(\text{Sh}_H(G/Z, X)/F')^{(E)}$ be rational. Let us explain a way to obtain $\omega_\varphi \in F'^{H'_{\text{dR}}}(\text{Sh}_H(G/Z, X)/F')^{(E)}$ rational.

Let

$$\text{pr} : \text{Sh}_{g^{-1}H_1g}(G/Z, X) \to \text{Sh}_{H_2}(G/Z, X)$$

be the map given by

$$[x, b]_{g^{-1}H_1g} \mapsto [x, b]_{H_2}$$

and

$$[g] : \text{Sh}_{H_1}(G/Z, X) \to \text{Sh}_{g^{-1}H_1g}(G/Z, X)$$

by

$$[x, b]_{H_1} \mapsto [x, bg]_{g^{-1}H_1g}.$$ Let $\text{pr}_g : \text{Sh}_{H_1}(G/Z, X) \to \text{Sh}_{H_2}(G/Z, X)$ be the composition of pr with $[g]$. Choose $\theta_g \in \mathbb{Q}$. Set

$$\omega_\varphi := \sum_{g \in \hat{B}^\times} \theta_g \text{pr}_g^*(\omega_\varphi),$$

s.t. $g^{-1}H_1g \subset H_2$

$$(M'_1)^{\text{dR}} = \left(\sum_g \theta_g \text{pr}_g^* \right) (M'_2)^{\text{dR}}$$

and

$$(M'_1)^{\text{B}} = \left(\sum_g \theta_g \text{pr}_g^* \right) (M'_2)^{\text{B}}.$$

Proposition 3.3.4. If $\omega_\varphi \neq 0$, then the map

$$\sum_{g \in \hat{B}^\times} \theta_g \text{pr}_g^* \text{ is injective on } \bigoplus_{\sigma \in \{\pm 1\}^r} \text{Cl}_0^\sigma(\omega_\varphi \otimes 1)$$

and $\omega_\varphi \in F'^{H'_{\text{dR}}}(\text{Sh}_H(G/Z, X)/F')^{(E)}$ is rational.

Proof. Assume that $\omega = \sum_{\sigma \in \{\pm 1\}^r} \lambda_\sigma t_\sigma^\omega \omega_\varphi \in \bigoplus_{\sigma \in \{\pm 1\}^r} \text{Cl}_0^\sigma(\omega_\varphi \otimes 1)$ (where $\lambda_\sigma \in \mathbb{C}$) is such that $\sum_g \theta_g \text{pr}_g^*(\omega) = 0$. We have the following equalities:

$$\sum_g \theta_g \text{pr}_g^* \omega = \sum_g \theta_g \text{pr}_g^* \sum_\sigma \lambda_\sigma t_\sigma^\omega \omega_\varphi = \sum_\sigma \lambda_\sigma t_\sigma^\omega \sum_g \theta_g \text{pr}_g^* \omega_\varphi_1.$$

Thus

$$\sum_\sigma \lambda_\sigma t_\sigma^\omega \omega_\varphi_1 = 0 \in \bigoplus_{\sigma \in \{\pm 1\}^r} \text{Cl}_0^\sigma(\omega_\varphi_1),$$

and

$$\forall \sigma \in \{\pm 1\}^r \quad \lambda_\sigma t_\sigma^\omega \omega_\varphi_1 = 0.$$ Hence $\forall \sigma \in \{\pm 1\}^r \quad \lambda_\sigma t_\sigma^\omega \omega_\varphi_1 = 0$. The map $\sum_{g \in \hat{B}^\times} \text{pr}_g^*$ s.t. $g^{-1}H_1g \subset H_2$ $\theta_g \text{pr}_g^*$ commutes with $T_v, v \notin S$ and is an isomorphism $\bigoplus_{\sigma \in \{\pm 1\}^r} \text{Cl}_0^\sigma(\omega_\varphi_1) \to \bigoplus_{\sigma \in \{\pm 1\}^r} \text{Cl}_0^\sigma(\omega_\varphi_1)$. Hence $\omega_\varphi_1 \in \bigoplus_{\sigma \in \{\pm 1\}^r} \text{Cl}_0^\sigma(\omega_\varphi_1 \otimes 1) \cap F'^{H'_{\text{dR}}}(\text{Sh}_H(G/Z, X)/F')^{(E)}$ is rational.

\square
4. Toric orbits

Let K/F be a quadratic extension satisfying the following properties:

1. The places τ_1, \ldots, τ_r of F are split in K.
2. The places $\tau_1, \tau_{r+1}, \ldots, \tau_d$ are ramified in K.

Thanks to the Skolem-Noether theorem, there exists an F-embedding $q: K \hookrightarrow B$, unique up to conjugacy. We will denote by q_j (resp. q) the induced embedding $K \hookrightarrow B_{\tau_j}$ (resp. $K \hookrightarrow B$, $K_\Lambda \hookrightarrow B_\Lambda$). For each place v of F, set $K_v = K \otimes_F F_v$.

4.1. Cycles on X. Let $T = \text{Res}_{K/Q}(G_m)/\text{Res}_{F/Q}(G_m)$. Thanks to Hilbert's Theorem 90 we have

$$T(A) = (K \otimes Q A)^\times / (F \otimes Q A)^\times$$

for every Q-algebra A.

Fix an embedding $q: T \hookrightarrow G/Z(G)$. The group $T(R)$ is identified with $\prod_{j=1}^d K_{\tau_j}^\times / F_{\tau_j}^\times$ which allows us to define $q_j : K_{\tau_j}^\times / F_{\tau_j}^\times \rightarrow G_{\tau_j}$.

Let $\pi_0(T(R))$ be the set of connected components of $T(R)$ and denote by $T(R)^\circ$ the component of the identity. Fix a multi-orientation on $T(R)^\circ = \prod_{j=1}^d (K_{\tau_j}^\times / F_{\tau_j}^\times)^\circ$ (i.e. an orientation of each factor $(K_{\tau_j}^\times / F_{\tau_j}^\times)^\circ$) and remark that

$$\pi_0(T(R)) = T(R)/T(R)^\circ \simeq \prod_{j=2}^r \{\pm 1\}.$$

We will focus on the orbits in X under the action of $q(T(R)^\circ)$ by conjugation.

Proposition 4.1.1. Let \mathcal{T}° be an orbit of $q(T(R)^\circ)$ in X. Then \mathcal{T}° decomposes into a product of orbits in X_j under $q_j(T(R)^\circ)$ and is multi-oriented.

Proof. The first part of this assertion follows from the natural decomposition $X = X_1 \times \cdots X_r$. The orbit \mathcal{T}° decomposes into orbits under $q_j((K_{\tau_j}^\times / F_{\tau_j}^\times)^\circ)$. For $j = 1$, $q_j((K_{\tau_j}^\times / F_{\tau_j}^\times)^\circ) \simeq S^1$ or a point and the orientation does not change. For $j \in \{2, \ldots, r\}$, $q_j((K_{\tau_j}^\times / F_{\tau_j}^\times)^\circ) \simeq R_+^\times$. The action of R_+^\times on itself by multiplication does not change the orientation. Hence the multi-orientation induced on \mathcal{T}° by $T(R)^\circ$ is well-defined.

□

In the following sections we shall fix some $q(T(R)^\circ)$-orbit \mathcal{T}° whose projection on X_1 is a point.

Proposition 4.1.2. \mathcal{T}° is a connected multi-oriented submanifold of real dimension $r - 1$.

Proof. Recall that \mathcal{T}° is decomposed as $\mathcal{T}^\circ = \{z_1\} \times \mathcal{T}_2 \times \cdots \times \mathcal{T}_r$. Fix $x \in X$ such that $\mathcal{T}^\circ = q(T(R)^\circ \cdot x$. Then for $j \in \{2, \ldots, r\}$ we have $\mathcal{T}_j = q_j((K_{\tau_j}^\times / F_{\tau_j}^\times)^\circ) \cdot \text{pr}_j(x)$. The group $q_j((K_{\tau_j}^\times / F_{\tau_j}^\times)^\circ)$ is naturally identified with R_+^\times and \mathcal{T}_j is a connected oriented manifold of real dimension one.

□

As a corollary, we have the following decomposition:

$$\mathcal{T}^\circ = \{z_1\} \times \gamma_2 \times \cdots \times \gamma_r,$$

when z_1 is one of the two fixed points in the action of $q_1(T(R)^\circ)$ on X_1 and γ_j is an oriented connected submanifold of real dimension one in X_j.

When we use the identification of X with $(C \setminus \mathbb{R})^r$, the action of $T(R)$ on X by conjugation is an action of $\text{PGL}_2(R)$ on $(C \setminus \mathbb{R})^r$ by homography. Let $z \in K \setminus F$. For $j \in \{2, \ldots, r\}$ the matrix $q_j(z)$ is hyperbolic with exactly two fixed points in $P^1(R)$, z_j and z_j'. The manifold γ_j is then a circle arc in the Poincaré upper half-plane joining z_j to z_j' (or a line if $z_j' = \infty$). Figure 1 gives some examples of what could the γ_js be in the case of circle arcs.
4. Tori on $Sh_H(G/Z,X)(C)$. Let $b \in \hat{B}^\times$. We will denote by \mathcal{T}_b° the following subset of $Sh_H(G/Z,X)(C)$

$$\mathcal{T}_b^\circ = \{[x,b]_{\hat{H}^\times}, x \in \mathcal{T}^\circ\}.$$

Proposition 4.2.1. \mathcal{T}_b° is an oriented torus of real dimension $r - 1$.

Proof. Let $x, x' \in \mathcal{T}^\circ$ and $b \in \hat{B}^\times$; we know that

$$[x,b]_{\hat{H}^\times} = [x',b]_{\hat{H}^\times} \iff \exists k \in B^\times \text{ and } h \in H_{\hat{F}^\times} (kx', kbh) = (x,b) \iff \exists k \in B^\times \cap bH_{\hat{F}^\times}^x b^{-1}$$

Since the projection of \mathcal{T}° on X_1 is a point, we have $k \in B \cap q_1(K_{\tau}) = q_1(K)$ and $k \in (q(K^\times) \cap bH_{\hat{F}^\times}^x b^{-1}$. Thus the stabilizer W of \mathcal{T}_b° under the action of $q(K^\times)$ is

$$W = q(K^\times) \cap (bH_{\hat{F}^\times}^x b^{-1})$$

which is commensurable with $O_{K^+,+}^\times / O_F^\times$. This quotient has rank $r - 1$ over \mathbb{Z} as a consequence of Dirichlet’s units theorem:

$$O_{K^+,+}^\times / O_F^\times \simeq \text{torsion} \times \mathbb{Z}^{r-1},$$

and the torsion is finite. The action of $T(R)$ on \mathcal{T}° is given by $\prod_{j=2}^r (K_{\tau_j}^\times / F_{\tau_j}^\times)^\circ$ and there is an isomorphism

$$\prod_{j=2}^r (K_{\tau_j}^\times / F_{\tau_j}^\times)^\circ \simeq R^{r-1}.$$

The image \tilde{O} of $O_{K^+,+}^\times / O_F^\times$ in R^{r-1} is isomorphic to \mathbb{Z}^s with $s \leq r - 1$. Denote by \tilde{O}_K^\times the image of O_K^\times in $(K \otimes R)^\times$. As

$$\prod_{j \notin \{2,\ldots,r\}} K_{\tau_j}^\times / F_{\tau_j}^\times$$

are compact, R^{r-1} / \tilde{O} is compact. Thus, the image of $O_{K^+,+}^\times / O_F^\times$ in R^{r-1} is a lattice.

The set \mathcal{T}_b° is a principal homogeneous space under

$$q(K^\times) / W \simeq (R / \mathbb{Z})^{r-1}.$$

It is a real torus in $Sh_H(G/Z,X)(C)$ of dimension $r - 1$, which is oriented by the fixed multiorientation on \mathcal{T}°.

For each $u \in \pi_0(T(R))$ and $b \in \hat{B}^\times$ let

$$\mathcal{T}_b^u = \{[q(u) \cdot x, b]_{\hat{H}^\times}, x \in \mathcal{T}^\circ\}.$$

It is a real oriented torus of dimension $r - 1$.

Figure 1. Case of circle arcs.
Proposition 4.2.2. The set
\[\{ \mathcal{T}_b^u \mid b \in \hat{B}_x,\ u \in \pi_0(T(R)) \} \]
does not depend on the choice of \(q : K \hookrightarrow B \).

Proof. Let \(\hat{q} : K \hookrightarrow B \) be another embedding. Thanks to the Skolem-Noether theorem there exists \(\alpha \in B^\times \) such that
\[\forall k \in K \quad \hat{q}(k) = \alpha q(k) \alpha^{-1}. \]

Let \(x_0 \in X \), and assume that \(\mathcal{T}^\circ = q(T(R)^\circ) \cdot x_0 \). We have \(\mathcal{T}^\circ := \hat{q}(T(R)^\circ) \cdot x_0 = \mathcal{T}^\circ \) and for each \(u \in \pi_0(T(R)) \)
\[\alpha \cdot q(u) \cdot \mathcal{T}^\circ = \hat{q}(u^T(R)^\circ) \cdot \alpha \cdot x_0. \]

Let \(b \in \hat{B}_x \). As \(\alpha \in B^\times \) we have
\[\mathcal{T}_b^u := \left[\hat{q}(u) \mathcal{T}^\circ, b \right]_{\hat{F}x} = \left[\alpha \cdot q(u) \cdot \mathcal{T}^\circ, b \right]_{\hat{F}x} = \left[q(u) \cdot \mathcal{T}^\circ, \alpha^{-1} \cdot b \right]_{\hat{F}x} = \mathcal{T}_b^{u \cdot \alpha^{-1} \cdot b}. \]
The map \(b \mapsto \alpha^{-1} b \) is a bijection. Thus
\[\{ \mathcal{T}_b^u, \ b \in \hat{B}_x, \ u \in \pi_0(T(R)) \} = \{ \mathcal{T}_b^u, \ b \in \hat{B}_x, \ u \in \pi_0(T(R)) \}. \]

Action of \(\text{Gal}(K^{ab}/K) \). Let us denote by \(K^{ab} \) the maximal abelian extension of \(K \) and by \(\text{rec}_K : K^{\times}_A/K^{\times} \to \text{Gal}(K^{ab}/K) \) the reciprocity map normalized by letting uniformizers correspond to geometric Frobenius elements.

The group \(K^{\times}_A \) acts on \(\{ \mathcal{T}_b^u \mid b \in \hat{B}_x, \ u \in \pi_0(T(R)) \} \) by
\[\forall a = (a_\infty, a_f) \in K^{\times}_A = K^{\times}_x \times \hat{K}_x \quad \forall b \in \hat{B}_x \quad \alpha \cdot \mathcal{T}_b^u = \mathcal{T}_{\hat{F} \cdot b}^{u a}. \]

The action of \(k \in K^{\times} \) is trivial; as \(q(k) \in B^\times \), the definition of \(\text{Sh}_G(G/Z, X)(C) \) gives:
\[k \cdot \mathcal{T}_b^u = [q(k) q(u) \mathcal{T}^\circ, \hat{q}(k) b]_{\hat{F}x} = [q(u) \mathcal{T}^\circ, b]_{\hat{F}x} = \mathcal{T}_b^u. \]

The action of \(F_x^\times \) is trivial. For \(a = (a_\infty, a_f) \in F_x^\times \), and \(b \in \hat{B}_x \), \(\hat{q}(a_f) b = b \hat{q}(a_f) \) and \(q(a_\infty) q(u) \mathcal{T}^\circ = q(u) \mathcal{T}^\circ \) hence
\[a \cdot \mathcal{T}_b^u = [q(a_\infty) q(u) \mathcal{T}^\circ, q(a_f) b]_{\hat{F}x} = [q(u) \mathcal{T}^\circ, b]_{\hat{F}x} = \mathcal{T}_b^u. \]

4.3. Special cycles on \(\text{Sh}_G(G/Z, X)(C) \). In this section we construct some \(\gamma \)-chain on \(\text{Sh}_G(G/Z, X)(C) \).

Proposition 4.3.1. The homology class \([\mathcal{T}_b^\circ] \in H_{r-1}(\text{Sh}_G(G/Z, X)(C), \mathbb{Z}) \) of \(\mathcal{T}_b^\circ \) is torsion.

Proof. Let us denote by \(\text{pr} \) the map
\[\text{pr} : X \times \{ b \} \to \text{Sh}_G(G/Z, X)(C). \]
\(\mathcal{T}_b^\circ \) is in the image of \(\text{pr} \) and
\[\text{pr}^{-1}(\mathcal{T}_b^\circ) = \{ (z_1) \times \gamma_2 \times \cdots \times \gamma_r \} \times \{ b \}. \]

Let \(\omega \in H^{r-1}(\text{Sh}_G(G/Z, X)(C), C) \). Thanks to the Matsushima-Shimura theorem, \(\omega = \omega_{\text{univ}} + \omega_{\text{cusp}}. \) As \(r \neq 1 \) we know that \(\omega = \omega_{\text{univ}}. \)

- If \(r = 1 \) is odd, then \(H^{r-1}(\text{Sh}_G(G/Z, X)(C), C) = \{ 0 \} \).
- If \(r = 1 = 2s \) is even, \(\omega \) is the pull-back of \(\bigwedge_{j=2}^r \omega^{\langle 1 \rangle} \), where
\[\omega^{\langle 1 \rangle} = 1 \quad \text{or} \quad \frac{dx_i \wedge dy_i}{y_j^2}. \]

With the notations of the proof of Proposition 4.2.1, \(\mathcal{T}_b^\circ \) is a principal homogeneous space under \(\mathcal{W} \). Fix a fundamental domain \(\mathcal{W}' \) of \(\mathcal{W} \) in \(\gamma_2 \times \cdots \times \gamma_r. \) The incompatibility of degrees gives
\[\int_{\mathcal{T}_b^\circ} \omega = \int_{\mathcal{W}'} \omega^{(2)} \wedge \cdots \wedge \omega^{(r)} = 0. \]
∀ω ∈ \(H^{r-1}(\text{Sh}_H(G/Z, X)(\mathbb{C}), \mathbb{C}) \)
\[\int_{\mathcal{T}_b^\circ} \omega = 0. \]
This proves that \([\mathcal{T}_b^\circ] = 0 \in H_r(\text{Sh}_H(G/Z, X)(\mathbb{C}), \mathbb{C})\) and \([\mathcal{T}_b^\circ] \in H_r(\text{Sh}_H(G/Z, X)(\mathbb{C}), \mathbb{Z})\) is torsion.

\(\square \)

Definition 4.3.2. Let \(n \in \mathbb{Z}_{>0} \) be the exponent of \(H^{r-1}(\text{Sh}_H(G/Z, X)(\mathbb{C}), \mathbb{Z})_{\text{tors}} \). Then
\[n[\mathcal{T}_b^\circ] = \partial \Delta_b^\circ \]
for some piece-wise differentiable \(r \)-chain \(\Delta_b^\circ \).

Proposition 3.2.1 proves that the value of
\[\left(\frac{1}{\Omega} \xi \int_{\Delta_b^\circ} \omega_{\phi}^\beta \right) \in \mathbb{C} \]
modulo \(\Lambda_1 \) does not depend on the particular choice of \(\Delta_b^\circ \). If \(T(\mathbb{R})^\circ \) is fixed, then we have the following proposition.

Proposition 4.3.3. Let \(\mathcal{T}^\circ \) and \(\mathcal{T}'^\circ \) be two special cycles such that \(\text{pr}_1(\mathcal{T}^\circ) = \text{pr}_1(\mathcal{T}'^\circ) = \{z_1\} \). Assume that \(\text{pr}_j(\mathcal{T}^\circ) \) and \(\text{pr}_j(\mathcal{T}'^\circ) \) lie in the same connected component of \(X_j \) for each \(j \in \{2, \ldots, r\} \). Let \(n \) be the exponent of \(H_{r-1}(\text{Sh}_H(G/Z, X)(\mathbb{C}), \mathbb{Z})_{\text{tors}} \) and let \(\Delta_b^\circ \) and \(\Delta_b'^\circ \) satisfy
\[n[\mathcal{T}_b^\circ] = \partial \Delta_b^\circ \quad \text{and} \quad n[\mathcal{T}_b'^\circ] = \partial \Delta_b'^\circ. \]
Then we have
\[\int_{\Delta_b^\circ} \omega_{\phi}^\beta = \int_{\Delta_b'^\circ} \omega_{\phi}^\beta \pmod{\xi^{-1} \alpha^{-1} \Omega^\beta \Lambda_1}. \]

Proof. Our hypothesis allows us to decompose \(\Delta_b^\circ - \Delta_b'^\circ \) into
\[\Delta_b^\circ - \Delta_b'^\circ = \text{pr}(\{z_1\} \times \mathcal{C}) + \mathcal{D}, \]
where \(\mathcal{D} \) is a cycle with \(\partial \mathcal{D} = 0 \) and \(\text{pr} \) is the map
\[
\text{pr}: \begin{cases} X & \to \text{Sh}_H(G/Z, X)(\mathbb{C}) \\ x & \mapsto [x, b]_{H_{\tilde{F}}^r} \end{cases}
\]
Let us show that \(\int_{\Delta_b^\circ - \Delta_b'^\circ} \omega_{\phi}^\beta \in \xi^{-1} \alpha^{-1} \Omega^\beta \Lambda_1 \).
We have
\[
\omega_{\phi}^\beta = \sum_{\varepsilon} \omega_{\varepsilon} \in \bigoplus_{\varepsilon: (\tau_1, \ldots, \tau_r) \to \{\pm 1\}^r} \Gamma(\text{Sh}_H(G/Z, X)(\mathbb{C}), (\Omega_{H_1}^\beta)^r),
\]
Each $\omega_{\varepsilon} \in \Gamma(\text{Sh}_H(G/Z, X)(\mathbb{C}), (\Omega^\text{an}_H)^\varepsilon)$ satisfies

$$\text{pr}^*(\omega_{\varepsilon}) = dz_1 \wedge \omega'_{\varepsilon}$$

We have

$$\int_{\text{pr}(\{z_1\} \times C)} \omega_{\varepsilon} = \int_{\{z_1\} \times C} dz_1 \wedge \omega'_{\varepsilon} = 0,$$

thus

$$\int_{\{z_1\} \times C} \omega'_{\varepsilon} = 0.$$

Thanks to Proposition 3.2.1 we have

$$\int_{D} \omega_{\varepsilon} \in \xi^{-1} \alpha^{-1} \Omega^\beta \Lambda^1$$

and the result follows.

\[\square \]

Corollary 4.3.4. The value modulo Λ_1 of

$$\left(\frac{1}{\Omega^\beta} \xi \int_{\Delta_b^u} \omega_{\varphi}^\beta \right) \in \mathbb{C}$$

depends neither on the choice of \mathcal{F}^o whose projection on X_1 is $\{z_1\}$ nor on Δ_b^u satisfying $n[\mathcal{F}^o_b] = \partial \Delta_b^u$.

Definition 4.3.5. We set $J_{b}^\beta = \frac{1}{\Omega^\beta} \xi \int_{\Delta_b^u} \omega_{\varphi}^\beta \mod \Lambda_1 \in \mathbb{C}/\Lambda_1$, the image of \mathcal{F}^o_b by an exotic Abel-Jacobi map.

Properties of J_{b}^β. For each $u \in \pi_0(T(\mathbb{R}))$ let Δ_b^u be some piece-wise differentiable chain satisfying

$$n \left[q(u) \cdot \mathcal{F}^o, b \right]_{H^*} = \partial \Delta_b^u.$$

Proposition 4.3.6. We have

$$J_{b}^\beta = \frac{1}{\Omega^\beta} \xi \sum_{u \in \pi_0(T(\mathbb{R}))} \beta(u) \int_{\Delta_b^u} \omega_{\varphi} \mod \Lambda_1.$$

Proof. Let us identify $\pi_0(T(\mathbb{R}))$ with $\prod_{j=2}^r \{1, -1\}$ and assume that the image of $T(\mathbb{R})^o$ is $(1, \ldots, 1)$. Then

$$\omega_{\varphi}^\beta = \sum_{u \in \pi_0(T(\mathbb{R}))} \beta(u) t^*_u(\omega_{\varphi}).$$

The chains $t_u \Delta_b^u$ and Δ_b^u are in the same connected component. Thus using 4.3.3, we have

$$\int_{t_u \Delta_b^u} \omega_{\varphi} = \int_{\Delta_b^u} \omega_{\varphi}$$

and the result follows.

\[\square \]

Recall that $z_1 \in X_1$ is fixed by $q(K^\times_1)$.

Proposition 4.3.7. Let \mathcal{F}^o and \mathcal{F}'^o be two $q(T(\mathbb{R})^o)$-orbits such that $\text{pr}_1(\mathcal{F}^o) = \text{pr}_1(\mathcal{F}'^o) = \{z_1\}$. There exists a unique $u \in \pi_0(T(\mathbb{R}))$ such that, for all $j \in \{2, \ldots, r\}$,

$$\text{pr}_j(\mathcal{F}^o)$$

and $\text{pr}_j(q(u) \cdot \mathcal{F}^o)$

are in the same connected component of X_j.

If $J_{b}^\beta \in \mathbb{C}/\Lambda_1$ denotes the value obtained from \mathcal{F}'^o, we have

$$J_{b}^\beta = \beta(u) J_{b}^\beta.$$
Proof. Let \(x, x' \in X \) be such that \(\mathcal{T}^\circ = q(T(\mathbb{R})^\circ) \cdot x \) (resp. \(\mathcal{T}'^\circ = q(T(\mathbb{R})^\circ) \cdot x' \)). There exists \(u \in \pi_0(T(\mathbb{R})) \) such that for all \(j \in \{1, \ldots, r\} \), \(\text{pr}_j(q(u) \cdot x) \) and \(\text{pr}_j(x') \) are in the same connected component of \(X_j \). As \(\mathcal{T}'^\circ = q(u) \cdot \mathcal{T}^\circ \), the chain \(\Delta_b^\circ \) whose boundary up to torsion is \([\mathcal{T}'^\circ, b]_{H_F^s}\), equals \(\Delta_b^u \). Thus

\[
\sum_{u' \in \pi_0(T(\mathbb{R}))} \beta(u') \int_{\Delta_b^u} \omega_\varphi = \sum_{u' \in \pi_0(T(\mathbb{R}))} \beta(u') \int_{\Delta_b^u} \omega_\varphi = \beta(u) \sum_{u'' \in \pi_0(T(\mathbb{R}))} \beta(u'') \int_{\Delta_b^{u''}} \omega_\varphi.
\]

\(\square \)

Let \(q, q' : K \hookrightarrow B \) be two embeddings and \(x \in X, \mathcal{T}^\circ = q(T(\mathbb{R})^\circ) \cdot x \) (resp. \(\mathcal{T}'^\circ = q'(T(\mathbb{R})^\circ) \cdot x' \)). There exists \(a \in B^\times \) such that

\[q' = aqa^{-1} \]

thanks to the Skolem-Noether theorem. For each \(j \in \{1, \ldots, r\} \), \(\text{pr}_j(\mathcal{T}^\circ) \) and \(\text{pr}_j(\mathcal{T}'^\circ) \) are in the same connected component of \(X_j \) if and only if \(\tau_j(\text{nr}(a)) > 0 \).

Using 4.3.7 we obtain

Proposition 4.3.8. If

\[\alpha = (\text{sgn} \circ \tau_j(\text{nr}(a)))_{j \in \{1, \ldots, r\}} \in \{\pm 1\}^{r-1}, \]

then

\[J_b^\beta = \beta(a)J_b^\beta. \]

Let \(N_{B^\times}(K^\times) \) be the normalizer of \(K^\times \) in \(B^\times \). Let \(a \in N_{B^\times}(K^\times) \setminus K^\times \). After multiplying \(a \) by an element in \(K^\times \) we may assume

\[\forall j \in \{2, \ldots, r\} \quad \tau_j(\text{nr}(a)) > 0. \]

We have

\[\text{pr}_1(q(a) \cdot \mathcal{T}^\circ) = t_1(z_1) \]

and

\[\forall j \in \{2, \ldots, r\} \quad \text{pr}_j(q(a) \cdot \mathcal{T}^\circ) = \text{pr}_j(\mathcal{T}^\circ) \]

but the orientations of \(\text{pr}_j(q(a) \cdot \mathcal{T}^\circ) \) and \(\text{pr}_j(\mathcal{T}^\circ) \) are not the same.

Thus

\[[t_1, \mathcal{T}^\circ, b]_{H_F^s} = [q(a) \cdot \mathcal{T}^\circ, b]_{H_F^s} = [\mathcal{T}^\circ, \tilde{q}(a)^{-1}b]_{H_F^s}, \]

but the orientations differ by \((-1)^{r-1}\). Hence

Proposition 4.3.9. The tori \(\mathcal{T}^\circ_b \) and \(t_1 \mathcal{T}^\circ_{\tilde{q}(a)b} \) are the same up to orientation.

5. Generalized Darmon’s points

5.1. The main conjecture. Let \(\Phi_1 : C/\Delta_1 \xrightarrow{\sim} E_1(C) \) be the Weierstrass uniformization; i.e. the inverse of \(\Phi_1 \) is the Abel-Jacobi map for the differential \(\eta_1 \). For each \(a_\infty \in K_\infty^\times \), fix some \(r \)-chain \(q(a_\infty) \cdot \Delta_b^\beta \) satisfying \(n[q(a_\infty) \cdot \mathcal{T}^\circ_b] = q(a_\infty) \cdot \Delta_b^\beta \) and denote by \(\beta(a_\infty) \) the following sign

\[\beta(a_\infty) = \prod_{j=2}^r \beta \left(\text{sgn} \left(\prod_{w|\tau_j} a_\infty, w \right) \right). \]

Conjecture 5.1.1. The point

\[P_b^\beta = \Phi_1 \left(\frac{1}{\Omega_b^\beta} \xi_\alpha \int_{\Delta_b^\beta} \omega_\varphi \right) = \Phi_1(J_b^\beta) \in E_1(C) \]

lies in \(E(K^{ab}) \) and

\[\forall a = (a_\infty, a_f) \in K_\Delta^\times \quad \text{re}_{K}(a) P_b^\beta = \Phi_1 \left(\frac{\xi_\alpha}{\Omega_{q(a_f)}^\beta} \int_{q(a_\infty)} \Delta_b^\beta_{q(a_f)b} \omega_\varphi \right) = \beta(a_\infty) P_b^\beta_{q(a_f)b}. \]
Remark 5.1.2. The choice of \(z_1 \in X_{\lambda_1}^{p_1(K_{11})} \) fixes a morphism \(h_1 : S \to G_{1,1} \), hence a morphism \(C^\times = S(R) \to G_{1,1}(R) = B_{11}^\times = (B \otimes_{F, \tau_1} R)^\times \) satisfying \(h_1(C^\times) = q_1(K_{11}) \). This fixes an embedding \(\tau_{1,K} : K \to C \) such that the following diagram

\[
\begin{array}{c}
C^\times \\
\downarrow \tau_{1,K} \\
(K \otimes_{F, \tau_1} R)^\times
\end{array} \xrightarrow{h_1} \begin{array}{c}
(B \otimes_{F, \tau_1} R)^\times \\
\downarrow q_1
\end{array}
\]

commutes. We may fix \(\tilde{\tau}_1 : K_{ab} \to C \) above \(\tau_{1,K} \), such that

\[
\begin{array}{c}
F \\
\downarrow \tau_1 \\
K \\
\downarrow \tau_{1,K} \\
K_{ab}
\end{array} \xrightarrow{\tilde{\tau}_1} \begin{array}{c}
R \\
\downarrow \tau_1 \\
C \\
\downarrow \tau_{1,K} \\
K_{ab}
\end{array}
\]

commutes. Moreover the isomorphism

\[
\begin{array}{c}
\text{Gal}(K_{ab}/K) \\
\text{Gal}(\tilde{\tau}_1(K_{ab})/\tau_{1,K}(K))
\end{array}
\]

\[
\begin{array}{c}
\sigma \\
\tilde{\tau}_1 \circ \sigma \circ \tilde{\tau}_1^{-1}
\end{array}
\]

does not depend on the choice of \(\tilde{\tau}_1 \). If \(\tilde{\tau}_1' \) is another embedding above \(\tau_{1,K} \), then \(\tilde{\tau}_1' = \tilde{\tau}_1 \circ \sigma' \) with \(\sigma' \in \text{Gal}(K_{ab}/K) \) and

\[
\forall \sigma \in \text{Gal}(K_{ab}/K) \quad \tilde{\tau}_1' \circ \sigma \circ \tilde{\tau}_1^{-1} = \tilde{\tau}_1 \circ \sigma' \circ \tilde{\tau}_1^{-1} = \tilde{\tau}_1 \circ \sigma \circ \tilde{\tau}_1^{-1}
\]

because \(\text{Gal}(K_{ab}/K) \) is commutative. Hence the Galois action of 5.1.1 does not depend on the particular choice of \(\tilde{\tau}_1 \).

Remark 5.1.3. Using conjecture 5.1.1, we obtain

\[
\begin{array}{c}
\forall a_{\infty} \in K_{\infty}^\times \\
\text{rec}_K(a_{\infty})P_b^\beta = \beta(a_{\infty})P_b^\beta.
\end{array}
\]

\[
\begin{array}{c}
\forall a \in F_{\infty}^\times \\
\text{rec}_K(a)P_b^\beta = P_b^\beta.
\end{array}
\]

5.2. Field of definition. Let \(B_{+}^\times = \{ b \in B^\times \mid \forall j \in \{2, \ldots, r\}, \tau_j(\text{nr}(b)) > 0 \} \). It is diagonally embedded in \((B \otimes R)^\times \). Set

\[
K_{b}^+ = (K_b)^{\text{rec}_{K}(q_{\lambda_{1}}(bHF_{\times}B_{+}^\times))} \quad \text{and} \quad K_{b} := (K_b)^{\text{rec}_{K}(q_{\lambda_{1}}(bHF_{\times}B_{+}^\times))} \subset K_{b}^+.
\]

Note that \(K_b \) and \(K_{b}^+ \) depend on the choice of \(q : K \to B \).

Proposition 5.2.1. The point \(P_b^\beta \) is defined over \(K_{b}^+ : P_b^\beta \in E(K_{b}^+) \).

Proof. Let \(a = (1_{\infty}, bhf_{b-1})(a_{\infty}, 1_f) \in q_{\lambda_{1}}(bHF_{\times}b^{-1}B_{+}^\times) \) with \(f \in F_{\times}^\times \) and \(h \in H \). We have

\[
\text{rec}_{K}(a)P_b^\beta = \text{rec}_{K}(q_{\lambda_{1}}((1_{\infty}, bhf_{b-1})))P_b^\beta = P_{bhf_{b-1}}^\beta = P_{bhf_{b}}^\beta = P_b^\beta
\]

\[\square\]

Remark that \(\text{rec}_{K} \) induces a surjection

\[
\mathcal{R} : \pi_0(T(R)) = \frac{(K \otimes_{Q} R)^\times}{(F \otimes_{Q} R)^\times} \simeq \prod_{j=2}^{r} \{ \pm 1 \} \to \text{Gal}(K_{b}^+/K_b).
\]

Thus, we have

Proposition 5.2.2. The points \(P_b^\beta \) lie in \(K_{b}^\beta = (K_{b}^+)^{\mathcal{R}(\text{Ker} \beta)} \).

Remark 5.2.3. As \(\text{Ker} \beta \) has index 2 in \(\prod_{j=2}^{r} \{ \pm 1 \} \), the field \(K_{b}^\beta \) has degree 1 or 2 over \(K_b \).
Assume that the conductor N of E decomposes as $N = N_+N_-$ with $N = p_1\ldots p_t$, p_i distinct prime ideals of O_F and $t \equiv d - r \mod 2$. If $Rm(B) = \{\tau_1, \ldots, \tau_d\} \cup \{p_1, \ldots, p_t\}$ and $H = (R \otimes \widehat{Z})^\times$ where $R \subset B$ is an Eichler order of level N_+, then K_B is a ring class field of conductor f_ℓ and K_B^+ a ring class field of conductor $f_\ell f_\infty$, where $f_\infty = \prod_{j=2}^\infty \tau_j$.

5.3. **Local invariants of** B. Let π be the irreducible automorphic representation of B_A^\times generated by φ and

$$\eta_K = \eta_{K/F} : F_h^\times/F^\times \text{Gal}(K/F) \to \{\pm 1\}$$

the quadratic character of K/F. For each place v of F let $\text{inv}_v(B_v) = \{(\pm 1)\}$ be the invariant of B:

$$\text{inv}_v(B_v) = 1 \text{ if and only if } B_v \simeq M_2(F_v).$$

Fix $b \in \widehat{B}^\times$ and a character

$$\chi : \text{Gal}(K_0^+/K) \to \mathbb{C}^\times,$$

which will be identified with

$$K_A^\times \text{rec} \rightarrow \text{Gal}(K_{ab}/K) \to \text{Gal}(K_0^+/K) \to \mathbb{C}^\times.$$

Let $L(\pi \times \chi, s)$ be the Rankin-Selberg L function, see [Jac72] page 132 and [JL70] section 12. This function admits, since π has trivial central character, a holomorphic extension to \mathbb{C} satisfying

$$L(\pi \times \chi, s) = \varepsilon(\pi \times \chi, s)L(\pi \times \chi, 1 - s).$$

In this section, we prove the following

Proposition 5.3.1. Let $b \in \widehat{B}^\times$ and assume conjecture 5.1.1. If

$$\varepsilon(\pi, v) = \sum_{\sigma \in \text{Gal}(K_{b}^+/K)} \chi(\sigma) \otimes P^b_\sigma \in E(K_{b}^+/K) \otimes \mathbb{Z}[\chi]$$

is not torsion, then $\beta = \chi_\infty$,

$$\forall v \neq \tau_1 \quad \eta_{K,v}(-1)\varepsilon(\pi_v \times \chi_v, \frac{1}{2}) = \text{inv}_v(B_v) \quad \text{and} \quad \varepsilon(\pi \times \chi, \frac{1}{2}) = -1.$$

We shall use the following theorem ([Tun83] and [Sai93]).

Theorem 5.3.2. The equality $\eta_{K,v}(-1)\varepsilon(\pi_v \times \chi_v, \frac{1}{2}) = \text{inv}_v(B_v)$ holds if and only if there exists a non-zero invariant linear form

$$\ell_v : \pi_v \times \chi_v \to \mathbb{C}$$

unique up to a scalar satisfying

$$\forall a \in K_v^\times \forall u \in \pi_v \quad \ell_v(q_v(a)u) = \chi_v(a)^{-1}\ell_v(u)$$

i.e. ℓ_v is $q(K_v^\times)$-invariant.

Proof. (of Proposition 5.3.1) We follow the proof of [AN10], Proposition 2.6.2.

Let S' be a finite set of finite places of F containing the places where B, π or K_B^+/F ramify, and such that the map $r = (r_v : K_v^\times \to \text{Gal}(K_{b}^+/K))_{v \in S'}$ obtained by composition

$$r : \prod_{v \in S'} K_v^\times \to K_A^\times \text{rec} \rightarrow \text{Gal}(K_{ab}/K) \to \text{Gal}(K_B^+/K)$$

is surjective.

For each $v \in S'$ let

$$j_v : \begin{cases} K_v \to B_v \mapsto b_v^{-1}q_v(k)b_v \end{cases}$$

and

$$j = (j_v)_{v \in S'} : \prod_{v \in S'} K_v \hookrightarrow \prod_{v \in S'} B_v.$$

As S' does not contain any archimedean place of F,

$$\forall a \in \prod_{v \in S'} K_v^\times \quad [\mathcal{T}, \check{q}(a)b]_{HF^\times} = [\mathcal{T}, b_{jv}(a)]_{HF^\times}$$

and

$$\forall a \in \prod_{v \in S'} K_v^\times \forall b \in \widehat{B}^\times \quad \text{rec}_K(a)P^b_\sigma = P^b_{\check{q}(a)b} = P^b_{bjv(a)},$$

where \mathcal{T} is the space of test functions (in \mathcal{T}).

Remark. It is convenient to see \mathcal{T} as the space of test functions on \mathcal{T}.

DARMON'S POINTS AND QUATERNIONIC SHIMURA VARIETIES 17
Let \((K_v^\times)^{\circ} \subset K_v^\times\) be the inverse image of \((K_v^\times / \mathcal{O}_{K,v}^\times)^{\text{Gal}(K/F)} \subset K_v^\times / \mathcal{O}_{K,v}^\times\).
We have
\[
K_v^\times / \mathcal{O}_{K,v}^\times F_v^\times \xrightarrow{\sim} \begin{cases}
0 & \text{if } v \text{ is inert in } K/F \\
\mathbb{Z}/2\mathbb{Z} & \text{if } v \text{ ramifies in } K/F \\
\mathbb{Z} & \text{if } v \text{ splits in } K/F,
\end{cases}
\]
the quotient \((K_v^\times)^{\circ} / F_v^\times\) is compact and
\[
D_v := K_v^\times / (K_v^\times)^{\circ} \xrightarrow{\sim} \begin{cases}
\mathbb{Z} & \text{if } v \text{ splits in } K/F \\
0 & \text{otherwise},
\end{cases}
\]
\[
(K_v^\times)^{\circ} / \mathcal{O}_{K,v}^\times F_v^\times \xrightarrow{\sim} \begin{cases}
\mathbb{Z}/2\mathbb{Z} & \text{if } v \text{ ramifies in } K/F \\
0 & \text{otherwise}.
\end{cases}
\]
For each \(v \in S', C_v = \mathcal{O}_{K,v}^\times \cap \text{Ker}(\tau_v)\) is an open subgroup of \(\mathcal{O}_{K,v}^\times\) and \(V_v^\circ = (K_v^\times)^{\circ} / F_v^\times C_v\) is finite.
Let \(V_v\) be the following subset of \(K_v^\times / F_v^\times C_v\):

- if \(v\) does not split in \(K/F\), \(V_v^\circ = K_v^\times / F_v^\times C_v\) and \(V_v := V_v^\circ\).
- If \(v\) splits in \(K/F\), we fix some section of \(K_v^\times \twoheadrightarrow K_v^\times / (K_v^\times)^{\circ} \xrightarrow{\sim} \mathbb{Z}\). Hence \(K_v^\times = (K_v^\times)^{\circ} \times D_v\) and there exists \(n_v \geq 1\) such that \(\text{Ker}(\tau_v|_{D_v}) = n_v D_v\).

Fix a set of representatives \(D'_v \subset D_v\) of \(D_v / n_v D_v\) and set \(V_v = V_v^\circ D'_v \subset K_v^\times / F_v^\times C_v\).

Let \(V = \prod_{v \in S'} V_v \subset \prod_{v \in S'} K_v^\times / F_v^\times C_v\) which is stable under multiplication by the abelian group \(V^\circ = \prod_{v \in S'} V_v^\circ\) and such that \(V \hookrightarrow \prod_{v \in S'} K_v^\times / F_v^\times C_v \twoheadrightarrow \text{Gal}(K^+_v / K)\) is surjective with fibers of cardinality \(\frac{|V|}{|\text{Gal}(K^+_v / K)|}\).

Fix some open-compact subgroup \(H_1 \subset \bigcap_{a \in V} j(a)Hj(a)^{-1}\). Using the maps
\[
\text{Sh}_{H_1}(G/Z, X) \xrightarrow{[j(a)]} \text{Sh}_{j(a)^{-1}H_1j(a)}(G/Z, X) \xrightarrow{\text{pr}} \text{Sh}_H(G/Z, X),
\]
we have
\[
\sum_{a \in V} \chi(a) \int_{\Delta_b^a(a)} \omega^\beta = \sum_{a \in V} \chi(a) \int_{\Delta_b^a} [j(a)]^* \omega^\beta
= \int_{\Delta_b^a} \sum_{a \in V} \chi(a) [j(a)]^* \omega^\beta
= \int_{\Delta_b^a} \omega^\beta',
\]
where
\[
\omega^\beta := \sum_{a \in V} \chi(a) [j(a)]^* \omega^\beta_a.
\]
Whenever \(\frac{|V|}{|\text{Gal}(K^+_v / K)|} \chi(P_b^\beta) = \sum_{a \in V} \chi(a) \otimes P_b^\beta_{j(a)} \in \mathbb{Z}[\chi] \otimes_{\mathbb{Z} E(K_b^+)} \mathbb{Z} / \mathcal{O}_1\) is not torsion, there exists \(\sigma : \mathbb{Z}[\chi] \hookrightarrow C / \Lambda_1\) such that
\[
\frac{\xi \alpha}{\Omega} \int_{\Delta_b^a} \sum_{a \in V} \sigma \chi(a) [j(a)]^* \omega^\beta_a \notin \mathbb{Q}[\chi] \cdot \Lambda_1,
\]
where \(\sigma \chi = \sigma \circ \chi\). The vector
\[
\omega_1 = \sum_{a \in V} \sigma \chi(a) [j(a)]^* \omega_\phi \in \pi^{H_1} \cap \Gamma(\text{Sh}_{H_1}(G/Z, X), \Omega_{H_1})
\]
is non-zero and invariant under \(j(\prod_{v \in S'} (K_v^\times)^{\circ})\). Moreover,
\[
\forall a \in \prod_{v \in S'} (K_v^\times)^{\circ} \quad j(a) \omega_1 = \sigma \chi^{-1}(a) \omega_1.
\]
Let
\[\sigma_{\ell_{S'}} : \bigotimes_{v \in S'} \sigma_{\pi_v} = \bigotimes_{v \in S'} \pi_v \rightarrow \mathbb{C}(\sigma_{\chi^{-1}}) \]
be the \(j(\prod_{v \in S'} (K_v^x)^{\circ}) \)-invariant projection on \(\mathbb{C}(\omega_1) \).

Assume that \(v \in S' \) does not split in \(K \). In this case \((K_v^x)^{\circ} = K_v^x \) and \(\sigma_{\ell_{S'}} \) induces a \(q_v(K_v^x) \)-invariant linear form \(\sigma_{\ell_v} : \pi_v \rightarrow \mathbb{C}(\sigma_{\chi_v^{-1}}) \). We have \(\sigma_{\ell_v}(\omega_1) \neq 0 \), where
\[\omega_{1,v} = \sum_{a_v \in V_v} \sigma_{\chi_v} \circ r_v(a_v) [j_v(a_v)]^* \omega_v. \]

As \(\varepsilon_v(\pi_v \times \sigma_{\chi_v}, \frac{1}{2}) \) is independent of \(\sigma \), \(\mathbb{Z}[\chi] \rightarrow \mathbb{C} \), Theorem 5.3.2 shows that
\[\eta_{K,v}(-1) \varepsilon_v(\pi_v \times \chi_v, \frac{1}{2}) = \text{inv}_v(B_v). \]
When \(v \in S' \) splits in \(K \) or \(v \notin S' \cup S_{\infty} \), the equality
\[\eta_{K,v}(-1) \varepsilon_v(\pi_v \times \chi_v, \frac{1}{2}) = 1 = \text{inv}_v(B_v) \]
follows from calculations which may be found for example in [Nek06] Proposition 12.6.2.4.

Global sign. If \(v = \tau_j \) is an archimedean place, then \(\varepsilon_v(\pi_v \times \chi_v, \frac{1}{2}) = 1 \). Moreover \(\eta_{K,v}(-1) = 1 \) if and only if \(j \in \{2, \ldots, r\} \) and \(\text{inv}_v(B_v) = 1 \) if and only if \(j \in \{1, \ldots, r\} \). Thus
\[\eta_{K,v}(-1) \text{inv}_v(B_v) = \begin{cases} -1 \times 1 & \text{if } j = 1 \\ 1 \times 1 & \text{if } j \in \{2, \ldots, r\} \\ -1 \times -1 & \text{if } j > 1. \end{cases} \]

Hence
\[\varepsilon_v(\pi, \chi_v, \frac{1}{2}) = - \prod_v \eta_{K,v}(-1) \text{inv}_v(B_v) = -1. \]

\[\square \]

5.4. Global invariant linear form and a conjectural Gross-Zagier formula. For any open subgroup \(H' \subset H, b \in \hat{B}^x \) and \(\nu \in \pi_0(T(R)) \) fix \(\Delta^n_{H', b} \in C'(\text{Sh}_{H}(G/Z,X)(\mathbb{C}), Q) \) such that
\[\partial \Delta^n_{H', b} = [\mathcal{F}^n_{H', b}], \text{where } \mathcal{F}^n_{H', b} = \{[g(u)x, b]_{H', \mathcal{F}^x}, x \in \mathcal{F}^x \}. \]
Recall that
\[\forall \nu' \in \pi_0(T(R)) \quad t_{\nu'} \Delta^n_{H', b} = \Delta^n_{b^{\nu'}}. \]

Let \(\pi_{\infty} \) be the archimedean part of \(\pi \). Fix \(\varphi_{\infty} \in \pi_{\infty} \) a lowest weight vector of weight \((2, \ldots, 2, 0, \ldots, 0) \) of \(\pi_{\infty} \) and \(\omega_{\varphi} \) such that \(\omega_{\varphi} = \varphi_{\infty} \otimes \varphi_f \in \pi_{\infty} \otimes \pi_f \subset S_2(B_{\chi}). \)

Let us denote by \(Q \pi_f \) the sub \(Q \mathcal{F}^x \)-module of \(\pi_f \) generated by \(\varphi_f \).

Proposition 5.4.1. The space \(Q \pi_f \) is a \(Q \)-vector space and \(Q \pi_f \otimes Q \mathbb{C} \rightarrow \pi_f \) is surjective.

Proof. The space \(\text{Im}(Q \pi_f \otimes Q \mathbb{C} \rightarrow \pi_f) \) is a zero subvector space of \(\pi_f \) invariant under \(B_{\chi}^x \). As \(\pi_f \) is irreducible, we have \(\text{Im}(Q \pi_f \otimes Q \mathbb{C} \rightarrow \pi_f) = \pi_f \) and \(Q \pi_f \otimes Q \mathbb{C} \rightarrow \pi_f \) is surjective. \(\square \)

Fix \(\eta \neq 0 \in H^0(E, \Omega_{E/F}) \). There exists \(\alpha \in F^x \) such that
\[\mathcal{F}(\alpha \omega_{\varphi}) = \eta. \]

Fix a continuous character of finite order \(\chi : K_{\chi}/K_{\chi} F_{\chi}^x \rightarrow \mathbb{Z}[\chi]^x \). Let \(H' \subset H \) be any open compact subgroup of \(\hat{B}^x \) satisfying \(\chi(q_{\chi}^{-1}(H'F_{\chi})) = 1 \). Assume that there exists \(b_0 \in \hat{B}^x \) such that \(b_0^{-1}H'b_0 \subset H \). Let \(\text{pr}_{b_0} \) be the map \(\text{Sh}_{H}(G/Z,X) \rightarrow \text{Sh}_{H}(G/Z,X) \) defined on complex points by
\[[x, b]_{H', \mathcal{F}^x} \mapsto [x, b b_0]_{H', \mathcal{F}^x}. \]
Proposition 5.4.2. If $b_0^{-1}H'b_0 < H$ for some $b_0 \in \tilde{B}^\times$, then
\[\forall Z' \in C^r(Sh_H(G/Z,X)(C),Z) \quad \int_{Z'} \text{pr}^*_b(\omega_q^{\infty}) \in \mathbb{Q}\alpha^{-1}\Omega^{\infty} \Lambda_1. \]

Proof. Let $Z = \text{pr}^*_b(Z') \in C^r(Sh_H(G/Z,X)(C),Z)$. We have
\[\int_{Z'} \text{pr}^*_b(\omega_q^{\infty}) = \deg(\text{pr}_b : Z' \to Z) \int_Z \omega_q^{\infty}. \]
Thanks to Proposition 3.3.3, we have $\int_Z \omega_q^{\infty} \in \mathbb{Q}\alpha^{-1}\Omega^{\infty} \Lambda_1$ hence $\int_{Z'} \text{pr}^*_b(\omega_q^{\infty}) \in \mathbb{Q}\alpha^{-1}\Omega^{\infty} \Lambda_1$. \(\square\)

Denote by $\text{pr} : Sh_H(G/Z,X) \to Sh_H(G/Z,X)$ the natural projection, and by $(K \otimes R)^\times_+$ the set of elements of $(K \otimes R)^\times$ whose norm to F is positive at each place of F. We have $\pi_0(T(R)) = \langle (K \otimes R)^\times_+ \rangle$.

The following formula
\[\ell_{\chi}(\omega') = \frac{1}{[H : H']\deg(\mathcal{T}_b, pr : \mathcal{T}_b)} \sum_{a \in \mathcal{K}_a^\times} \chi(a) \int_{\mathcal{H}^\times_\infty} \omega' \mod \mathbb{Q}(\chi) \otimes \mathbb{Q}\alpha^{-1}\Omega^{\infty} \Lambda_1, \]
where $\partial \Delta_{H',q(a)}^{q(q_{\infty})_{H',q(a)}}$ is independent of the specific choice of $\Delta_{H',q(a)}^{q(q_{\infty})}$: we can assume that $\omega' = \text{pr}^*_b(\omega_q)$ for some $b_0 \in \tilde{B}^\times$; decompose each $a \in K^\times_\mathcal{A}/q_{\mathcal{A}}^1(H'F^\times_\mathcal{A})(K \otimes R)^\times$ as $a = (a_f, 1) = (1f, a_\infty)$. Remark that
\[K^\times_\mathcal{A}/q_{\mathcal{A}}^1(H'F^\times_\mathcal{A})(K \otimes R)^\times = \tilde{R}^\times /q^{-1}(H'\tilde{F}^\times) \times (K \otimes R)^\times / (K \otimes R)^\times_+, \]
hence $a_f \in \tilde{R}^\times /q^{-1}(H'\tilde{F}^\times)$ and $a_\infty \in (K \otimes R)^\times / (K \otimes R)^\times_+$.

Thanks to Proposition 5.4.2, the following formula
\[\sum_{a_\infty \in K^\times_\infty} \chi(a_\infty) \int_{\mathcal{H}^\times_\infty} \omega' = \sum_{a_\infty \in K^\times_\infty} \chi(a_\infty) \int_{H^\times_\infty} \text{pr}^*_b(\omega_q) \]
\[= \int_{H^\times_\infty} \omega_q^{\infty} \mod \mathbb{Q}\alpha^{-1}\Omega^{\infty} \Lambda_1 \]
does not depend on the specific choice of $\Delta_{H',q(a)}^{q(q_{\infty})_{H',q(a)}}$.

Thus, the expression of $\ell_{\chi}(\omega')$ above defines a linear form
\[\ell_{\chi} : S_{H'}^\times \cap \mathbb{Q}[\tilde{B}^\times] \omega_q \to \mathbb{Q}(\chi) \otimes \mathbb{Q}(\mathcal{C}/\mathbb{Q}\alpha^{-1}\Omega^{\infty} \Lambda_1). \]

To simplify the notations, let
\[\delta_{H',H} = \deg(\mathcal{T}_b, pr : \mathcal{T}_b) \quad \text{and} \quad W_{H'} = K^\times_\mathcal{A}/q_{\mathcal{A}}^1(H'F^\times_\mathcal{A})(K \otimes R)^\times. \]

Thus
\[\ell_{\chi}(\omega') = \frac{1}{[H : H']\delta_{H',H}} \sum_{a \in W_{H'}} \chi(a) \int_{H^\times_\infty} \omega'. \]

Proposition 5.4.3.
(1) Let $H'' \subset H \subset H$ be open compact subgroups such that $\chi(q_{\mathcal{A}}^{-1}(H'F^\times_\mathcal{A})) = 1$ and pr^* the map $\text{pr}^* : S_{H'}^\times(B^\times_\mathcal{A}) \to S_{H''}^\times(B^\times_\mathcal{A})$.

If $\omega' \in S_{H''}^\times(B^\times_\mathcal{A}) \cap \mathbb{Q}[\tilde{B}^\times] \omega_q$, then $\ell_{\chi}(\omega') = \ell_{\chi}(\text{pr}^*(\omega'))$ and ℓ_{χ} defines a linear form on $\mathbb{Q}[\tilde{B}^\times] \omega_q$.

(2) We have
\[\forall a \in \tilde{R}^\times \forall \omega \in \mathbb{Q}[\tilde{B}^\times] \omega_q \quad \ell_{\chi}([\hat{q}(a)]^\infty \omega) = \chi(f(a))^{-1}\ell_{\chi}(\omega). \]

(3) If χ factors through $\text{Gal}(K^\times_b / K)$ and if $P_b^\beta = \Phi_1 \left(\int_{H^\times_\infty} \omega_{\phi}^\beta \right) \otimes 1 \in \mathbb{C}/\mathbb{Q} \Lambda_1$, then
\[\alpha_\mathcal{T}(P^\infty_{b}) = \sum_{\text{Gal}(K^\times_b / K)} \chi(\sigma) \otimes \sigma(P^\infty_{b}) \in \mathbb{Q}(\chi) \otimes \mathbb{Q}(K^\times_b) \subset \mathbb{Q}(\chi) \otimes \mathbb{Q}(\mathbb{C}/\mathbb{Q} \Lambda_1) \]
equals $\Phi_1(\ell_1([b]^{*}\omega_{\varphi}))$, up to a non-zero rational factor.

Proof. **Proof of 1.** Let $a \in \hat{R}^\times$. We have $\text{pr}(\Delta_{H''\hat{\varrho}(a)}) = \Delta_{H''\hat{\varrho}(a)}$ and

$$\int_{\Delta_{H''\hat{\varrho}}} \text{pr}^{*}\omega' = \deg(\mathcal{F}_{H''\hat{\varrho}} \to \mathcal{F}_{H',\hat{\varrho}}) \int_{\Delta_{H''\hat{\varrho}}} \omega' = \delta_{H''H'} \int_{\Delta_{H''\hat{\varrho}}} \omega'. $$

As $\chi(q^{-1}_{A}(H'F_{A}^{\times})) = 1$, we have (thanks to Proposition 5.4.2)

$$\ell_1(\text{pr}^{*}\omega') = \frac{1}{[H' : H''][\delta_{H''H'}]} \sum_{a \in W_{H''}} \chi(a) \otimes \int_{\Delta_{H''[\hat{\varrho}(a)]}} \text{pr}^{*}\omega' \pmod{Q(\chi) \otimes Q \alpha^{-1}\Omega^{\times} A_1}$$

$$= \frac{\delta_{H''[\hat{\varrho}]} H'}{H'[\delta_{H''H'}]} \sum_{a \in W_{H''}} [H' : H''] \chi(a) \otimes \int_{\Delta_{H''[\hat{\varrho}(a)]}} \omega' \pmod{Q(\chi) \otimes Q \alpha^{-1}\Omega^{\times} A_1}$$

$$= \frac{[H' : H'']}{[H' : H'][\delta_{H''H'}]} \sum_{a \in W_{H''}} \chi(a) \otimes \int_{\Delta_{H''[\hat{\varrho}(a)]}} \omega' \pmod{Q(\chi) \otimes Q \alpha^{-1}\Omega^{\times} A_1}$$

$$= \ell_1(\omega').$$

Proof of 2. Assume H'' is sufficiently small such that $[\hat{q}(a_{f})]^{*}\text{pr}^{*}\omega \in S_{2}^{H''}$. We have

$$\ell_1([\hat{q}(a_{f})]^{*}\omega) = \ell_1([\hat{q}(a_{f})]^{*}\text{pr}^{*}\omega)$$

$$= \frac{1}{[H' : H''][\delta_{H''H'}]} \sum_{a' \in W_{H''}} \chi(a') \otimes \int_{\Delta_{H''[\hat{\varrho}(a')]}^{\prime}} [\hat{q}(a_{f})]^{*}\text{pr}^{*}\omega \pmod{Q(\chi) \otimes Q \alpha^{-1}\Omega^{\times} A_1}$$

$$= \frac{1}{[H' : H''][\delta_{H''H'}]} \sum_{a' \in W_{H''}} \chi(a') \otimes \int_{\Delta_{H''[\hat{\varrho}(a')]}^{\prime}} \text{pr}^{*}\omega \pmod{Q(\chi) \otimes Q \alpha^{-1}\Omega^{\times} A_1}$$

$$= \frac{1}{[H' : H''][\delta_{H''H'}]} \sum_{a'' \in W_{H''}} \chi(a'' a^{-1}) \otimes \int_{\Delta_{H''[\hat{\varrho}(a'')]^{\prime}}} \text{pr}^{*}\omega \pmod{Q(\chi) \otimes Q \alpha^{-1}\Omega^{\times} A_1}$$

$$= \chi_f(a)^{-1} \frac{1}{[H' : H''][\delta_{H''H'}]} \sum_{a'' \in W_{H''}} \chi(a'') \otimes \int_{\Delta_{H''[\hat{\varrho}(a'')]^{\prime}}} \text{pr}^{*}\omega \pmod{Q(\chi) \otimes Q \alpha^{-1}\Omega^{\times} A_1}$$

$$= \ell_1(\omega')$$

Proof of 3. As $\omega_{\varphi} \in S_{2}(B_{A}^{\times}) = \bigcup_{H} S_{2}^{H}(B_{A}^{\times})$, there exists H' sufficiently small such that $\omega_{\varphi} \in S_{2}^{H'}$ and $[b]^{*}\omega_{\varphi} \in S_{2}^{H'}$.

Let $m = [K_{A}^{\times}/q_{A}^{-1}(H'F_{A}^{\times})(K \otimes R)_{A}^{\times} : \text{Gal}(K_{b}^{\times}/K)]$ and $\nu = \frac{1}{[H' : H'][\deg(\mathcal{F}_{H'} \to \mathcal{F}_{a})]}$. We have:
Let us consider the Néron-Tate height $h_{NT} : E(K^{ab}) \times E(K^{ab}) \to \mathbb{R}$ extended to an hermitian form

$$h_{NT} : E(K^{ab}) \otimes \mathbb{C} \times E(K^{ab}) \otimes \mathbb{C} \to \mathbb{C}.$$

Recall the condition

$$\forall \nu \neq \tau_1 \quad \varepsilon(\pi_\nu \times \chi_\nu, \frac{1}{2})\eta_{K, \nu}(-1) = \operatorname{inv}_\nu(B)$$

from Proposition 5.3.2: if 2 fails, then $P^{\infty}_{\nu} \in E(K^{ab})$ is torsion.

In general, there should be some $k(b, \omega_\nu) \in \mathbb{C}$ such that

$$\forall \sigma : Q(\chi) \hookrightarrow \mathbb{C} \quad h_{NT}(\varepsilon(\sigma(P^{\infty}_{\nu}))) = k(b, \omega_\nu)L'(\pi \times \sigma_{\chi, \frac{1}{2}}),$$

as in Gross-Zagier, Zhang and Yuan-Zhang-Zhang [GZ86, Zha01, YZZ09].

This formula explains the following conjecture:

Conjecture 5.4.4. Let $K_X = (K^{ab})^{\operatorname{Ker}(\chi)}$ be the extension of K trivializing χ. If

$$\forall \nu \neq \tau_1 \quad \varepsilon(\pi_\nu \times \chi_\nu, \frac{1}{2})\eta_{K, \nu}(-1) = \operatorname{inv}_\nu(B),$$

then there exists $b \in \tilde{B}^\times$ such that $k(b, \omega_\nu) \neq 0$ and we have the following equivalences:

$$\ell_\chi \neq 0 \iff \exists b \in B_\mathcal{A}^+ \text{ such that } K_X \subset K_b^+ \text{ and } \sigma(\alpha_{\chi, \mathcal{A}}^{\infty}P^{\infty}_{\nu}) \in \mathbb{Z}[\chi] \otimes E(K_b^+) \text{ is not torsion}$$

$$\iff \exists \sigma : Q(\chi) \hookrightarrow \mathbb{C} \quad L'(\pi \times \sigma_{\chi, \frac{1}{2}}) \neq 0$$

$$\iff \forall \sigma : Q(\chi) \hookrightarrow \mathbb{C} \quad L'(\pi \times \sigma_{\chi, \frac{1}{2}}) \neq 0.$$

6. A relation to Kudla’s program

The theorem of Gross-Kohnen-Zagier asserts that the positions of the traces to \mathbb{Q} of classical Heegner points are given by the Fourier coefficients of some Jacobi form. The geometric proof of Zagier explained for example in [Zag85] has been recently generalized by Yuan, Zhang and Zhang in [YZZ09] using a result of Kudla-Millson [KM90]. In this section we establish a relation between Darmon’s construction and Kudla’s program. This is a first step in an attempt to apply the arguments of Zagier [Zag85] and Yuan-Zhang and Zhang’s [YZZ09] to Darmon’s points.
6.1. Some computations. Let us fix a modular elliptic curve E/F of conductor $N = N_+N_-$. Assume that $\operatorname{Ram}(B) = \{\tau_{r+1}, \ldots, \tau_d\} \cup \{v \mid N_-\}$ and that the quadratic extension K/F satisfies the following hypothesis

$$\forall v \mid N_+ \text{ splits in } K \quad \forall v \mid N_- \text{ is inert in } K.$$

In particular, the relative discriminant $d_{K/F}$ is prime to N. Let R be an Eichler order of B of level N_+. Identify K with its image in B by q and assume $K \cap R = \mathcal{O}_K$, $H = \hat{R}^\times$ (which implies that $\dim H = 1$).

Recall that $h_{\mathfrak{a}}$ defines an embedding $\tau_{1,K} : K \hookrightarrow \mathbb{C}$ and denote by c the non-trivial element of $\operatorname{Gal}(K/F)$. Assume that Conjecture 5.1.1 is true for $\beta = 1$ and let $P = \operatorname{Tr}_{K_1^+} P_1 \in E(K)$.

Proposition 6.1.1. If ε is the global sign of E/F, i.e. $\Lambda(E/F,s) = \varepsilon \Lambda(E/F,2-s)$, where Λ is the completed L-function of E/F, then $c(P) = -\varepsilon P$.

Proof. Assume that $K = F(i)$ and $B = K(j)$, with $i^2 = a \in F^\times$, $j^2 = b \in F^\times$ and $ij = -ji$. Recall that

$$\mathcal{O}_1 = [\mathcal{O}, 1]_{H^F}$$

with $\mathcal{O} = \{z_1 \times \gamma_2 \times \cdots \times \gamma_r\}$. Thus

$$c(\mathcal{O}) = \{[t_1 \gamma_1] \times \gamma_2 \times \cdots \times \gamma_r, 1\}_{H^F} = (-1)^{r-1}[j^{-1}(\mathcal{O}), 1]_{H^F}$$

and

$$c(\mathcal{O}) = (-1)^{r-1}[\mathcal{O}, j]_{H^F}$$

since $j \in B^\times$. This shows that $c(P_j) = (-1)^{r-1}P_j$. We will write P_j using only P_1. We will make the following abuse of language. For each place v of F, j_v shall denote the element $(1, \ldots, 1, j_v, \ldots) \in B^\times_A$ and we will use the following lemma

Lemma 6.1.2. Let $b \in \hat{B}^\times$ and v a place of F. When $v \mid N_+$, set $k_v \in K_v^\times$ corresponding to

$$
\begin{pmatrix}
1 & 0 \\
0 & \pi_v \text{ord}_v (N_+) \\
\end{pmatrix}
$$

where π_v is an unramified K_v-extension of K_v. If $b_v = 1$, then

$$P_{bj_v} = \begin{cases}
-\varepsilon_v p_b & \text{if } v \mid N_-
\
\varepsilon_v \text{rec}_K(k_v^{-1})b_v & \text{if } v \mid N_+
\
p_b & \text{if } v \nmid N
\end{cases}$$

Proof. (of the lemma)

For each v inert in K/F we have

$$\text{inv}_v(B) = 1 \iff B_v \simeq M_2(F_v)$$

$$\iff b \in N_{K_v/F_v}(K_v^\times) = \mathcal{O}_{F_v}^\times F_v^2$$

$$\iff 2 \mid \text{ord}_v(b)$$

As $\overline{\mathcal{O}} = -j$, we have $\text{nr}(j) = -j^2 = -b$ and

$$\text{inv}_v(B) = 1 \iff 2 \mid \text{ord}_v(\text{nr}(j_v)).$$

If $v \nmid N_-$ then $H_v = \mathcal{O}_{B_v}^\times$, where \mathcal{O}_{B_v} is the unique maximal order in B_v hence $H_v \triangleleft B_v^\times$ and $B_v^\times / H_v^\times \simeq \mathbb{Z}$ by choosing some uniformizer. As H_v is normal in B_v^\times, the map

$$[j_v] : \text{Sh}_H(G/Z, X)(\mathbb{C}) \to \text{Sh}_{j_v^{-1}H_j}(G/Z, X)(\mathbb{C})$$

is well-defined on $\text{Sh}_H(G/Z, X)(\mathbb{C})$. Thus $[\mathcal{O}, b_{j_v}]_{H^F} = [j_v][\mathcal{O}, b]_{H^F}$ and

$$\int_{\Delta_{j_v}} \omega_{\varphi} = \int_{\Delta_{\mathcal{O}}} [j_v]^* \omega_{\varphi} = \int_{\Delta_{\mathcal{O}}} \pi_v(j_v) \omega_{\varphi}.$$

Decompose $\pi = \pi(\varphi) = \otimes_v \pi_v$. We have

$$\pi_v : B_v^\times \overset{\text{nr}_v}{\longrightarrow} F_v^\times \overset{\text{ord}_v}{\longrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \sim \{\pm 1\}.$$

Let us denote by α the following unramified character

$$\alpha : F_v^\times \overset{\text{ord}_v}{\longrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \sim \{\pm 1\}$$
satisfying $\pi_v = \alpha \circ \text{nr}$.

As $v \mid N_-$, E has multiplicative reduction in v. The character α is trivial if and only if E has split multiplicative reduction in v, i.e. $\varepsilon_v = -1$.

Hence

$$[j_v]^* \omega_v = \alpha(\text{nr}(j_v)) \omega_v = \left\{ \begin{array}{ll} \omega_v & \text{if } \alpha = 1 \\ (-1)^{\text{ord}_v(\text{nr}(j))} \omega_v & \text{otherwise.} \end{array} \right.$$

As $v \mid N_-$, $v \in \text{Ram}(B)$ is inert in K/F and $\text{inv}_v(B) = -1$, thus $2 \nmid \text{ord}_v(\text{nr}(j))$. Hence

$$[j_v]^* \omega_v = \alpha(\text{nr}(j_v)) \omega_v = \left\{ \begin{array}{ll} \omega_v & \text{if } \alpha = 1 \\ -\varepsilon_v \omega_v & \text{if } \alpha = -1 \\ -\varepsilon_v \omega_v & \text{otherwise.} \end{array} \right.$$

and $P_{b_{j_v}} = -\varepsilon_v P_b$.

If $v \mid N_+$, then we fix some uniformizer ϖ_v, and an isomorphism $B_v \simeq M_2(F_v)$ which identifies K_v with the set of diagonal matrices and R_v with $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(O_{F,v}) \mid \frac{\omega_v}{\text{ord}_v(N_+)} v \right\}$. As $\text{inv}_v(B_v) = 1$, j_v is a local norm. There exists $k \in K_v$ such that $j_v = v K_v/F_v(k_v)$. We may assume that $j_v^v = 1$. Moreover j_v is in the normalizer of K_v^\times in B_v^\times we thus identify j_v to $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Set

$$W_v = \left(\begin{pmatrix} \frac{1}{\text{ord}_v(N_+)} & 1 \\ 0 & 0 \end{pmatrix} \right) \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) \left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right) = k_v j_v.$$

This matrix is in the normalizer of R_v in B_v. As W_v normalize H_v, $[\mathcal{F}^\circ, b_{j_v}]_{H_{\mathcal{F}}^\times} = [\mathcal{F}^\circ, b_{k_v^{-1}} W_v]_{H_{\mathcal{F}}^\times} = [W_v][\mathcal{F}^\circ, b_{k_v^{-1}}]_{H_{\mathcal{F}}^\times}$.

Decompose $\omega_v = \bigotimes_{v \mid N_+} \omega_v \otimes \omega'$, where ω_v satisfies $[W_v]^* \omega_v = \varepsilon_v \omega_v$; then

$$\int_{\Delta_{\mathcal{F}}^v} \omega_v = \varepsilon_v \int_{\Delta_{\mathcal{F}}^v} \omega_v.$$

As $b_v = 1$,

$$P_{b_{j_v'}} = \varepsilon_v \text{rec}_K(k_v^{-1}) P_b.$$

If $v \nmid N$, then by a similar calculation we obtain

$$P_{b_{j_v}} = \text{rec}_K(k_v^{-1}) P_b.$$

End of the proof of Proposition 6.1.1. Lemma 6.1.2 implies that

$$c(P_1) = (-1)^{r-1} \prod_{v \mid N_-} (-\varepsilon_v) \prod_{v \mid N_+} \varepsilon_v \text{rec}_K(k_v^{-1}) P_1$$

and

$$\forall a \in K_A^\times \quad c(\text{rec}_K(a) P_1) = (-1)^{r-1} \prod_{v \mid N_-} (-\varepsilon_v) \prod_{v \mid N_+} \varepsilon_v \text{rec}_K(k_v^{-1}) \text{rec}_K(a) P_1.$$

As $P \in E(K)$, we know that $\text{rec}_K(k^{-1}) P = P$. Thus

$$c(P) = (-1)^{r-1} \prod_{v \mid N_-} (-\varepsilon_v) \prod_{v \mid N_+} \varepsilon_v P = (-1)^{r-1} (-1)^{\#(\{v \mid N_\})} \prod_{\varepsilon_v} \varepsilon_v P.$$

We have to show that $(-1)^{r-1} \prod_{v \mid N_-} (-\varepsilon_v) \prod_{v \mid N_+} \varepsilon_v = -\varepsilon$. For each $v \mid \infty$ we have $\varepsilon_v = -1$.

Since $\prod_{v \mid \infty} = (-1)^d$, the sign in equation (3) is

$$(-1)^d \prod_{v \mid \infty} \varepsilon_v (-1)^{r-1} (-1)^{\#(\{v \mid N_\})}.$$

Recall that $\{v \mid N_-\} = \text{Ram}(B) \cap S_f$. As $|\text{Ram}(B)|$ is even, we have

$$(-1)^{\#(\{v \mid N_\})} = (-1)^{|\text{Ram}(B) \cap S_f|} = (-1)^{d-r}.$$

Hence

$$c(P) = (-1)^d \varepsilon (-1)^{r-1} (-1)^{\#(\{v \mid N_\})} P = -\varepsilon P.$$

$$\Box$$
Remark 6.1.3. The above computations are a particular case of a result of Prasad, [Pra96] Theorem 4, which asserts that if $\text{Hom}_{K^\times} \neq \emptyset$, then the non trivial element in $N_{B^\times} \langle K^\times \rangle \backslash K^\times$ acts on $\text{Hom}_{K^\times} \langle \pi_v, 1 \rangle$ by multiplication by $\text{inv}_v(B) = \text{inv}_v(B) \pi_v, 1/2 \in \{ \pm 1 \}$.

6.2. Orthogonal Shimura manifolds. Until the end of this paper we shall assume $h_F = 1$.

Let us recall some definitions used by Kudla [Kud97] in the particular case $r = 1$. Let $n \in \mathbb{Z}_{\geq 0}$ and let (V, Q) be a quadratic space over F of dimension $n + 2$. We assume that the signature of $V \otimes F, \tau R$ is

$$(n, 2) \times (n + 1, 1)^{\tau R} \times (n + 2, 0)^{\tau R}$$

Denote by D the symmetric space of $G = \text{Res}_F/Q \text{GSpin}(V)$. D is the product of the oriented symmetric spaces of $V_j = V \otimes_{\tau_j, F} R$. Thus $D = D_1 \times \cdots D_d$, where D_j is the set of oriented positive subspaces in V_j of maximal dimension. For each $x \in V$ let x_j be the image of x in V_j. Assume that $Q(x)$ is totally positive. Set $V_x = x^\perp$, $G_x = \text{Res}_F/Q \text{GSpin}(V_x)$ and for each $j \in \{1, \ldots, d\}$

$$D_{x_j} = \{ z \in D_j \mid z \perp x_j \}.$$

We shall focus on the following real cycle on the Shimura manifold $G(Q) \backslash D \times G(\hat{Q})/H$.

Definition 6.2.1. Let H be an open compact subgroup in $G(\hat{Q})$ and $g \in G(\hat{Q})$. The cycle $Z(x; g; H)$ is defined to be the image of the map

$$Z(x; g; H) : \begin{cases}
G_x(Q) \backslash D_x \times G_x(\hat{Q})/H^g_x & \rightarrow & G(Q) \backslash D \times G(\hat{Q})/H \\
G_x(Q)(y, u)H^g_x & \rightarrow & G(Q)(y, ug)H\hat{F}^x,
\end{cases}$$

where H^g_x denotes $G_x(\hat{Q}) \cap gHg^{-1}$.

Example (including Proposition 6.2.2) : Fix $D_0 \in F$ satisfying

$$\begin{cases}
\tau_j(D_0) > 0 & \text{if } j \in \{1, r + 1, \ldots, d\} \\
\tau_j(D_0) < 0 & \text{if } j \in \{2, \ldots, r\}
\end{cases}$$

Set

$$(V, Q) = (B^{\tau = 0}, D_0 \cdot \tau_0).$$

$(V \otimes F, \tau, \tau \circ D_0 \cdot \tau)R$ has signature

$$\begin{cases}
(1, 2) & \text{if } j = 1 \\
(2, 1) & \text{if } j \in \{2, \ldots, r\} \\
(3, 0) & \text{if } j \in \{r + 1, \ldots, d\}.
\end{cases}$$

Let $G = \text{Res}_F/Q \text{GSpin}(V)$. The action of B^\times on V by conjugation induces an isomorphism

$$B^\times \xrightarrow{\sim} \text{GSpin}(V)$$

$$b \mapsto v \mapsto vb^{-1},$$

thus $G \simeq \text{Res}_F/Q(B^\times)$.

Let $x \in V$ such that $Q(x) \gg 0$, and denote by x_1 its image in $V \otimes F, \tau R$. Denote by K the quadratic extension $F + F x$ and $T = \text{Res}_K/Q(G_m)/\text{Res}_F/Q(G_m)$ as above. Let q be the inclusion $K \hookrightarrow V \hookrightarrow B$.

Proposition 6.2.2. The set

$$D_x = D_{x_1} \times \cdots D_{x_r}$$

is a $q(T(\tau R))\circ$-orbit in D whose projection on D_1 is a point.

Proof. As $x \in V$, $\text{Tr}(x) = 0$ and $x^2 = -\tau_0(x) = -\frac{Q(x)}{D_0} \in F^\times$. Let $j \in \{1, \ldots, r\}$. We have $\tau_j(Q(x)) > 0$ hence $\tau_j(x^2)\tau_j(D_0) < 0$. Thus τ_1 ramifies in K and τ_2, \ldots, τ_r are split. Moreover $q_t(K^\times)$ fixes x_1 by definition of K.

□
Let us focus on the general case when \(V \) has dimension \(n \). Fix \(t \in F \) satisfying \(\forall j \in \{1, \ldots, r\} \tau_j(t) > 0 \). \(G(\hat{Q}) \) acts on \(\Omega = \{ x \in V(F) \mid Q(x) = t \} \) by conjugation.

Let \(\varphi \) be a Schwartz function on \(V(\hat{F}) \). Assume \(\Omega \neq \emptyset \) and fix \(x \in \Omega \). Denote by \(Z(y, \varphi; H) \) the following sum
\[
Z(t, \varphi; H) = \sum_{g \in G_\chi(\hat{Q}) \backslash G(\hat{Q})/H} \varphi(g^{-1} \cdot x)Z(x, g; H).
\]

Proposition 4.3.1 showed that for \(n = 1 \) \([Z(x, g; H)] = 0 \in H_{r-1}(SH_G(G/Z, X)(\mathbb{C}), \mathbb{C}) \). A natural invariant to consider is the refined class
\[
\{Z(t, \varphi; H)\} = \omega \mapsto J^g_\omega \in \text{Im}(H_r(SH_G(G/Z, X)(\mathbb{C}), \mathbb{Z}) \to \text{Harm}(SH_G(G/Z, X)(\mathbb{C}))^*)
\]
where \(\text{Harm}(SH_G(G/Z, X)(\mathbb{C})) \) is the set of harmonic differential forms on \(SH_G(G/Z, X)(\mathbb{C}) \).

In order to adapt the work of Yuan, Zhang and Zhang, we need the following conjecture

Conjecture 6.2.3. In the situation of the above example \((V, Q) = (B^{Tr=0}, D_0 \cdot nr)\), the sum
\[
\sum_{t \in \Omega_F \atop t \geq 0} \{Z(t, \varphi; H)\} q^t
\]
is a Hilbert modular form of weight \(3/2 \).

In [YZZ09], the authors work by induction. To apply their method we would need to prove that the refined classes \(\{Z(t, \varphi; H)\} \) are compatible with the tower of varieties attached to quadratic spaces \(V_v \hookrightarrow V \) of signature \((n-2) \times (n+1, 1)^{r-1} \times (n+2, 0)^{d-r}\) (in which case a generalization of [KM90] should imply that \(\sum_{t \in \Omega_F \atop t \geq 0} \{Z(t, \varphi; H)\} q^t \) is a Hilbert modular form of weight \(2 \frac{d}{2} + 1 \) with coefficients in \(H^{r+1}(SH_G(G/Z, X)(\mathbb{C}), \mathbb{C}) \).

6.3. A Gross-Kohnen-Zagier-type conjecture.

The Bruhat-Tits tree. In this section we recall some basic facts about the Bruhat-Tits tree (see [Cl] and [Vig80]).

Let \(v \) be a finite place of \(F \). The vertices of the Bruhat-Tits tree of \(\text{PGL}_2(F_v) \) are the maximal orders of \(\mathbb{M}_2(F_v) \). Such maximal orders are endomorphism rings of lattices in \(F_v^2 \) ([Vig80], lemma 2.1). There is an oriented edge between two vertices \(\mathcal{O}_1 \) and \(\mathcal{O}_2 \) if and only if there exist \(L_1, L_2 \) lattices in \(F_v^2 \) such that \(\mathcal{O}_1 = \text{End}(L_1), L_2 \subset L_1 \) and \(L_1/L_2 \isom \mathcal{O}_{F_v} / \varpi_v \mathcal{O}_{F_v} \). The intersection of the source and the target of paths of length \(n \) correspond to level \(n\) Eichler orders.

Fix some quadratic extension \(K/F \). This data allow us to organize the Bruhat-Tits tree. Let \(\Psi : K_v \hookrightarrow \mathbb{M}_2(F_v) \) be a \(F_v \)-embedding of \(K_v \). Let \(M_0(N) \) be the set of matrices in \(\mathbb{M}_2(F_v) \) which are upper triangular modulo \(N \). If
\[
\Psi(\mathcal{O}_{K_v}) = \Psi(K_v) \cap M_0(N),
\]
we say that \(\Psi \) has level \(N \). We can organize the vertices of the tree in “levels”, by privileging a direction. Each level corresponds to a level of embedding relatively to \(\mathcal{O}_{K_v} \), i.e. to orders which are in the same orbit under \(K_v^\times \). The maximal orders in \(\text{PGL}_2(F_v) \) which are maximally embedded are on the bottom of the tree.

Figures 2, 3 and 4 illustrate the dependence on the ramification type of \(v \) in \(K \).

Darmon’s points, Kudla’s program and a Gross-Kohnen-Zagier-type theorem. Recall that \(H = (R \otimes_{\mathbb{Z}} \mathbb{Z})^\times \), where \(R \) is an Eichler order of \(B \) of level \(N_v \) and that \(K = F + Fx \) satisfies the following Heegner hypothesis.

Hypothesis 6.3.1. Each prime \(p \mid N_v \) splits in \(K \) and each prime \(p \mid N_\times \) is inert in \(K \).

The group \(G_\chi \) is isomorphic to \(K^\times \) and \(Z(x, 1; H) \) is the image of \(K^\times \backslash D_x \times \hat{K}^\times / H \) in \(SH_G(G, X)(\mathbb{C}) \). Note that
\[
Z(x, 1; H) = \mathcal{J}_1^1 + t_1(\mathcal{J}_1^1),
\]
where \(\mathcal{J}_1^1 = \{ \cup_{u \in \pi_0(\mathcal{J}(R))} \eta(u) \cdot \mathcal{J}_1, 1 \} \text{ if } H \neq \emptyset \).

Let \(\varphi = \chi_{R^{Tr=0}} \). We are able to prove an analogue of Proposition A.I.1 of [Kud04] when \(N = 1 \), \(B = \mathbb{M}_2(F), R = \mathbb{M}_2(\mathcal{O}_F), t = Q(x) = D_{\text{nr}}(x) \in F \) and \(K = F + Fx \) is such that \(K \cap R = \mathcal{O}_K \) and \(\mathcal{O}_K = \mathcal{O}_F + \mathcal{O}_Fx \). Set \(c_1(\mathcal{J}_1^1) = \{ [t_1(x), b]_{H \neq \emptyset}, b \in \hat{B}^\times \} \).

26

JÉRÔME GÄRTNER
Proposition 6.3.2. If $N = 1$, $r = d$, $B = M_2(F)$, $H = \hat{R}^\times$ with $R = M_2(\mathcal{O}_F)$ and if $\mathcal{O}_K = \mathcal{O}_F + \mathcal{O}_F x$, then $Z(t, \varphi; H)$ is equal to

$$Z(x, 1; H) = \mathcal{J}_1^1 + c_1(\mathcal{J}_1^1) = \mathcal{J}_1^1 - \varepsilon \mathcal{J}_1^1.$$

Remark 6.3.3. Under the strong hypotheses above, $\varepsilon = (-1)^d$ and the cycle obtained is zero when d is even.

Proof. By definition

$$Z(t, \varphi; H) = \sum_{g \in \hat{K}^\times \setminus \hat{B}^\times / \hat{R}^\times} 1_{\hat{R}^{\text{tr}=0}}(g^{-1} \cdot x) Z(x, g; H).$$

We have to determine $g \in \hat{K}^\times \setminus \hat{B}^\times / \hat{R}^\times$ satisfying $g^{-1} x g \in \hat{R}^{\text{tr}=0}$, i.e. $x \in g \hat{R}^{\text{tr}=0} g^{-1}$. As $F^\times \subset K^\times$,

$$\hat{K}^\times \setminus \hat{B}^\times / \hat{R}^\times = \prod_v \hat{K}_v^\times \setminus \hat{B}_v^\times / \hat{R}_v^\times = \prod_v \hat{K}_v^\times \setminus B_v^\times / F_v^\times R_v^\times.$$
This allows us to work locally with $K_v^x \backslash B_v^x / F_v^x R_v^x$, which is identified to the K_v^x-orbits of maximal orders of $\text{PGL}_2(F_v)$. This gives the following condition, $x_v \in g_v R_v g_v^{-1}$.

First let us consider those $g_v \in B_v^x / R_v^x F_v^x$ satisfying $x_v \in g_v R_v g_v^{-1}$. The ring $g_v R_v g_v^{-1}$ is a maximal order containing x_v. Using the fact that $\mathcal{O}_K = \mathcal{O}_F + \mathcal{O}_x$, we have

$$x_v \in g_v R_v g_v^{-1} \iff g_v R_v g_v^{-1} \cap K_v = \mathcal{O}_K.$$

Hence the maximal order $g_v R_v g_v^{-1}$ is maximally embedded in K_v. It is identified to a vertex at the lowest level of the Bruhat-Tits tree. As each vertex at the same level is in the same K_v^x-orbit, we have

$$\forall v \quad g_v = 1 \in K_v^x \backslash B_v^x / F_v^x R_v^x.$$

Thus $Z(t, \varphi; H) = Z(x, 1; H)$ and as D_{x_1} is a set of two points, $Z(x, 1; H)$ is identified with $\mathcal{T}_1 + c_1(\mathcal{T}_1) = \mathcal{T}_1 - \mathcal{T}_1$, thanks to Proposition 6.1.1.

We now consider the case when $N = N_+ N_- \neq 1$ is prime to $d_{K/F}$. The following proposition is true even if $B \neq M_2(F)$ but we still assume that R is an Eichler order of level N_+ and $\mathcal{O}_K = \mathcal{O}_F + \mathcal{O}_x$.

Proposition 6.3.4. Let N be the conductor of E. If N is prime to $d_{K/F}$, then

$$Z(t, \varphi; H) = \prod_{v \mid N}(1 + \text{inv}_v(B) \varepsilon_v) Z(x, 1; H).$$

Proof. The proof is analogous to the proof of Proposition 6.3.2. Let us first compute the number of terms in $Z(t, \varphi; H)$. We need to determine for each v the number of K_v^x-orbits of oriented paths of length $\text{ord}_v(N_+)$ in the Bruhat-Tits tree; this is equal to the number of g_v such that $x_v \in g_v R_v g_v^{-1}$.

- If $v \nmid N$ then the same argument as in Proposition 6.3.2 shows that there is only one orbit.
- If $v \mid N_+$, B_v is ramified and v is inert in K. Hence $K_v^x \backslash B_v^x / R_v^x F_v^x = \{1, \pi_v\}$ where $\pi_v \in B_v^x$ is an element whose reduced norm has order 1 at v; π_v corresponds to the Atkin-Lehner involution.
- If $v \mid N_+$, v splits in K. Denote by v^S the level of the order R_v. Each Eichler order of level v^S is the intersection of the origin and the target of an oriented path of length δ. By hypothesis those orders are maximally embedded in K_v and the path corresponding to $g_v R_v g_v^{-1}$ is contained in the lowest level of the tree. As K_v^x acts by translations on this level, there are exactly two K_v^x-orbits corresponding to g_v depending on the orientation. We have $g_v^+ \in g_v^-$ which are exchanged by the Atkin-Lehner involution corresponding to $\left(\begin{array}{cc} 0 & \pi_v \\ 1 & 0 \end{array} \right)$.

Let n be the number of prime ideals in the decomposition of N. The sum $Z(t, \varphi; H)$ has 2^n factors. Let W be the sets of these factors. By definition $Z(x, g; H) = [g]Z(x, 1; H)$. Using Proposition 6.1.1 we obtain

$$Z(t, \varphi; H) = \sum_{g \in W} [g]Z(x, 1; H) = \prod_{v \mid N}(1 + \text{inv}_v(B) \varepsilon_v) Z(x, 1; H).$$

Let us conclude this paper by another conjecture. Assume that $E(F)$ has rank 1. Denote by P_0 some generator of $E(F)$ modulo torsion. For each $t \in \mathcal{O}_F$ totally positive such that (t) is square free and prime to $d_{K/F}$, denote by $K[t]$ the quadratic extension

$$K[t] = F(\sqrt{\text{det} t}),$$

which satisfies the hypothesis used to build Darmon’s points. Let $P_{t,1}$ be Darmon’s point obtained for $K[t]$ and $b = 1$, and set

$$P_t = \text{Tr}_{K[t]/F} P_{t,1}.$$

The point P_t lies in $E(F)$ and there exists an integer $[P_t] \in \mathbb{Z}$ such that

$$P_t = [P_t] P_0$$

modulo torsion.

Proposition 6.3.4 together with Conjecture 6.2.3 suggest the following (as in Conjecture 5.3 of [DT08]).
Conjecture 6.3.5. There exists some Hilbert modular form g of level $3/2$ such that the $[P_1]$s are proportional to some Fourier coefficients of g.

Remark 6.3.6. Using the analogy with the Gross-Kohnen-Zagier theorem, the integers $[P_1]$ should be (proportional to) square roots of $L(E-D_0,1)$, where $E-D_0$ is the twist of E by $-D_0$.

Let us end this paper with two open questions.

Question 6.3.7. Does Bruinier’s generalization of Borcherds products [Bru] give anything interesting in this situation?

It is natural to expect that results of Cornut and Vatsal [CV07, CV05] hold also for Darmon’s points.

Question 6.3.8. Would it be possible to deduce such a result from suitable equidistribution properties for the real tori \mathcal{F}_p°?

References

Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, 4 place Jussieu 75005 Paris France.

E-mail address: jgartner@math.jussieu.fr