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In this paper, we give a new regularity criterion on the uniqueness results of weak solutions for the 3D Navier-Stokes equations satisfying the energy inequality. We prove that a weak solution of the 3D Navier-Stokes equations is unique in the class of continuous solution.

Introduction

Two of the profound open problems in the theory of three dimensional viscous flow are the unique solvability theorem for all time and the regularity of solutions. For the three-dimensional Navier-Stokes system weak solutions of problem are known to exist by a basic result by J. Leray from 1934 [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], it is not known if the weak solution is unique or what further assumption could make it unique. Therefore the uniqueness of weak solutions remains as an open problem. There are many results that give sufficient conditions for regularity of a weak solution [START_REF] Beirão | A new regularity class for the Navier-Stokes equations in R n[END_REF][START_REF] Cao | Regularity criteria for the three dimensional NavierStokes equations[END_REF][START_REF] Doering | The 3D Navier-Stokes problem[END_REF][START_REF] Kukavica | Navier-Stokes equations with regularity in one direction[END_REF][START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF][START_REF] Serrin | On the interior regulariy of weak solutions of the Navier-Stokes equations[END_REF][START_REF] Wolf | A new criterion for partial regularity of suitable weak solutions to the Navier-Stokes equations[END_REF][START_REF] Zhou | On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component[END_REF].

In this paper, we are interested in the problem of finding sufficient conditions for weak solutions of 3D Navier-Stokes equations such that they become regular and unique. The aim of this paper is to establish uniqueness in the class of continuous weak solutions. We prove that, if two weak solutions of the 3-dimensional Navier-Stokes are equal in such time t 0 , then they are equal for all t ≥ t 0 . For the proof we use the quotient of Dirichlet to prove the uniquenesss, this quantie was used by Constantin [START_REF] Constantin | Dirichlet quotients and 2D periodic Navier-Stokes equations[END_REF] and Kukavica [START_REF] Kukavica | Log-log convexity and backward uniqueness[END_REF] to study the backward uniqueness in 2D Navier-Stokes equations.

Preliminary

We denote by H m per (Ω), the Sobolev space of L-periodic functions endowed with the inner product

(u, v) = |β|≤m (D β u, D β v) L 2 (Ω) and the norm u m = |β|≤m ( D β u 2 L 2 (Ω) ) 1 2 .
We define the spaces V m as completions of smooth, divergence-free, periodic, zeroaverage functions with respect to the H m per norms. V ′ m denotes the dual space of V m and V denotes the space V 0 .

We denote by A the Stokes operator Au = -△u for u ∈ D (A). We recall that the operator A is a closed positive self-adjoint unbounded operator, with D (A) = {u ∈ V 0 , Au ∈ V 0 }. We have in fact, D (A) = V 2 . Now define the trilinear form b(., ., .) associated with the inertia terms

b (u, v, w) = 3 i,j=1 Ω u i ∂v j ∂x i w j dx. (2.1)
The continuity property of the trilinear form enables us to define (using Riesz representation theorem) a bilinear continuous operator

B (u, v); V × V → V ′ will be defined by B (u, v) , w = b (u, v, w) , ∀w ∈ V . (2.2)
Recall that for u satisfying ∇.u = 0 we have

b (u, u, u) = 0 and b (u, v, w) = -b (u, w, v) . (2.3)
Hereafter, c i ∈ N, will denote a dimensionless scale invariant positive constant which might depend on the shape of the domain. We recall some inequalities that we will be using in what follows.

Young's inequality

ab ≤ σ p a p + 1 qσ q p b q , a, b, σ > 0, p > 1, q = p p -1 . (2.4) 
Poincaré's inequality

λ 1 u 2 ≤ u 2 1 for all u ∈ V 1 , (2.5) 
where λ 1 is the smallest eigenvalue of the Stokes operator A.

Navier-Stokes equations

The conventional Navier-Stokes system can be written in the evolution form

∂u ∂t + νAu + B (u, u) = f, t > 0, div u = 0, in Ω × (0, ∞) and u (x, 0) = u 0 , in Ω. (3.1)
We recall that a Leray weak solution of the Navier-Stokes equations is a solution which is bounded and weakly continuous in the space of periodic divergence-free L 2 functions, whose gradient is square-integrable in space and time and which satisfies the energy inequality. The proof of the following theorem is given in [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF][START_REF] Temam | Navier-Stokes Equations[END_REF].

Theorem 3.1. Let Ω ⊂ R n , n = 2, 3 and f ∈ L 2 (0, T ; V ′ 1 )
, u 0 ∈ V 0 be given. Then there exists a weak solution u of (3.1)

wich satisfies u ∈ L 2 (0, T ; V 1 )∩L ∞ (0, T ; V 0 ) , ∀T > 0, forthemore if n = 2, u is unique.
In this paper we will be especially interested in the case where n = 3. 

-v = w ∈ L ∞ (0, T ; V 1 ), then w is a continous function [0, T ] → V 0 .
Proof. We consider two solutions u and v of (3.1), and write the equation for their difference w = uv. Then w satisfies

w t = -Aw -B (v, v) + B (u, u) = -Aw -B (v, w) -B (w, u) . (3.2) Clearly Aw ∈ L 2 (0, T ; V -1 ), since w ∈ L 2 (0, T ; V 1 ). So we consider, for φ ∈ V 1 with φ = 1, |(B (v, w) , φ) -(B (w, u) , φ)| ≤ |(B (v, φ) , w) -(B (w, φ) , u)| ≤ ( u L 3 + v L 3 ) ∇φ L 2 w L 6 ≤ u 1/2 L 2 u 1/2 L 6 + v 1/2 L 2 v 1/2 L 6 w L 6 ≤ u 1/2 L 2 u 1/2 H 1 + v 1/2 L 2 v 1/2 H 1 w H 1 . (3.3) Under the assumption that w ∈ L ∞ (0, T ; V 1 ) it follows that ∂ t w ∈ L 2 (0, T ; V -1 ). Since w ∈ L 2 (0, T ; V 1 ) this means that w ∈ C (0, T ; V 0 ) [11, Lemma III. 1. 2].
The Lemma 3.2 gives enought regularity of w to deduce that (∂ t w, w) = d dt w 2 . Morevore the function w : [0, T ] → R is bounded on compact sets of [0, T ]. Proposition 3.3. If we consider w = uv, the difference of two weak solutions of the 3D Navier-Stokes equations, u and v, then we have w (t 0 ) = 0 implies w (t) = 0 for all t ≥ t 0 .

Proof. We obtain the equation for w = uv as

∂ t w + Aw + B (v, v) -B (u, u) = 0, (3.4) 
with divw = 0. Taking the scalar product of (3.2 ) with w, we have 1 2

d dt w 2 + ν A 1 2 w 2 = b (w, w , u) . (3.5) 
Using the generalised version of Holder's inequality, we have

|b (w, w, u)| ≤ c 1 w 2 L 4 A 1 2 u L 2 . (3.6) 
A straightforward application of Peetr's Theorem [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF][START_REF] Peetre | Espaces d'interpolation et théorème de Sobolev[END_REF]]

H (1-θ)m (Ω) ⊂ L q θ (Ω) , 1 q θ = 1 2 - (1 -θ) m n , (3.7) 
if we consider m = 1 then q θ ≥ 4 for θ ≤ 1 4 , inequality (3.6 ) means that

|b (w, w, u)| ≤ c 2 w 2(1-θ) 1 w 2θ L 2 u 1 . (3.8) 
Hence, applying the Poincaré inequality gives

|b (w, w, u)| ≤ c 3 w (2-θ) 1 w θ L 2 u 1 . (3.9) 
We define the Dirichlet quotient χ for solutions w of the equation (3.5 ) Since u ∈ L 2 (0, T ; V 1 ), the integral expression on the right-hand side is finite, which implies both continuous dependence on initial conditions and uniqueness, this means that w(x, t) = 0 for all t ≥ t 0 if w (t 0 ) = 0.

χ = w 1 w . ( 3 
Note that the terms in the right-hand side of (3.19 ) are independent of χ. Since the quantite 1 χ is finite and definide for w (t) = 0. The same result holds for the 3D Navier-Stokes equations, provided Lemma 3.2 is replaced by a continuity assumpution. More precisely, we have Theorem 3.4. Let w = uv, the difference of two continuous weak solutions of the 3D Navier-Stokes equations, u and v, then we have w (t 0 ) = 0 implies w (t) = 0 for all t ≥ t 0 .

This result gives a strong relation between the continuity and the uniqueness. Note that the continuity of the weak solutions of the 3-dimensional Navier-Stokes equations is known to be proved only in this weak sense [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF][START_REF] Temam | Navier-Stokes Equations[END_REF].

Lemma 3 . 2 .
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