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ON THE UNIQUENESS IN THE 3D NAVIER-STOKES

EQUATIONS

ABDELHAFID YOUNSI

Abstract. In this paper, we study the Cauchy problem of the 3D incompress-
ible Navier–Stokes equations. We prove an uniqueness result of weak solutions
for the 3D Navier-Stokes equations satisfying the energy inequality.

1. Introduction

Two of the profound open problems in the theory of three dimensional viscous
flow are the unique solvability theorem for all time and the regularity of solu-
tions. For the three-dimensional Navier-Stokes system weak solutions of problem
are known to exist by a basic result by J. Leray from 1934 [4], it is not known if
the weak solution is unique or what further assumption coul make it unique only
the uniqueness of weak solutions remains as an open problem. in this paper we use
the quotient of Dirichlet to prove the uniquenesss, this quantie was used by Con-
stantin [2] and Kukavica [3] to study the backward uniqueness in 2D Navier-Stokes
equations.

In this paper, we prove that, if two weak solutions of the 3-dimensional Navier-
Stokes are equal in such time t0, then they are equal for all t ≥ t0. This particular
result is interesting not only for mathematical understanding of the equations but
also for understanding the phenomenon of turbulence [1].

2. Preliminary

We denote by Hm
per (Ω), the Sobolev space of L-periodic functions endowed with

the inner product

(u, v) =
∑

|β|≤m

(Dβu,Dβv)L2(Ω) and the norm ‖u‖m =
∑

|β|≤m

(
∥

∥Dβu
∥

∥

2

L2(Ω)
)

1
2 .

We define the spaces Vm as completions of smooth, divergence-free, periodic, zero-
average functions with respect to the Hm

per norms. V ′
m denotes the dual space of

Vm and V denotes the space V0.
We denote by A the Stokes operator Au = −△u for u ∈ D (A). We recall that

the operator A is a closed positive self-adjoint unbounded operator, with
D (A) = {u ∈ V0, Au ∈ V0}. We have in fact, D (A) = V2. Now define the trilinear
form b(., ., .) associated with the inertia terms

b (u, v, w) =

3
∑

i,j=1

∫

Ω

ui
∂vj

∂x
i

wjdx. (2.1)
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The continuity property of the trilinear form enables us to define (using Riesz
representation theorem) a bilinear continuous operator B (u, v); V × V → V ′ will
be defined by

〈B (u, v) , w〉 = b (u, v, w) , ∀w ∈ V . (2.2)

Recall that for u satisfying ∇.u = 0 we have

b (u, u, u) = 0 and b (u, v, w) = −b (u,w, v) . (2.3)

Hereafter, ci ∈ N, will denote a dimensionless scale invariant positive constant
which might depend on the shape of the domain. We recall some inequalities that
we will be using in what follows.

Young’s inequality

ab ≤
σ

p
ap +

1

qσ
q

p

bq, a, b, σ > 0, p > 1, q =
p

p− 1
. (2.4)

Poincaré’s inequality

λ1 ‖u‖
2
≤ ‖u‖21 for all u ∈ V0, (2.5)

where λ1 is the smallest eigenvalue of the Stokes operator A.

3. Navier-Stokes equations

The conventional Navier-Stokes system can be written in the evolution form

∂u

∂t
+ νAu+B (u, u) = f, t > 0,

div u = 0, in Ω× (0,∞) and u (x, 0) = u0, in Ω.
(3.1)

We recall that a Leray weak solution of the Navier-Stokes equations is a solution
which is bounded and weakly continuous in the space of periodic divergence-free L2

functions, whose gradient is square-integrable in space and time and which satisfies
the energy inequality. The proof of the following theorem is given in [1, 5, 7]

Theorem 3.1. Let Ω ⊂ R
n, n = 2, 3 and f ∈ L2(0, T ;V ′

1), u0 ∈ V0 be given. Then

there exists a weak solution u of (3.1) wich satisfies u ∈ L2(0, T ;V1)∩L
∞ (0, T ;V0) ,

∀T > 0, forthemore if n = 2, u is unique.

In this paper we will be especially interested in the case where n = 3.

Proposition 3.2. If we consider w = u−v, the difference of two weak solutions of

the 3D Navier-Stokes equations, u and v, then we have w (0) = 0 implies w (t) = 0
for all t ∈ [0, T ].

Proof. We obtain the equation for w = u− v as

∂tw +Aw +B (v, v)−B (u, u) = 0, (3.2)

with divw = 0. Taking the scalar product of (3.2 ) with w, we have

1

2

d

dt
‖w‖

2
+ ν‖A

1
2w‖2 = b (w,w, u) . (3.3)

Using the generalised version of Holder’s inequality, we have

|b (w,w, u)| ≤ c1‖w‖
2
L4

∥

∥

∥
A

1
2 u

∥

∥

∥

L2
. (3.4)
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A straightforward application of Peetr’s Theorem [5, 6]

H(1−θ)m (Ω) ⊂ Lqθ (Ω) ,
1

qθ
=

1

2
−

(1− θ)m

n
(3.5)

if we consider m = 1 then qθ ≥ 4 for θ ≤
1

4
, inequality (3.4 ) means that

|b (w,w, u)| ≤ c2‖w‖
2(1−θ)
1 ‖w‖2θL2‖u‖1. (3.6)

Hence, applying the Poincaré inequality gives

|b (w,w, u)| ≤ c3‖w‖
(2−θ)
1 ‖w‖θL2‖u‖1. (3.7)

We define the Dirichlet quotients χ for solutions w of the equation (3.3 )

χ =
‖w‖1
‖w‖

. (3.8)

If we consider the Poincaré inequality (2.5 ), we obtain from the above considera-
tions that

1

χ
is finite for ‖w (t) ‖1 6= 0, ∀t ≥ 0 (3.9)

and
1

χ
≤

1

λ
1/2
1

. (3.10)

This means to
1

χ
|b (w,w, u)| ≤ c3‖w‖

(1−θ)
1 ‖w‖1+θ

L2 ‖u‖1. (3.11)

Using Young’s inequality on the right-hand side, we obtain

1

χ

d

dt
‖w‖2 +

ν

χ
‖w‖21 ≤

ν

2χ
‖w‖21 + c4

(

ν

2χ

)
4

1−θ2
(

‖w‖1+θ
L2 ‖u‖1

)

2
1+θ . (3.12)

Combining all these inequalities yields

1

χ

d

dt
‖w‖

2
+

ν

2χ
‖w‖

2
1 ≤ c4

(

ν

2χ

)
4

1−θ2

‖w‖2‖u‖
2

θ+1

1 . (3.13)

Dropping the positive term ν
2χ ‖w‖

2
1, we get

1

χ

d

dt
‖w‖

2
≤ c5

(

1

χ

)
4

1−θ2

‖u‖
2

θ+1

1 ‖w‖2. (3.14)

Since
4

1− θ2
≤

4

1− θ
, (3.15)

this means to

d

dt
‖w‖

2
≤ c5

(

1

λ1

)

3+θ
2−2θ

‖u‖
2

θ+1

1 ‖w‖2. (3.16)

Applying Gronwall’s inequality on (3.16 ) and using the fact that

2

θ + 1
≤ 2 (3.17)

yields

‖w (t)‖
2
≤ c6 ‖w (0)‖

2
∫ t

0

‖u‖21ds. (3.18)
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Since u ∈ L2(0, T ;V1), the integral expression on the right-hand side is finite,
which implies both continuous dependence on initial conditions and uniqueness,
this means that w(x, t) = 0 for 0 ≤ t ≤ T if w (0) = 0. �

Note that the terms in the right-hand side of (3.18 ) are independent of χ. As a
continuation of the previous work [8, 9] on the Navier-Stokes system, we introduce
in this paper a new direction for the study of the uniqueness of weak solutions.
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