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GLOBAL WELL POSEDNESS FOR THE NAVIER-STOKES

EQUATIONS

ABDELHAFID YOUNSI

Abstract. We investigate general topology properties to show that the set
of solutions of the Navier-Stokes is homeomorphic to the set of solutions of
regularized Navier-Stokes equations by adding a high-order viscosity term.
This result means that the set of solutions is reduced to one solution for each
dimension d ≤ 4. We also prove a high regularity for solution to the Navier-
Stokes equations.

1. Introduction

Two of the profound open problems in the theory of three dimensional viscous
flow are the unique solvability theorem for all time and the regularity of solutions.

For the 3D Navier–Stokes system weak solutions of problem are known to exist
by a basic result by J. Leray from 1934 [3], only the uniqueness of weak solutions
remains as an open problem.

We consider in this paper a “regularized” Navier-Stokes system was proposed
by J. L. Lions [4], who added the artificial hyper-viscosity ε(−△)l, l > 1, to the
Navier–Stokes equation. Here ε > 0 is the artificial dissipation parameter.

For such a modified problem considered in a bounded domain, J. L. Lions was
able to prove (cf. [4, Chap.1, Remarque 6.11]) the existence of a unique regular
solution provided (l ≥ (d+2)/2 for the d-dimensional problem). We have shown in
our earlier study [9], the strong convergence of the solution of this problem to the
solution of the conventional system as the regularization parameter ε goes to zero
for l ≥ sup(d2 ,

d+2
4 ) in each d ≤ 4.

A natural question then is to investigate the possibility of establishing such
results for the conventional Navier-Stokes equations by a limit process.

We shall denote by S
l
ε = S(f, uε0 , ε) the set of solutions uε of the regularized

problem. In order to show the uniqueness of weak solutions of the Navier-Stokes
equations in each dimension d ≤ 4, we investigate general topology properties to
identify S

l
ε to the set of solutions u of the conventional problem. We show that the

set of solutions of the Navier Stokes equations is homeomorphic to Sl
ε for such l.

We finish by establishing a high regularity result for the solutions of Navier-Stokes
equations.

In this paper we give an answer to the uniqueness question for the Navier-Stokes
equations for d ≤ 4. It appears that this method is an interesting way to establish
the uniqueness by a limit process in other branches of partial differential equations.
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2. Preliminary

We denote by Hm (Ω), the Sobolev space of L-periodic functions endowed with
the inner product

(u, v) =
∑

|β|≤m

(Dβu,Dβv)L2(Ω) and the norm ‖u‖m =
∑

|β|≤m

(
∥

∥Dβu
∥

∥

2

L2(Ω)
)

1
2 (2.1)

and by H−m (Ω) the dual space of Hm (Ω). We define the spaces Vs as completions
of smooth, divergence-free, periodic, zero-average functions with respect to the Hs

norms. V ′
s denote the dual space of Vs and V denote the space V0.

We denote by A the Stokes operator Au = −△u for u ∈ D (A) = V2 ∩ V0. The
spectral theory of A allows us to define the powers Al of A for l ≥ 1, Al is an
unbounded self-adjoint operator in V0. We set here

Alu = (−△)
l
u for u ∈ D

(

Al
)

= V2l ∩ V0. (2.2)

Now define the trilinear form b(., ., .) associated with the inertial terms

b (u, v, w) =
3

∑

i,j=1

∫

Ω

ui
∂vj
∂x

i

wjdx. (2.3)

The continuity property of the trilinear form enables us to define (using Riesz
representation theorem) a bilinear continuous operator B (u, v); V2 × V2 → V ′

2 will
be defined by

〈B (u, v) , w〉 = b (u, v, w) , ∀w ∈ V2. (2.4)

Recall that for u satisfying ∇.u = 0 we have

b (u, u, u) = 0 and b (u, v, w) = −b (u,w, v) . (2.5)

Hereafter, ci ∈ N ,will denote a dimensionless scale invariant positive constant
which might depend on the shape of the domain. We recall some inequalities that
we will be using in what follows.

Young’s inequality

ab ≤
σ

p
ap +

1

qσ
q
p

bq, a, b, σ > 0, p > 1, q =
p

p− 1
. (2.6)

Poincaré’s inequality

λ1 ‖u‖
2
≤ ‖u‖21 (2.7)

for all u ∈ V , where λ1 is the smallest eigenvalue of the Stokes operator A.

3. The regularized Navier-Stokes system

In this paper, we study the uniqueness of weak solutions of the modified Navier-
Stokes equations in each dimension d ≤ 4. We regularized the Navier-Stokes system
by adding a high order artificial viscosity term to the conventional system

duε

dt
+ ε (−△)

l
uε − ν△uε + (uε.∇)uε +∇p = f (x) , in Ω× (0,∞)

div uε = 0, in Ω× (0,∞) ,
p(x+ Lei, t) = p(x, t), u(x+ Lei, t) = u(x, t) i = 1, ..., d t ∈ (0,∞)

uε (x, 0) = uε0 (x) , in Ω,

(3.1)

where Ω = (0, L)d with periodic boundary conditions and (e1, ..., ed) is the natural
basis of Rd. Here ε > 0 is the artificial dissipation parameter, uε is the velocity
vector field, p is the pressure, ν > 0 is the kinematic viscosity of the fluid and f is
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a given force field. For ε = 0, the model is reduced to Navier-Stokes system. For
further discussion of theoretical results concerning (3.1), see [1, 4, 9].

Using the operators defined in the previous section, we can write the modified
system (3.1) in the evolution form

∂tuε + εAluε + νAuε +B (uε, uε) = f (x) , in Ω× (0,∞)
uε (x, 0) = uε0, in Ω.

(3.2)

The existence and uniqueness results for initial value problem (3.1) can be found
in Lions [4].
The following theorem collects the main result in this work.

Theorem 3.1. For l ≥ d+2
4 , d is the space dimension, for ε > 0 fixed, f ∈ L2 (0, T ;V ′

0)
and uε0 ∈ V0 be given. There exists a unique weak solution of (3.1) which satisfies

uε ∈ L2 (0, T ;Vl) ∩ L∞ (0, T ;V0) , ∀T > 0.

Notice that the conventional Navier-Stokes system can be written in the evolu-
tion form

du

dt
+ νAu +B (u, u) = f (x) , in Ω× (0,∞)

u (0) = u0, in Ω.
(3.3)

Theorem 3.2. For d ≤ 4, for f ∈ L2(0, T ;V0) and u0 ∈ V0 be given. There exists
a weak solution of (3.3) which satisfies u ∈ L∞(0, T ;V0) ∩ L2(0, T ;V1), for T > 0.
For d = 2, u is unique (J. Lions [4]).

In the work [9], we demonstrated the following theorem

Theorem 3.3. For l ≥ sup(d2 ,
d+2
4 ) and for d ≤ 4, the weak solution uε of the

modified Navier-Stokes equations (3.1) given by Theorem 3.1 converges strongly in
L2(0, T ;V0) as ε → 0 to u a weak solution of the system (3.3).

At the first we prove a priori estimates for the solution uε (t), we show that the
system has a global attractor.

A compact set A ⋐ E is said to be a global attractor of a semigroup {S(t), t > 0}
acting in a Banach or Hilbert space E if A is strictly invariant with respect to
{S(t)} : S(t)A = A ∀t ≥ 0 and A attracts any bounded set B ⊂ E:

dist(S(t)B,A) → 0 when t → ∞, (3.4)

see for instance Temam [8] or Chepyzhov and Vishik [5].
For ε > 0 and f ∈ V0 a time independent function, let Sε (t) denote the semiflow

generated by the weak solutions of the regularized Navier-Stokes equations (3.1).
Thus

Sε (t) = Sε (f, t)uε0, (3.5)

where uε (t) = Sε (f, t)uε0 is the weak solution of (3.1) that satisfies uε (0) = uε0.
Now, we show that the semigroup Sε (t) has an absorbing ball in V0 and an

absorbing ball in V1. Then we show that Sε (t) admits a compact attractor in V0

for each ε > 0.

Theorem 3.4. For l ≥ d+2
4 in each d ≤ 4 and u0 ∈ V0 be given the dynamical

system associated with the regularized Navier-Stokes equations (3.1) possesses a
compact attractor Aε for all ε > 0 fixed, which attracts bounded sets of V0.



4 ABDELHAFID YOUNSI

Proof. We take the inner product of (3.1) with uε, we obtain

d

dt
‖uε‖

2
+ 2ε

(

Aluε, uε

)

+ 2ν ‖∇uε‖
2
= 2 (f, uε) . (3.6)

Here we have used the fact that b (uε, uε, uε) = 0.
By applying Young’s inequality (2.6) and the Poincaré’s inequality (2.7), we get

d

dt
‖uε‖

2
+ 2ε‖A

l
2uε‖

2 + ν ‖∇uε‖
2
≤

‖f‖
2

νλ1
, (3.7)

we drop the term 2ε‖A
l
2 uε‖

2, we obtain

d

dt
‖uε‖

2 + νλ1 ‖uε‖
2 ≤

‖f‖2

νλ1
, (3.8)

by integrating the above inequality from 0 to t, we get

‖uε (t)‖
2
≤ ‖uε0‖

2
e−νλ1t + ρ20

(

1− e−νλ1t
)

, t > 0, (3.9)

where ρ0 =
1

νλ1
‖f‖. Hence for any ball BR0

= {uε0 ∈ V0; ‖uε0‖ ≤ R0} there is a

ball B (0, δ0) in V0 centered at origin with radius δ0 > ρ0 (R0 > δ0) such that

Sε(t)BR0
⊂ Br0 for t ≥ t0 (BR0

) =
1

νλ1
log

R2
0 − ρ20

δ20 − ρ20
. (3.10)

The ball Bδ0 is said to be absorbing and invariant under the action of Sε(t). Taking
the limit in (3.9) we get,

lim sup
t→∞

‖uε (t)‖ ≤ ρ0. (3.11)

We integrate (3.8) from t to t+ r, we obtain for uε0 ∈ BR0

∫ t+r

t

‖uε‖
2
1 ds ≤

1

ν
(
r ‖f‖

2

νλ1
+ ‖uε (t)‖

2
), ∀r > 0, ∀t ≥ t0(BR0

). (3.12)

With the use of (3.11) we conclude that

lim sup
t→∞

∫ t+r

t

‖uε‖
2
1 ds ≤

r

ν2λ1
‖f‖

2
+

‖f‖2

ν3λ2
1

. (3.13)

To show that the semigroup Sε(t) has an absorbing set in V1, we consider the strong
solutions and take the inner product of (3.1) with Auε, we obtain

1

2

d

dt
‖A

1
2 uε‖

2 + ε
(

Aluε, Auε

)

+ ν‖Auε‖
2 = −b(uε, uε, Auε) + (f,Auε). (3.14)

By applying Young’s inequality (2.6), we get

(f,Auε) ≤ ‖f‖ ‖Auε‖ (3.15)

≤
ν

4
‖Auε‖

2 +
1

ν
‖f‖2 .

For the second member, we have by Holder’s inequality that

|b(uε, uε, Auε)| ≤ ‖uε‖∞ ‖uε‖1 ‖Auε‖ , (3.16)

using (3.11) we get

|b(uε, uε, Auε)| ≤ ρ0 ‖uε‖1 ‖Auε‖ . (3.17)
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By applying Young’s inequality (2.6), we get

|b(uε, uε, Auε)| ≤
ρ20
ν

‖uε‖
2
1 +

ν

4
‖Auε‖

2
. (3.18)

Substituting the above result into (3.14), we obtain

d

dt
‖uε‖

2
1 + 2ε‖A

l+1

2 uε‖
2 + ν ‖Auε‖

2
≤

2

ν
‖f‖

2
+

ρ20
ν

‖uε‖
2
1 . (3.19)

If we drop the positive term associated with ε, we obtain

d

dt
‖uε‖

2
1 ≤

2

ν
‖f‖

2
+

ρ20
ν

‖uε‖
2
1 . (3.20)

We apply the uniform Gronwall Lemma to (3.20). Thanks to (3.9)-(3.13) we esti-
mate the quantities a1, a2, a3 by

a1 =
ρ20
ν
, a2 =

2

ν
‖f‖

2
, a3 =

r ‖f‖
2

ν2λ1
+

‖f‖
2

ν3λ2
1

. (3.21)

Then, we obtain

‖uε (t)‖
2
1 ≤ (

a3
r

+ a2) exp (a1) = R2
1 for t ≥ t0, t0 as in (3.10). (3.22)

Hence, for any ball BR1
, there exists a ball Bδ1 , in V1 centered at origin with radius

R1 > δ1 > ρ1 such that

Sε(t)BR1
⊂ Bδ1 for t ≥ t1 (BR0

) = t0 (BR0
) + 1 +

1

νλ1
log

R2
1 − ρ21

δ21 − ρ21
. (3.23)

The ball Bδ1 is said to be absorbing and invariant for the semigroup Sε(t).
Furthermore, if B is any bounded set of V0, then Sε(t)B ⊂ Bδ1 for t ≥ t1 (B,R0),

this shows the existence of an absorbing set in V1. Since the embedding of V1 in
V0 is compact, we deduce that Sε(t) maps a bounded set in V0 into a compact set
in V0. In addition, the operators Sε(t) are uniformly compact for t ≥ t1 (B,R0).
That is,

⋃

t≥t1
Sε(t, 0, BR0

) (3.24)

is relatively compact in V0.
Due to a standard procedure (cf., for example, Temam [8, Theorem I.1.1] for

details), there is a global attractor Aε for the operators Sε(t) for ε > 0.
Note that the global attractor Aε must be contained in the absorbing balls V0

and V1

Aε =
⋂

t1≥0

⋃

t≥t1
Bδ1 (t) ⊂ Bδ0 ∩Bδ1 . (3.25)

�

It is well known (cf. J. L. Lions [3]) that the problem reduces to a functional
equation involving only uε. We recall that S

l
ε = S(ε, f, uε0) denotes the set of

solutions uε of the problem (3.1) for all ε > 0 fixed.
We shall first list some properties of the set Sl

ε.

Theorem 3.5. Assume that d ≤ 4 and ε > 0 fixed, let S(ε, f, uε0) the set of
solutions of the modified Navier-Stokes equations (3.1) given by Theorem 3.1. Then
i). S(ε, f, uε0) is not empty (existence of solutions).,
ii). S(ε, f, uε0) is closed and bounded in V0, compact in V0, for l ≥ d+2

4 .

iii). S(ε, f, uε0) is reduced to one point (uniqueness of solutions) if l ≥ d+2
4 .
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Proof. The existence of solutions (point i)) is established in [4, 6.163]. The closed-
ness of the set S(ε, f, uε0) and its compactness in V0, are consequences of the The-
orem 3.4 . The proof of (iii)) is also established in (cf. [4, 6.164]). �

The set of solutions u of problem (3.3) is denoted by S1
0 = S(0, f, u

0
). The set

S
1
0 contains all solutions of the system (3.3).

Lemma 3.6. Let vn and un be two convergent sequences such that un converges
to u and vn converges to v in V0, then for all ǫ > 0 there exists a positive number
N ∈ N such that for all n ≥ N we have
1).

‖un − vn‖ ≤ ‖u− v‖+ ǫ (3.26)

2).

‖u− v‖ ≤ ‖un − vn‖+ ǫ.

Proof. We have

‖un − vn‖ ≤ ‖un − u‖+ ‖u− v‖ + ‖v − vn‖

thus, for all ǫ > 0 there exists N such that for all n ≥ N

‖un − vn‖ ≤ ǫ/2 + ‖u− v‖+ ǫ/2

Whence the result.
The proof of part 2) is similar to that of part 1).

‖u− v‖ ≤ ‖un − u‖+ ‖un − vn‖+ ‖v − vn‖

≤ ‖un − vn‖+ ǫ,

for all ǫ > 0 and for all n ≥ N . �

An interesting question is then whether we can construct a continuous operator
from S

l
ε into S

1
0.

Theorem 3.7. Assume that l ≥ d
2 in each d ≤ 4, then there exists ε′ > 0 such that

for all ε ≤ ε′, there exists a sequence of continuous functions Φα, from S
l
ε to S

1
0,

for all α > 0.

Proof. Let vε (t) and uε (t) two weak solutions of he problem (3.1), we obtain for
wε (t) = vε (t)− uε (t)

dwε

dt
+ εAlwε + νAwε +B(wε, vε) +B(vε, wε)−B(wε, wε) = 0 (3.27)

and wε(0) = vε0 − uε0 = 0.
Taking the inner product of the last equation with wε, we obtain

d

dt
‖wε‖

2
+ 2ε ‖ A

l
2wε ‖

2 +2ν ‖wε‖
2
1 ≤ |2b(wε, vε, wε)| . (3.28)

The second member satisfies [4, 6.168]

d

dt
‖wε‖

2
≤ 2c1 ‖wε‖

2
‖vε‖

1
θ

1 . (3.29)

with

θ +
d

4l
≤ 1. (3.30)
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Using (3.22), we obtain the following differential inequality

d

dt
‖wε‖

2
≤ c1R

1
θ

1 ‖wε‖
2
. (3.31)

Integrating from 0 to t to obtain

‖wε‖
2 ≤ c1R

1
θ

1

∫ t

0

‖wε‖
2 ds. (3.32)

Integrating again from 0 to T to obtain

‖wε‖
2
L2(0,T ;V0)

≤ c1TR
1
θ

1 ‖wε‖
2
L2(0,T ;V0)

. (3.33)

Since wε converges strongly in V to w = u− v a weak solution of the conventional
Navier-Stokes [9, Theorem 3.9.] for l ≥ d

2 , using 2) in Lemma 3.6 we can show that
there exists a positive constant ε′, such that at the limit we find, there exists a real
parameter α, such that for all α > 0,

‖w‖
2
L2(0,T ;V0)

≤ c1TR
1
θ

1 ‖wε‖
2
L2(0,T ;V0)

+ α for each ε ≤ ε′. (3.34)

The inequality (3.34) describes a relationship between solutions of system (3.1) and
system (3.3). We will use this relationship to define a mapping between Sl

ε and
S1

0. Now, let Φα be a function maps Sl
ε into S1

0. The function Φα is defined as
follows

Φα(uε) = u. (3.35)

The inequality (3.34) means that Φα also satisfies

‖Φα(vε)− Φα(uε)‖L2(0,T ;V0)
≤ k ‖vε − uε‖L2(0,T ;V0)

+ α, (3.36)

where

k = c1TR
1
θ

1 . (3.37)

For all ǫ > 0, there exists a η ≥ 0, such that for all vε, uε ∈ Sl
ε satisfy

‖vε − uε‖L2(0,T ;V0)
≤ η (3.38)

we get
‖Φα(vε)− Φα(uε)‖L2(0,T ;V0)

≤ ǫ. (3.39)

We have taken α = ǫ/2 and kη = ǫ/2. This shows that Φα is uniformly continuous.
�

We need the following result

Lemma 3.8. The solutions uε and u are bounded in L2 (0, T ;V2) uniformly,
in each dimension d ≤ 4.

Proof. If we drop the term 2ε‖A
l+1

2 uε‖
2 in (3.19) and integrate from 0 to T ,

ν

∫ T

0

‖Auε‖
2
ds ≤

2

ν

∫ T

0

‖f‖
2
ds+

ρ20
ν

∫ T

0

‖uε‖
2
1 ds+ ‖uε0‖

2
1 . (3.40)

Using (3.22) we get,
∫ T

0

‖Auε‖
2 ds ≤

2

ν2
‖f‖2L2(0,T ;V ) +

ρ20
ν2

TR2
1 +

R2
1

ν
= R2. (3.41)

This means that the strong solution uε belongs to L2 (0, T ;V2) uniformly in ε. From
this we can deduce that u ∈ L2 (0, T ;V2) for all u0, uε0 ∈ V0. �
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We need the following result

Proposition 3.9. For l = 2 in each d ≤ 4 and ε ≤ ε′, the set S2
ε is dense in S1

0.

Proof. By subtracting (3.3) from (3.2), we obtain for ξ = uε (t)− u (t)

∂tξ + εAluε +Aξ + B (uε, uε)− B (u, u) = 0. (3.42)

By taking inner product with ξ for the above equation we get

1

2

d

dt
‖ξ‖

2
+ ε(Aluε, ξ) + ν‖A

1
2 ξ‖2 = b (ξ, ξ, uε) . (3.43)

The second term of left hand side of equation (3.43) can be written as

ε(Aluε, ξ) = ε(Aluε, uε)− ε(Aluε, u)

= ε‖A
l
2uε‖

2 − ε(Aluε, u)

= ε‖A
l
2uε‖

2 − ε(Al−1uε, Au).

(3.44)

This leads to

1

2

d

dt
‖ξ‖

2
+ ε‖A

l
2 uε‖

2 + ν‖A
1
2 ξ‖2 = ε(Aluε, u) + b (ξ, ξ, uε) . (3.45)

By applying Young’s inequality (2.6), we find

(Al−1uε, Au) ≤
1

2ν

∥

∥Al−1uε

∥

∥

2
+

ν

2
‖Au‖2 . (3.46)

The trilinear term can be estimated as in [4, 4.167]

|b (ξ, ξ, uε)| ≤ ‖ξ‖2 ‖uε‖
1/θ
1 . (3.47)

Combining all these inequalities in (3.45), we obtain

1

2

d

dt
‖ξ‖

2
≤ ‖ξ‖

2
‖uε‖

1
θ

1 +
ε

2ν

∥

∥Al−1uε

∥

∥

2
+

εν

2
‖Au‖

2
. (3.48)

Applying now Gronwall’s inequality to (3.48), for t ≥ 0 we get

‖ξ (t)‖
2

≤ ‖ξ (0)‖
2
exp c4(

∫ t

0

‖uε‖
1/θ
1 ds)

+
ε

ν

∫ t

0

(
1

2ν

∥

∥Al−1uε

∥

∥

2
+

ν

2
‖Au‖

2
) exp c4(

∫ t

0 ‖uε‖
1/θ
1 ds)dh,

(3.49)

using estimate (3.22) we find

‖ξ (t)‖
2

≤ ‖ξ (0)‖
2
exp c4TR

1
θ

1

+
ε exp c4TR

1
θ

1

ν

∫ t

0

(
1

2ν

∥

∥Al−1uε

∥

∥

2
+

ν

2
‖Au‖

2
)dh.

(3.50)

Since ξ (0) = uε (0)− u (0) = 0, this means

‖ξ (t)‖
2
≤ ε

exp c4TR
1
θ

1

ν

∫ t

0

(
1

2ν

∥

∥Al−1uε

∥

∥

2
+

ν

2
‖Au‖

2
)dh. (3.51)

It follows from Lemma 3.8 (with l = 2) that for each u ∈ S1
0 there exists a sequence

uε ∈ S2
ε such that ‖uε − u‖ → 0 as ε → 0, from these facts it follows that S2

ε is
dense in S

1
0. �
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Since the uniqueness of weak solutions of the Navier-Stokes equations is not
known. It may happen that S1

0 = S(0, f, u
0
) the set of solutions of the conventional

Navier-Stokes equations (3.3) is not reduced to one point. there can exist “ghost
solutions” that solve the original problem, but are not limits of the perturbed
problem. For this, we consider two subsets A and B such that S1

0 = A ∪B.
We say that u ∈ A if u is a limit of the perturbed problem and u ∈ B if u is

not limit of the perturbed problem. We clearly have A ∩ B = ∅, it follows that
dV (A,B) > 0 (d is the Hausdorff distance).

Proposition 3.10. For l = 2 in each d ≤ 4 and ε ≤ ε′, the two sets S2
ε and S1

0

are homeomorphic.

Proof. Since the limits solutions are in A

A = Φα(S
2
ε). (3.52)

A is a compact set. Thus, S2
ε is dense in S1

0, S
2
ε is dense in A ∪B, then for each

u′ ∈ B and for all ǫ > 0,

d(u′, A) = d(u′, u) ≤ d(u′, uε) + d(uε, u) ≤ ǫ, (3.53)

it follows that u′ ∈ A, but A = A, we conclude that A = B. Consequently,

Φα(S
2
ε) = S

1
0 = A for all ε ≤ ε′ (3.54)

and Φα is surjective from S
2
ε into S

1
0. The injectivity is a consequence of the

uniqueness of the solution of the perturbed system. Since S2
ε is a compact set, Φα

is a homeomorphism. �

Note that all above results are satisfied for l = 2. Our main result is then

Theorem 3.11. For each dimension d ≤ 4, let f ∈ L2(0, T ;V0) and u0 ∈ V0 be
given. Then there exists a unique weak solution u of the Navier-Stokes equations
(3.3) which satisfies u ∈ L∞(0, T ;V0) ∩ L2(0, T ;V1), ∀T > 0.

Proof. The existence of a solution to (3.3) follows from Theorem 3.2. We will
establish the uniqueness result for solutions of the Navier-Stokes equations (3.3).
For l = 2 in each d ≤ 4 and for fixed ε ≤ ε′, the set S2

ε is reduced to one point and
from Proposition 3.10 , the map Φα is a homeomorphism for all α > 0, that is

S
1
0 = Φα(S

2
ε) = {u}. (3.55)

Thus, the problem (3.3) has a unique solution. �

Finally we finish by a regularity theorem

Theorem 3.12. Assume that l ≥ d
2 in each d ≤ 4, then there exists a finite time

T ∗ depending on the data such that for any t ≤ T ∗ there exists a unique solution
of the Navier-Stokes equations (3.3) satisfying

u ∈ L2 (0, T ∗;Vl) ∩ L∞ (0, T ∗;V0) . (3.56)

Proof. Let C be a nonempty subset of a Banach space X and fix a sequence {an}
in [0,∞) with an → 0. A mapping Θ : C → C will be called nearly Lipschitzian
with respect to {an} if for each n ∈ N , there exists a constant kn ≥ 0 such that

‖Θn(uε)−Θn(vε)‖ ≤ kn(‖uε − vε‖+ an) for all uε, vε ∈ C, (3.57)
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(cf. D. R. Sahu [7]). The infimum of constants kn for which (3.57) holds will be
called nearly Lipschitz constant. A nearly Lipschitzian mapping Φαn

with sequence
{(αn, kn)} is said to be nearly contraction if

lim
n→∞

(kn)
1
n < 1 for all n ∈ N. (3.58)

From (3.36) we find that
∥

∥Φn
αn

(uε)− Φn
αn

(vε)
∥

∥ ≤ kn ‖uε − vε‖+ an for all uε, vε ∈ S
l
ε,

with an = αn(1 + k + ...+ kn). We assume that αn = k2n, then
∥

∥Φn
αn

(uε)− Φn
αn

(vε)
∥

∥ ≤ kn(‖uε − vε‖+Rn), (3.59)

where
Rn = kn+1 + kn+2 + ...+ k2n+1. (3.60)

Note that (3.58) implies that there exists a T ∗ < c2R
−1

2θ

1 , such that for any t ≤ T ∗

k < 1. (3.61)

Since Rn is the nth remainder of a convergent series, it follows that

lim
n→∞

Rn = 0. (3.62)

Thus Φαn
is a nearly contracting Lipschitz map on Sl

ε |(0,T∗). As a result, Φαn
has

a unique fixed point such that

Φα(uε) = uε = u. (3.63)

This fixed point is the limit of the solution of equations (3.1) as ε goes to zero on
(0, T ∗), which is also unique because of the contraction property. �

This result gives a new way to the uniqueness and regularity of the Navier-Stokes
equations. This method can also be applied to other nonlinear partial differential
equations to study the questions of the uniqueness and regularity of solutions.
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Dunod Gauthier-Villars, Paris, 1969.

[5] V. V. Chepyzhov and M.I.Vishik, Attractors for Equations of Mathematical Physics. AMS
Colloquium Publications. V. 49. Providence: AMS, 2002.

[6] Yuh-Roung Ou and S.S. Sritharan, Upper Semicontinuous Global Attractors for Viscous Flow,
Journal: Dynamic Systems and Applications 5 (1996), 59-80.

[7] D. R. Sahu, Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces,
Comment. Math. Univ. Carolin 46 (4) (2005)653–666.

[8] Roger Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer-
Verlag, New York, I988.

[9] A. Younsi; Effect of hyperviscosity on the Navier-Stokes turbulence, Electron. J. Diff. Equ.,
Vol. 2010(2010), No. 110, pp. 1-19.

Department of Mathematics and Computer Science, University of Djelfa , Algeria.

E-mail address: younsihafid@gmail.com


	1. Introduction
	2. Preliminary
	3. The regularized Navier-Stokes system
	References

