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ON THE UNIQUENESS IN THE 3D NAVIER-STOKES

EQUATIONS

ABDELHAFID YOUNSI

Abstract. In this paper, we give a new regularity criterion on the uniqueness
results of weak solutions for the 3D Navier-Stokes equations satisfying the
energy inequality. We prove that a weak solution of the 3D Navier-Stokes
equations is unique in the class of continuous solution.

1. Introduction

Two of the profound open problems in the theory of three dimensional viscous
flow are the unique solvability theorem for all time and the regularity of solu-
tions. For the three-dimensional Navier-Stokes system weak solutions of problem
are known to exist by a basic result by J. Leray from 1934 [7], it is not known
if the weak solution is unique or what further assumption could make it unique.
Therefore the uniqueness of weak solutions remains as an open problem. There
are many results that give sufficient conditions for regularity of a weak solution
[1, 2, 3, 4, 8, 10, 12, 13].

In this paper, we are interested in the problem of finding sufficient conditions for
weak solutions of 3D Navier-Stokes equations such that they become regular and
unique. The aim of this paper is to establish uniqueness in the class of continuous
weak solutions. We prove that, if two weak solutions of the 3-dimensional Navier-
Stokes are equal in such time t0, then they are equal for all t ≥ t0. For the proof
we use the quotient of Dirichlet to prove the uniquenesss, this quantie was used by
Constantin [5] and Kukavica [6] to study the backward uniqueness in 2D Navier-
Stokes equations.

2. Preliminary

We denote by Hm
per (Ω), the Sobolev space of L-periodic functions endowed with

the inner product

(u, v) =
∑

|β|≤m

(Dβu,Dβv)L2(Ω) and the norm ‖u‖m =
∑

|β|≤m

(
∥

∥Dβu
∥

∥

2

L2(Ω)
)

1
2 .

We define the spaces Vm as completions of smooth, divergence-free, periodic, zero-
average functions with respect to the Hm

per norms. V ′
m denotes the dual space of

Vm and V denotes the space V0.
We denote by A the Stokes operator Au = −△u for u ∈ D (A). We recall that

the operator A is a closed positive self-adjoint unbounded operator, with
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D (A) = {u ∈ V0, Au ∈ V0}. We have in fact, D (A) = V2. Now define the trilinear
form b(., ., .) associated with the inertia terms

b (u, v, w) =

3
∑

i,j=1

∫

Ω

ui
∂vj

∂x
i

wjdx. (2.1)

The continuity property of the trilinear form enables us to define (using Riesz
representation theorem) a bilinear continuous operator B (u, v); V × V → V ′ will
be defined by

〈B (u, v) , w〉 = b (u, v, w) , ∀w ∈ V . (2.2)

Recall that for u satisfying ∇.u = 0 we have

b (u, u, u) = 0 and b (u, v, w) = −b (u,w, v) . (2.3)

Hereafter, ci ∈ N, will denote a dimensionless scale invariant positive constant
which might depend on the shape of the domain. We recall some inequalities that
we will be using in what follows.

Young’s inequality

ab ≤
σ

p
ap +

1

qσ
q

p

bq, a, b, σ > 0, p > 1, q =
p

p− 1
. (2.4)

Poincaré’s inequality

λ1 ‖u‖
2 ≤ ‖u‖21 for all u ∈ V1, (2.5)

where λ1 is the smallest eigenvalue of the Stokes operator A.

3. Navier-Stokes equations

The conventional Navier-Stokes system can be written in the evolution form

∂u

∂t
+ νAu+B (u, u) = f, t > 0,

div u = 0, in Ω× (0,∞) and u (x, 0) = u0, in Ω.
(3.1)

We recall that a Leray weak solution of the Navier-Stokes equations is a solution
which is bounded and weakly continuous in the space of periodic divergence-free L2

functions, whose gradient is square-integrable in space and time and which satisfies
the energy inequality. The proof of the following theorem is given in [8, 11].

Theorem 3.1. Let Ω ⊂ R
n, n = 2, 3 and f ∈ L2(0, T ;V ′

1), u0 ∈ V0 be given. Then

there exists a weak solution u of (3.1) wich satisfies u ∈ L2(0, T ;V1)∩L
∞ (0, T ;V0) ,

∀T > 0, forthemore if n = 2, u is unique.

In this paper we will be especially interested in the case where n = 3.

Lemma 3.2. If u and v are two weak solutions of the 3D Navier-Stokes equations

and u− v = w ∈ L∞ (0, T ;V1), then w is a continous function [0, T ] → V0.

Proof. We consider two solutions u and v of (3.1), and write the equation for their
difference w = u− v. Then w satisfies

wt = −Aw −B (v, v) +B (u, u)
= −Aw −B (v, w) −B (w, u) .

(3.2)
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Clearly Aw ∈ L2 (0, T ;V−1), since w ∈ L2 (0, T ;V1). So we consider, for φ ∈ V1

with ‖φ‖ = 1,

|(B (v, w) , φ)− (B (w, u) , φ)| ≤ |(B (v, φ) , w)− (B (w, φ) , u)|
≤ (‖u‖L3 + ‖v‖L3) ‖∇φ‖L2 ‖w‖L6

≤
(

‖u‖
1/2
L2 ‖u‖

1/2
L6 + ‖v‖

1/2
L2 ‖v‖

1/2
L6

)

‖w‖L6

≤
(

‖u‖
1/2
L2 ‖u‖

1/2
H1 + ‖v‖

1/2
L2 ‖v‖

1/2
H1

)

‖w‖H1 .

(3.3)
Under the assumption that w ∈ L∞ (0, T ;V1) it follows that ∂tw ∈ L2 (0, T ;V−1).
Since w ∈ L2 (0, T ;V1) this means that w ∈ C (0, T ;V0) [11, Lemma III. 1. 2]. �

The Lemma 3.2 gives enought regularity of w to deduce that (∂tw,w) =
d
dt ‖w‖

2
.

Morevore the function w : [0, T ] → R is bounded on compact sets of [0, T ].

Proposition 3.3. If we consider w = u−v, the difference of two weak solutions of

the 3D Navier-Stokes equations, u and v, then we have w (t0) = 0 implies w (t) = 0
for all t ≥ t0.

Proof. We obtain the equation for w = u− v as

∂tw +Aw +B (v, v)−B (u, u) = 0, (3.4)

with divw = 0. Taking the scalar product of (3.2 ) with w, we have

1

2

d

dt
‖w‖2 + ν‖A

1
2w‖2 = b (w,w, u) . (3.5)

Using the generalised version of Holder’s inequality, we have

|b (w,w, u)| ≤ c1‖w‖
2
L4

∥

∥

∥
A

1
2 u

∥

∥

∥

L2
. (3.6)

A straightforward application of Peetr’s Theorem [8, 9]

H(1−θ)m (Ω) ⊂ Lqθ (Ω) ,
1

qθ
=

1

2
−

(1− θ)m

n
, (3.7)

if we consider m = 1 then qθ ≥ 4 for θ ≤
1

4
, inequality (3.6 ) means that

|b (w,w, u)| ≤ c2‖w‖
2(1−θ)
1 ‖w‖2θL2‖u‖1. (3.8)

Hence, applying the Poincaré inequality gives

|b (w,w, u)| ≤ c3‖w‖
(2−θ)
1 ‖w‖θL2‖u‖1. (3.9)

We define the Dirichlet quotient χ for solutions w of the equation (3.5 )

χ =
‖w‖1
‖w‖

. (3.10)

If we consider the Poincaré inequality (2.5 ), we obtain from the above lemma that

1

χ
is finite for ‖w (t) ‖ 6= 0, ∀t ∈ [0, T ] (3.11)

and

0 <
1

χ
≤

1

λ
1/2
1

, ∀w ∈ V1. (3.12)
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It follows that

1

χ
|b (w,w, u)| ≤ c3‖w‖

(1−θ)
1 ‖w‖1+θ

L2 ‖u‖1. (3.13)

Moreover, for ‖w (t) ‖ 6= 0, Lemma 3.2 guarantees the existence of a constant µ > 0
such that

µ = min
t∈[0,T ]

(

1

χ

)

. (3.14)

Using (3.13 )-(3.14 ) in (3.5 ) and Young’s inequality on the right-hand side, we
obtain

µ
d

dt
‖w‖

2
+ µν ‖w‖

2
1 ≤

νµ

2
‖w‖21 + c4

(

‖w‖1+θ
L2 ‖u‖1

)

2
1+θ , (3.15)

which gives

µ
d

dt
‖w‖

2
+

νµ

2
‖w‖

2
1 ≤ c4‖w‖

2‖u‖
2

θ+1

1 . (3.16)

Dropping the positive term νµ
2 ‖w‖

2
1, we get

d

dt
‖w‖2 ≤ c5‖u‖

2
θ+1

1 ‖w‖2. (3.17)

Applying Gronwall’s inequality on (3.17 ) and using the fact that

2

θ + 1
≤ 2 (3.18)

yields

‖w (t)‖
2
≤ c6 ‖w (t0)‖

2
∫ t

t0

‖u‖21ds. (3.19)

Since u ∈ L2(0, T ;V1), the integral expression on the right-hand side is finite,
which implies both continuous dependence on initial conditions and uniqueness,
this means that w(x, t) = 0 for all t ≥ t0 if w (t0) = 0. �

Note that the terms in the right-hand side of (3.19 ) are independent of χ. Since

the quantite
1

χ
is finite and definide for ‖w (t) ‖ 6= 0. The same result holds for

the 3D Navier-Stokes equations, provided Lemma 3.2 is replaced by a continuity
assumpution. More precisely, we have

Theorem 3.4. Let w = u − v, the difference of two continuous weak solutions of

the 3D Navier-Stokes equations, u and v, then we have w (t0) = 0 implies w (t) = 0
for all t ≥ t0.

This result gives a strong relation between the continuity and the uniqueness.
Note that the continuity of the weak solutions of the 3-dimensional Navier-Stokes
equations is known to be proved only in this weak sense [8, 11].
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