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Abstract. This paper proposes a new interpretation of the logical con-
tents of programs in the context of concurrent interaction, wherein proofs
correspond to valid executions of a processes. A type system based on
linear logic is used, in which a given process has many different types,
each typing corresponding to a particular way of interacting with its en-
vironment and cut elimination corresponds to executing the process in
a given interaction scenario. A completeness result is established, stat-
ing that every lock-avoiding execution of a process in some environment
corresponds to a particular typing. Besides traces, types contain precise
information about the flow of control between a process and its environ-
ment, and proofs are interpreted as composable schedulings of processes.
In this interpretation, logic appears as a way of making explicit the flow
of causality between interacting processes.

1 Introduction

The extension of the familiar Curry-Howard correspondence to interactive mod-
els of computation has been an active research topic for several decades. Several
systems were proposed based on linear logic [9], following the fundamental ob-
servation that it is a logic of interaction. Interpretations of proofs as processes,
first formalized by Abramsky [1], later refined by various people including the
first author [2], stressed that proof nets [10] and process calculi have significant
similarities in dynamics. At the same time, type systems for concurrency [20]
revealed to be equivalent to variants of linear logic [12, 4]. These approaches suc-
cessfully stress the fact that concurrent calculi are very expressive and versatile
models of interactive behaviour, however they are not satisfactory yet as a proof-
theoretical account of concurrency, because they tend to impose determinism in
execution, effectively constraining processes to functional behaviour.

Several approaches to the question of non-determinism in logic have been
proposed. The use of the additive connectives of linear logic as a proof-theoretic
representation of it was for instance explored by Mairson and Terui [14] to pro-
vide a notion of non-deterministic cut-elimination, or by Maurel [15] or the sec-
ond author [18] who used it to represent the kind of non-determinism familiar
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in complexity theory. In a different style, differential logic was recently devel-
oped by Ehrhard and Regnier [8] and its untyped proof formalism was shown
expressive enough to represent the π-calculus [7].

The present work proposes a different approach to the topic, by questioning
the “proofs-as-programs” paradigm. Proof theory wants cut elimination to be
confluent, because the meaning of proofs lies in their normal forms. On the other
hand, reduction in process calculi is execution: the meaning of a term is not its
final irreducible form but what happens to get there, as interaction with other
processes. Hence we propose to match proofs with executions rather than terms.
But this raises the new question of what is the logical meaning of an execution.
Here we must remember that cut elimination is a process of explicitation and
cut-free proofs are explicit, direct reasonings justifying some fact. In our case,
the fact is the interaction, which is a scheduling of a set of events in a system.
The justification, then, is the control flow through the system, specifying when
actions happen and when execution jumps from one process to another.

Technically, we illustrate this idea in the very simple setting of finitary CCS
with no choice operator, in order to focus on the novel ideas of our approach,
but ways to extend these techniques to a larger class of processes are sketched
in the perspectives. The corresponding logic is multiplicative linear logic, with
a family of modalities à la Hennessy-Milner [11] representing actions.

In our type system, multiplicatives represent causality and independence
between parts of a run, using connectedness/acyclicity arguments to describe
avoidance of deadlocks. Modalities represent observable transitions, with explicit
scheduling constraints using the well-known stratifying effect of boxes in proof
nets. Axiom rules have an unusual interpretation: they are void of interactive
content (no forwarding or copycat behaviour), but they logically implement the
transfer of control flow between different parts of a running process.

This handling of control flow using the symmetries of linear logic is reminis-
cent of the work of Mazurak and Zdancewicz [16] who use linear negation as an
explicit scheduling operation. Our work differs from theirs and other works on
typing for concurrency, in that we proceed “backwards”: while Curry-Howard
systems for concurrency embed logical systems into concurrent calculi, we embed
executions of processes into a logical system.
Outline The paper is organized as follows: Section 2 introduces a logic of schedul-
ings based on linear logic and illustrates our interpretation. Section 3 defines a
simple fragment of CCS and a notion of determinisation, used to represent ex-
ecutions as terms. Section 4 presents the proof nets for the logic of schedulings
and its cut-elimination. Section 5 shows the typing of executions and the as-
sociated subject reduction property, and Section 6 establishes the completeness
property that all lock-avoiding executions are typable.

2 A logic of schedulings

We first present the logic we use to describe interactions and schedulings. It
corresponds to the multiplicative fragment of linear logic [9], augmented with a
family of modalities that describe actions.



P ` Γ,A,B
P ` Γ,A`B

(`)
P ` Γ,A Q ` B,∆
P |Q ` Γ,A�B,∆

(⊗)
P ` Γ,A Q ` A⊥,∆

P |Q ` Γ,∆
(cut)

1 ` A,A⊥ (ax)
P ` Γ,A

a.P ` Γ, 〈a〉A
(act)

P ` Γ a /∈ Γ
(νa)P ` Γ

(new)

Derived rules:


P : Γ,A ` B
P : Γ ` A( B

((R)
P : Γ ` A Q : ∆,B ` C
P |Q : Γ,∆,A( B ` C

((L)

P : Γ ` A( B Q : ∆ ` A
P |Q : Γ,∆ ` B

(mp)
P : Γ,A ` B

a.P : Γ, 〈ā〉A ` B
(act)

Table 1. Inference rules for MLL with action modalities (MLLa)

Definition 1 (MLLa). The formulas of MLLa are built by the grammar

A,B ::= α | α⊥ | A�B | A`B | 〈a〉A | 〈a〉A
where the α are literals and the a are CCS names. The negation A⊥ of a non-
literal formula A is defined by de Morgan duality as (A�B)⊥ = A⊥ `B⊥ and
(〈a〉A)⊥ = 〈a〉A⊥. A type (Γ,∆ . . .) is a finite multiset of formulas. Derivations
are built from the rules of table 1, where the left side of ` is a CCS term up to
structural congruence (as of section 3). The same rule (act) applies for names
of both polarities. In (new), a 6∈ Γ means that neither 〈a〉 nor 〈a〉 occurs in Γ .

Although it is formulated as a type system for processes, this logic should be
interpreted as a calculus for building schedulings. To explain this interpretation,
we adopt a few notations that stress the functional aspect of the system: P :
A1, . . . , An ` B represents the judgement P ` A⊥1 , . . . , A⊥n , B and the binary
connective A( B stands for A⊥`B. We easily get the derived rules of table 1:
((R) and ((L) are respectively a reformulation of (`) and (⊗), and (mp) is
modus ponens for linear implication, obtained with (ax), (⊗) and (cut). This is an
intuitionistic or implicative formulation, but we do need the full expressiveness
of the MLLa for the developments of the following sections.

A formula specifies a way for a process to interact with its environment and a
proof provides a way to justify this interaction. A judgement P : A1, . . . , An ` B
then denotes a function that combines n interactions of types Ai for independent
processes Qi into an interaction of type B of the process Q1 | · · · |Qn | P .

– A modality 〈a〉A means doing the action a and then acting according to A.
To lighten notations, we will represent successive modalities as a single one:
〈abc〉α means 〈a〉〈b〉〈c〉α.

– Implication A( B is an interaction that provides a behaviour B expecting
A from the environment, as made explicit by the rule (mp). The rule ((R)

means that some context may actually be provided by the environment.
– An variable α is a behaviour not known from the considered term. An in-

teraction of type α means jumping to a continuation of type α, necessarily
provided by the context: indeed, since a scheduling of this type may not
provide any behaviour, it effectively gives control to some other process.



As we will formalize later on, the term P on the left side of a judgement is
guaranteed to be able to provide the behaviour computed by the proof, and this
behaviour will consume all the actions of P . Reciprocally, all the behaviours that
consume all actions of P correspond to some proof.

Let us illustrate this by examining the possible ways of typing a term like
a.b.1 | c.1. This term has three possible ways of interacting: each interleaving of
the sequence (a, b) with the sequence (c) is a valid trace. A simple interleaving
is the sequential execution of one part followed by the other, as (a, b, c). E.g.

1 : C ` C (ax)

b.1 : C ` 〈b〉C (act)

a.b.1 : C ` 〈ab〉C (act)
1 : α ` α (ax)

c.1 : α ` 〈c〉α (act)

a.b.1 | c.d.1 : α ` 〈abc〉α (cut)

with C = 〈c〉α.

The important point is the choice of the axiom on C: it stands for the fact the
a.b.1 finally hands control to c.1 for which we have type C.

The interleaving (a, c, b) is more subtle: now c.1 will have to get control from
a.b.1 after a and give back control to it after doing c. We can write this as

1 : α ` α (ax)

b.1 : α ` 〈b〉α (act)
1 : C ` C (ax)

b.1 : α, 〈b〉α( C ` C ((L)

a.b.1 : α, 〈b〉α( C ` 〈a〉C (act)

a.b.1 : α ` (〈b〉α( C) ( 〈a〉C ((R)

1 : B ` B (ax)

c.1 : B ` 〈c〉B (act)

c.1 ` B ( 〈c〉B ((R)

a.b.1 | c.1 : α ` 〈acb〉α (mp)

with

{
B = 〈b〉α
C = 〈cb〉α

Again, the choice of the right types for the axioms is crucial because it depends
on the continuation in interaction. Indeed, we have three steps (a, c, b) and as
many types for continuations: 〈cb〉α, 〈b〉α and α.

The other crucial point is the introduction of a in front of b.1, as the succes-
sion of rules (ax), ((L), (act), ((R). The conclusion type reads as “if using 〈b〉α
the environment can do C, then, by combining with it, a.b.1 can do a then C”.
Operationally, a.b.1 starts by doing a, then jumps to C (the behaviour of the
environment), and at some point the environment will give control back from C
(that is the negative occurrence of C) and b.1 will then perform 〈b〉α. This part
is generic in C: we could use the same reasoning for any type C, including a type
variable γ. In a more concise way, (B ( γ) ( 〈a〉γ is an interruptible version
of the modality 〈a〉B. Similarly, the typing of c.1 is generic in B. We only need
to choose B and C appropriately for the (mp) rule, so that types unify properly.

Another aspect is when parallel composition is typed by a cut which means
that a synchronisation (send/receive) happens between the composed processes:



1 : ε ` ε (ax)

e.1 : ε ` 〈e〉ε (act)

1 : α ` α (ax)

ē.1 : 〈e〉α ` α (act)

d.ē.1 : 〈e〉α ` 〈d〉α (act)
1 : δ ` δ (ax)

d̄.1 : 〈d〉δ ` δ
(act)

d.ē.1 | d̄.1 : 〈e〉α ` α
(cut)

e.1 | d.ē.1 | d̄.1 : α ` α
(cut)

with

{
δ = α

ε = α

Here the conclusion type is a simple interaction with the environment. This term
has different proofs providing the same type, e.g. using a intermediate trace for
e.1|d.ē.1 instead of d.ē.1|d̄.1 as in the proof above. Such variants are irrelevant in
scheduling and will be removed by switching to proof nets in the next sections.

3 CCS runs as pairings

We consider processes of the standard language CCS [17]. The general language
is defined by the following grammar. Note that we use 1 for the inactive pro-
cess instead of the usual 0 because it is the neutral element of | which is a
multiplicative operation. Moreover, actions a are decorated by locations `:

P,Q ::= a`.P | ā`.P | 1 | (P |Q) | P +Q | ∗P | (νa)P

where a is taken from an infinite set N of names and ` is taken from an infinite
set L of locations. Each location is used at most once in any term. The main
source of non-determinism is the fact that a given action name may occur several
times in a given term, and locations are used to name the different occurrences.

For the purpose of the present study, we actually restrict to the following
fragment. The reason for this will be explained in the following development.

Definition 2 (MCCS). Multiplicative CCS is the fragment of CCS using nei-
ther choice (+) nor replication (∗). Structural congruence is the smallest congru-
ence ≡ that makes parallel composition associative commutative and 1 neutral.

The set of locations occurring in P is written L(P ). Given ` ∈ L(P ), the
subject of ` is the name tagged by `, written subjP `. The polarity of ` is that of
the action tagged by its subject, written polP `, element of {±1}. Intuitively, a
negative action ā represents the sending of a signal on a channel a, and a positive
action a represents the reception of such a signal.

Definition 3 (execution). Execution is the relation over structural congruence
classes, labelled by partial involutions over L, defined by the rule

ā`.P | am.Q |R→{(`,m)}
ex P |Q |R

Let →ex∗ be the reflexive transitive closure of →ex, with the annotations defined
as P →∅ex∗ P and if P →c

ex∗ Q→d
ex∗ R then P →c∪d

ex∗ R.

The annotation c in P →c
ex Q describes which occurrences interact in the ex-

ecution step, we write P →ex Q if c is unimportant. Similarly, we keep locations
implicit when they do not matter. Remark that, for a given P and c, there is at
most one Q such that P →c

ex Q, since c describes the interaction completely.



Definition 4 (pairing). A pairing of a term P is a partial involution c over
L(P ) such that for all ` ∈ dom c, subj c(`) = subj ` and pol c(`) = −pol `.

Let ∼c be the smallest equivalence that contains c. Let ≤P be the partial order
over L(P ) such that ` <P m for every subterm x`.Q of P with m ∈ L(Q). c is
consistent if dom c is downward closed for ≤P and ∼c<P∼c is acyclic.

Example 1. The total pairings of P = a1.c2 | b3.ā4 | b̄5.c̄6 | a7.b̄8 | b9 | ā0 are
c1 = {(9, 5), (1, 0), (2, 6), (3, 8), (4, 7)}, c2 = {(3, 5), (1, 4), (2, 6), (7, 0), (9, 8)},
c3 = {(1, 4), (3, 8), (7, 0), (9, 5), (2, 6)}, c4 = {(1, 0), (3, 5), (7, 4), (9, 8), (2, 6)}.
Only c1 is inconsistent as there is a cycle induced by {(3, 8), (4, 7)}. The maximal
consistent pairing included in c1 is {(9, 5), (1, 0), (2, 6)}.

Observe that pairings and consistency are preserved by structural congru-
ence, as a direct consequence of the fact that subjects, polarities and prefixing
are preserved by structural congruence.

Proposition 1. A pairing c of a term P is consistent if and only if there is a
term Q such that P →c

ex∗ Q.

Proof (sketch). In an execution P0 →c1
ex P1 →c2

ex · · · →cn
ex Pn, the ci are disjoint,

so their union is a pairing, and consistency is ensured by the fact that executions
respect prefixing. Conversely, write c = c1 ] · · · ] cn with the ci atomic. By
definition, if c is consistent then ≤P induces a partial order over the domains of
the ci. Assume that the considered enumeration respects this order, then we can
prove by recurrence that there is an execution sequence P = P0 →c1

ex P1 · · · →cn
ex

Pn, since each ci joins two actions of Pi−1 that are minimal for ≤Pi−1 .

We easily get the following (for proof see appendix B.1).

Proposition 2. Let P be a term. Any two executions P →c
ex∗ Q and P →c

ex∗ R
with the same pairing are permutations of each other, and in this case Q ≡ R.

We will thus consider consistent pairings as the proper notion of execution
for CCS terms. Maximal consistent pairings represent executions of processes
until a state where no more execution is possible.

A useful tool in the study of pairings is the following notion of determinisa-
tion, by which we can turn a pairing of a term into a term that has no other
pairing. In other words, determinisation is a way to represent a run of a term in
the language of MCCS itself.

Definition 5 (deterministic term). A term P is deterministic if it has at
most one occurrence of each action.

The pairings of a deterministic term form a lattice, consistent pairings too, so
there is a unique maximal consistent pairing for any deterministic term.

The restriction operator (νa) serves two purposes: it limits the scope of a
name, and it makes it possible to have names local to each copy of a subterm
in the presence of replication; both these features are useless in the determin-
istic case, hence we leave it out on determinisation. We abide by Barendregt’s
convention that each bound channel is named distinctly from each other channel.



Definition 6 (determinisation). Assume an injective map δ : N × {±1} ×
L → N . Given a partial involution c, determinisation along c is the operator ∂c
which commutes with parallel composition such that ∂c ((νa)P ) = ∂c (P ) and

∂c
(
a`.P

)
= δ(a,+1, `)`.∂c (P ) , ∂c

(
ā`.P

)
=

{
δ(a,+1, `)

`
.∂c (P ) if ` ∈ dom c,

δ(a,−1, `)`.∂c (P ) otherwise.

By construction, ∂c (P ) is deterministic, the pairings of ∂c (P ) are the restrictions
of c, consistency preserved, so c is the unique maximal pairing of ∂c (P ).

Example 2. For the term P and the pairings of example 1, we obtain the follow-
ing determinisations (with δ(a,+1, 7) = d and δ(b,+1, 9) = e):
c3 = {(1, 4), (3, 8), (7, 0), (9, 5), (2, 6)} induces ∂c3 (P ) = a.c | b.ā | ē.c̄ | d.b̄ | e | d̄,
c4 = {(1, 0), (3, 5), (7, 4), (9, 8), (2, 6)} induces ∂c4 (P ) = a.c | b.d̄ | b̄.c̄ | d.ē | e | ā.

If we extended our study to the whole of CCS, determinisations would still
be in MCCS, but the theory of pairings would have to be refined: external choice
requires a notion of conflict in the space of locations (as in event structures [19]),
replications requires the introduction of indices to distinguish copies.

4 Proof nets for MLL with action modalities

Proofs in sequent calculus are well suited to inductive reasoning, however their
use in proof theory is uneasy because their rigid structure obscures many argu-
ments, like those below in particular. For this reason, we will turn to proof nets,
using the standard machinery of linear logic [10, 5]. Modality rules are repre-
sented using boxes (like promotions in standard linear logic, but with different
typing rules). The only extra information we add to standard proof structures
is the location of each box, to reflect the use of locations in CCS terms in the
sequel. For readers not familiar with the standard definitions of proof structures
and proof nets, these are put in appendix. We detail here specificities of MLLa.

Definition 7 (proof structure). A proof structure consists of an ordered for-
est of nodes labelled by formulas, denoted xA, with a set Ax of axiom links (pairs
of leaves), a set Cut of cuts (pairs of roots) and a set Box of modality boxes, la-
belled by action modalities, such that each box β has a unique location `(β). The
roots that are not part of a cut are called the conclusion nodes. The conclusion
type is the multiset of the labels of the conclusion nodes.

A modality box β is a set of nodes (the ports) associated to a proof structure
S whose conclusions are in bijection with the ports. If the modality of β is 〈a〉,
then the principal port is labelled 〈a〉A and matches a conclusion of S labelled
A, while auxiliary ports have the same label as their matching conclusion in S.

The graphical notation of proof structures is presented in figure 1. By defini-
tion there are arcs only to multiplicative nodes, moreover proof structures can be
drawn considering the top-bottom orientation of arcs, so we keep arc orientation



Fig. 1. Representation of proof structures: axiom link, ` node, � node, boxes, cut.

implicit by this convention. Arcs to a ` node are joint by a circle on the side of
this node. By construction, the conclusion labels suffice to deduce all labels, so
we keep most of this information implicit.

Definition 8 (proof net). A proof net is a proof structure built following
MLLa sequent calculus rules. An immediate subnet of a proof net π is an induced
subgraph of π that is itself a proof net. A subnet of π is either an immediate
subnet of π or (inductively) a subnet of a box of π.

Well known correctness criteria [5, 10, 6] apply to characterise proof nets
among proof structures by combinatorial means like acyclicity and connected-
ness.

Definition 9 (cut elimination). Annotated cut elimination is the relation
→c
ce over proof structures, labelled by partial involutions c over L, that is the

reflexive transitive closure of the rules below (such that if π →c
ce π

′ →d
ce π

′′ then
π →c∪d

ce π′′). We have π →c
ce π

′ if π contains a cut κ = {x, y} either at top level
or inside a box and one of the following cases occurs:

– Multiplicative step and Axiom step: standard definition, with c = ∅.
– Modality step: If x and y are principal ports of two boxes β, β′, then c per-

mutes `(β) and `(β′) and π′ is obtained by replacing each box with its asso-
ciated proof structure.

– Commutation step: If x is the auxiliary port of a box β, then c = ∅, and the
cut and a subnet of π that contains y are moved inside β.

Our proof system enjoys a standard cut-elimination theorem using this def-
inition: if π →c

ce π
′ and π is a proof net, then π′ is a proof net with the same

conclusion (this is proved by standard arguments using correctness criteria, hence
we will not develop this point); if a proof π is irreducible by →ce, then it has
no cut link (this is an immediate case analysis). Note however that →ce is not
confluent, because of commutation steps.

Definition 10 (head reduction). Head reduction is the annotated relation
→c
h over proof structures defined as the restriction of →c

ce that only applies at
top level and does not use the commutation step of cut elimination.

This particular strategy is relevant because it does not reduce inside boxes,
that is under prefixes, it only affects cuts in active position (from the point of
view of processes). However, this strategy does not eliminate all cuts in general.



In the analysis of proofs, the following notion of path will be useful. It de-
scribes a way to traverse arcs and axioms/cuts in a proof structure while re-
specting the logical meaning of formulas.

Definition 11 (path). A path in a proof structure S is an alternating path
in the underlying graph of S, such that alternations occur only at axioms, cuts
and boxes. Each move between ports x and y of a box β must be associated with
a path between the corresponding conclusions in β. We further require a typing
constraint: a path can only move up a left (resp. right) branch if has moved down
a left (resp. right) branch before, with a natural well-bracketing condition.

For instance, a path starting from an axiom with type α may move down
the tree of nodes, reach a cut, move up the other side of the cut, always in the
branches that contain α, reach an axiom, and so on.

5 Typing executions of MCCS terms

Proofs in MLLa will serve as a type system. Although this can be formulated in
usual sequent style (as in table 1), the natural notion rather relates proof nets
and structural congruence classes of terms.

Definition 12 (term assignment). Let S be a proof structure. The MCCS
term bSc assigned to π is the parallel composition of the bβc for each box β in
S. In turn, for a box β with location ` and associated structure Sβ, the term bβc
is a`.bSβc if the principal port of β has modality 〈a〉 and ā`.bSβc if the principal
port of β has modality 〈a〉. A term P is said to have type Γ if there is a proof
net π of conclusion Γ such that bπc ≡ P . In this case we write π : P ` Γ .

A proof net is a proof structure that is built using the rules of table 1, ignoring
the terms on the left of the ` symbols. It is obvious that these terms do reflect
the definition of term assignment: A term P has type Γ if and only if there is a
type derivation with conclusion P ` Γ using the rules of table 1.

We now establish the correspondence between cut elimination in a proof and
execution steps in the assigned terms. The first result justifies head reduction:

Proposition 3. Let π be a proof structure. For every head reduction π →c
h π
′

there is an execution bπc →c
ex∗ bπ′c.

Proof (sketch). Axiom and multiplicative cut elimination steps do not affect the
assigned terms, besides their annotation is empty, so the result holds immediately
for them. When a modality step applies, it reduces a cut between boxes with
dual modalities (because of typing), hence the associated terms are ready to
interact; the reduct is easily seen to be the assigned term of the reduct proof.

Example 3. Let π be the following proof net.

d̄ d ē eb c̄caāb̄



We have bπc = a.c | b.ā | ē.c̄ | d.b̄ | e | d̄. (It is ∂c3 (P ) of previous examples). As it
is deterministic term, we abusively identify locations with names. We consider
the head reduction sequence π →z

h π′ (where π′ is an axiom link) for z =
{(d, d̄), (b, b̄), (a, ā), (e, ē), (c, c̄)}. We have bπc →z

ex∗ bπ′c ≡ 1.

Subject reduction does not hold in general. Indeed, a given proof may hold
several occurrences of a given modality, corresponding to different occurrences
of an action in the term, and the structure of cuts may not match a given
execution step. This is not a defect, since we actually intend to type pairings
rather than processes: we do get subject reduction if we restrict to proofs that
describe deterministic terms.

Definition 13 (linear proof). A proof structure S is called linear if

– S contains at most one box for each modality,
– for each a, all occurrences of 〈a〉A in the labels in S have the same immediate

subformula A, and if 〈a〉A and 〈a〉B occur then A and B are dual,
– if S contains a box for both 〈a〉A and 〈a〉A⊥, then neither formula occurs in

the conclusion type of S.

The essence of the linearity condition is the first constraint. Intuitively, the
second and third constraints serve to guarantee that the property is preserved
by composition. Indeed, if a formula 〈a〉A occurs in the conclusion of a proof
π, then the proof may be cut against a proof that contains a modality box for
〈a〉A⊥, which breaks linearity if π already contains a box for some 〈a〉B. Note
that the fact of being a linear proof is preserved by cut elimination.

Theorem 1 (subject reduction). Let π be a linear proof of conclusion P ` Γ .
For every execution P →c

ex∗ P
′ there is a linear proof π′ : P ′ ` Γ .

Proof (sketch). An execution step bπc →(`,m)
ex P involves immediate subterms

a`.Q and ām.R for a ∈ N . Then π contains two top level boxes with respective

principal ports x〈a〉A and y〈a〉A
⊥

, for A ∈ MLLa. Since π is linear, x and y are
elimination boxes for each other, ending a path ρ (as of definition 11) whose
axioms contain modalities of x and y in their types. Let π′ be the rewriting of π
where such modalities are removed (boxes are replaced by their contents, axioms
on 〈a〉A by axioms on A). Clearly π′ is a linear proof of conclusion P ′ ` Γ .

This theorem states that types are preserved by execution in deterministic
terms. However, the proof uses a rewriting of the typing proofs that does not
correspond to cut elimination in general. Indeed, consider the following example
of typing, call π the l.h.s.:

b

a ā �→
b



Then the proof is linear, irreducible by head cut elimination, but the assigned
term bπc = ā | b̄ | a does execute into b̄. In π, this involves a cut on the axiom
inside the middle box. As done in theorem 1 the rewriting of π in a linear proof
π′ assigned to b̄ is the r.h.s..

We can get a precise correspondence between execution and head cut elimi-
nation by imposing an additional constraint on the shape of proofs. In the state-
ment below, an axiom is immediately contained in a box if it is an immediate
subnet of the structure associated with this box.

Definition 14 (regular proof). An axiom link immediately contained in a box
β is anchored if there is a path from one of its conclusions to an auxiliary port
of β and a path from its other conclusion to the principal port. A proof structure
π is regular if all its axioms are anchored and for every pair of boxes with dual
modalities, one of the boxes does not immediately contain any axiom.

Theorem 2 (strong subject reduction). Let π be a regular linear proof net.
For every execution bπc →c

ex∗ P there is a regular linear proof π′ such that
π →c

h π
′ and bπ′c = P .

Proof (sketch). Consider an execution step bπc →(`,m)
ex P . As in the proof of

theorem 1, linearity implies that there are boxes at top level and a path ρ between

their principal ports x〈a〉A and y〈a〉A
⊥

for immediate subterms a`.Q and ām.R
of bπc. Since x is cut at top level, ρ traverses no box, otherwise linearity or
regularity would be contradicted. Then ρ is a multiplicative cut path whose cut
elimination →∅h until x and y preserves bπc as well as regularity and linearity.

6 Anti-execution and completeness

In this section we establish our correspondence theorem relating typings and
executions. To achieve this goal we first provide a kind of reciprocal statement
for subject reduction: if a term T can reduce into a typed term T ′, then we can
type T with a proof that reduces to the typing of T ′. Because we want logically
correct proof structures, this operation requires some care.

Example 4. Consider the term P := a.b̄ | b.c̄ | ā.c. We cannot type each thread
with a simple type like 〈a〉α, 〈b〉α⊥ and then introduce a cut for each interaction,
since we would get a cyclic proof structure, what is incorrect.

We now describe a general method for deducing a typing by “anti-execution”
of a proof. We stay at a partly informal level for clarity, all formal statements
are detailed in appendix B.3.

Consider a generic execution step P | a.Q | ā.R →ex P | Q | R. Assume the
reduct is typed by some proof π. We want to put the parts of π that correspond
to Q and R into boxes, with a cut between them, while rewriting the proof to
avoid cycles. For this purpose, we proceed in four steps:



Selection consists in moving each box belonging to Q or R away from the main
proof, by means of an axiom/cut pair, so that Q and R are represented by
simple sets of boxes, cut with the main proof (which corresponds to P ), with
no multiplicative connectives:

�→

Chaining consists in introducing an extra axiom/cut pair in the middle of each
cut between P and R, so that there are cuts only between P and Q or Q
and R, and not between P and R directly:

R�Q�P �

�→

P Q R

Simplification consists in making sure that there is actually exactly one cut
between P and Q and one between Q and R, by multiplexing multiple cuts
through multiplicatives:

�→

Correctness criteria guarantee that we can always find two cuts for which
there is one connected component on one side, two on the other.

Boxing consists in putting Q and R into boxes, cut together, so that Q has one
auxiliary port to P and R has no auxiliary port:

�→

Following this method, we prove the following statement:

Proposition 4 (anti-execution). Let T1 →c
ex T2 be an execution step and let

π2 : T2 ` Γ be a typing. There exists a typing π1 : T1 ` Γ such that π1 →c
h π2.

Example 5. Consider the term of P of example 1. We consider the execution e =
(a, ā)(b, b̄)(c, c̄)(d, d̄)(e, ē) of the determinized term ∂c4 (P ) = a.c |b.d̄ | b̄.c̄ |d.ē |e | ā
for the (total and consistent) pairing c4 = {(1, 0), (3, 5), (7, 4), (9, 8), (2, 6)}. A
typing synthesized by the construction of proposition 4 is the following.

c̄

b̄

e
d

b

ēd̄ a āc



Lemma 1 (preserved regularity). In the construction of proposition 4, if π2
is regular, then so is π1. If π2 is linear and T2 is deterministic, then π1 is linear.

Proof (sketch). Let T2 = P |Q | R. If an axiom is introduced by anti-execution
rewrite steps, used in proposition 4 then: i) it is added to P by selection and
it will not be boxed, or ii) it is added to Q by chaining and becomes anchored
by simplification and boxing. No axiom is introduced on the side of R, Q only
contains chaining axioms, so regularity is satisfied for the new axioms. Besides,
regularity is not broken for axioms previously present in the proof.

Example 6. In the previous example 5, one can also start execution by (b, b̄)(a, ā)
as seen in the typing. All execution permutation of ∂c4 (P ) in the pairing c4 is
allowed by the typing proof synthesized from the execution e.

We now summarize the previous results, about subject reduction and the
reverse operation, into a precise statement relating typings and execution.

Lemma 2 (initial typing). Every linear MCCS term where no name occurs
with both modalities is typable by a cut-free regular proof.

Proof. We simply build a proof of T ` AT , BT with AT non-modal by induction
on T . For T = 1, use the axiom rule to get 1 ` α⊥, α. For T = P | Q, deduce
T ` AP `AQ, BP �BQ by the tensor rule. For T = a.P , deduce T ` AP , 〈a〉BP
by the action rule, similarly for ā.P . The proof thus built is obviously regular
since every axiom is at top level or anchored, and there are no pairs of boxes
with dual modalities.

Theorem 3 (completeness). For every execution P →c
ex∗ Q there are typings

πP : P ` Γ and πQ : Q ` Γ such that πP →c
h πQ. Moreover, for every execution

sequence P →c1
ex P1 · · · →cn

ex Pn = Q with c1 ∪ · · · ∪ cn = c, there is a cut
elimination sequence πP →c1

h π1 · · · →cn
h πn = πQ, with bπic = Pi for all i.

Proof. By definition, the term ∂c (Q) is linear and has no dual actions, so
by lemma 2 we can find a cut-free regular proof π′Q : ∂c (Q) ` Γ . If we ap-
ply proposition 4 repeatedly to π′Q with the steps of the considered execution
∂c (P )→c

ex∗ ∂c (Q), we get a proof π′P : ∂c (P ) ` Γ that reduces to π′Q by a head
reduction sequence labelled c. Let πP and πQ be the relabellings of π′P and π′Q
by the inverse of ∂c, then we have πP : P ` Γ , πQ : Q ` Γ and πP →c

h πQ.
Every execution sequence of P with label c is an execution sequence of ∂c (P )

with the same label. By lemma 1, π′P enjoys strong subject reduction as of the-
orem 2, hence every run of ∂c (P ) labelled by c corresponds to a head reduction
sequence in π′P labelled by c. By relabelling with ∂−1c , every run of P labelled
by c corresponds to a head reduction sequence πP →c

h πQ.

In other words, every execution of a term can be exactly characterized up
to permutation by typing, in the sense that the execution sequences of the term
within the same pairing will be exactly the head reduction sequences of the
associated typing proof. By combining determinisation (definition 6) and strong
subject reduction (theorem 2) we get that, conversely, each regular typing of a
term defines a set of executions stable by permutation.



7 Conclusion and further works

In this work we have developed, in the simple framework of multiplicative CCS,
a precise logical description of executions of processes. A key technical tool is
the use of pairings, by which we separate non-determinism in communication
from the multiplicity of equivalent schedulings; this technique extends well to
more expressive frameworks (full CCS, π-calculus, etc.). The logical interpre-
tation we propose moves beyond the traditional Curry-Howard for concurrency
by accepting non-deterministic terms, albeit with a change of interpretation in
the correspondence. Indeed, the logic we use is well studied and has a wide
range of existing tools (efficient correctness criteria, proof search, etc.) but its
interpretation in our paradigm of proof-as-executions is new.

Logical expressiveness The restriction to purely multiplicative objects, in MCCS
and MLL, lets us concentrate on the precise role of multiplicatives and axioms
as descriptions of how a process interacts with its environment, but it hides the
complexity inherent to the other defining features of concurrent systems like
choice, recursion, name passing, etc. It should be stressed that extending the
calculus or the logic are two different things.

On the one hand, extending the calculus enriches the set of possible exe-
cutions, by introducing more subtle synchronization possibilities: choice allows
for conflict between actions, replication allows for arbitrarily large runs with
some uniformity, value passing allows for communication of ground values, name
passing allows the set of synchronizable pairs to evolve along execution. After
determinisation, all these features essentially disappear and deterministic runs
can still be formulated in MCCS. On the other hand, enriching the logic leads to
richer descriptions of the control flow in processes, for instance using a first order
language with predicates to describe properties of continuations. Furthermore,
new connectives allow a given type to correspond to more distinct executions.

These two kinds of extensions are not independent, however, since each fea-
ture of the calculus can be usefully described using a feature of the logic. Let us
illustrate this in the case of choice and additives. The technique of pairings still
works, consistency simply needs to take into account a notion of conflict as in
event structures [19]. The type system is naturally extended by additive rules:

P ` Γ,A Q ` Γ,B
P +Q ` Γ,A&B

P ` Γ,A
P ` Γ,A�B

possibly with the restriction that A and B are modal. A type A&B for a behavior
means either behaving as A or as B, according to what the environment provides,
while A�B means behaving as A or B depending on one’s own choice.

With this we can type useful processes that use choice. For instance, describe
a boolean on names t, f as some process that will send a signal on one of the
channels t, f . This can be materialized by the type B(t, f) := α⊥, 〈t〉α � 〈f〉α
which reads like “give me control (using α), I will terminate by a signal on
t or f”. Then consider a negation function: N := t.f̄ ′ + f.t̄′. By studying its



interactions with the environments E1 := t̄ | f ′ and E2 := f̄ | t′, we see that
both the N | Ei have complete consistent pairings, hence we can type them as
α⊥, α. Extracting the types of N we get 〈t〉α⊥, 〈f ′〉α and 〈f〉α⊥, 〈t′〉α, which we
combine by additives into a unique type 〈t〉α⊥ & 〈f〉α⊥, 〈t′〉α� 〈f ′〉α. This way
we get a possible specification for N .

Causality A crucial feature of our work is the interpretation of axioms as a way
to transfer causality. An effect is that, most of the time, the type of a term will
contain modalities for actions that it does not contain by itself. For instance, a.b̄
may have type 〈a〉〈c〉α⊥, 〈b〉〈c〉α, which can be read “give me a signal on a with
the promise of a signal on c, and I will answer with a signal on b and the promise
of a signal c”. This makes it explicit that this part of interaction will be involved
in the triggering of interaction on c, but only indirectly by allowing bearers of c
to get active. This idea suggests new ways of analyzing causality in interactive
systems, and the fact that the flow of causality is often as complicated as the
flow of information. Besides, a similar fact is illustrated by the expressiveness of
solos [13, 3], where communication is used to carry all prefixing information in
processes. Our interpretation may provide a logical insight on this matter.
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A MLLa and restricted type system

A.1 MLL with action modalities

Proof structures of MLLa are formally defined as follows:

– The forest is seen as an acyclic graph (VS , ES) oriented from leaves to roots,
with a total order on the ingoing arcs of each node.

– We write vA to signify that vertex v has label A. We impose that if a vertex
vA is not a leaf, then it has two children xB and yC (in this order) and either
A = B � C or A = B ` C; the main connective of A is the sort of v.

– Axioms are pairwise disjoint pairs of leaves labelled by dual formulas.
– Cuts are disjoint pairs of roots labelled by dual formulas.
– Boxes are disjoint non-empty sets of leaves,
– Ax ∪Box forms a partition of the set of leaves.
– Each box β has a distinguished element called its principal port, the others

are auxiliary ports. Each box is associated (inductively) to a proof structure
Sβ with a bijection φ from the elements of β to the conclusions of Sβ .
• For the principal port xA of β we have A = 〈a〉B or A = 〈a〉B where B

is the label of φ(x);
• for each other element y of β, the labels of y and φ(y) are the same.

To each box β we also associate a location `(β), with the constraint that
each location is used at most once in any given structure.

The roots that are not part of a cut are called the conclusion nodes of S. The
conclusion type of S is the multiset of the labels of its conclusion nodes.

Proof nets (PN) are formally defined as follows:

(ax): ({uAax, vA
⊥

ax }, {uv}, ∅, ∅, {u, v}) is a PN.
(`): If G = (V,E,A, P,C) is a PN and uA, vB are two conclusions of G, then

(V ] {wA`B` }, E,A ∪ {uw, vw}, P ∪ {{uw, vw}}, C \ {u, v} ∪ {w}) is a PN.
(⊗): If G = (V,E,A, P,C) and G′ = (V ′, E′, A′, P ′, C ′) are disjoint PNs, uA is a

conclusion of G and vB is a conclusion of G′, then (V ] V ′ ] {wA�B
� }, E ]

E′, A ]A′ ] {uw, vw}, P ] P ′, (C \ {u}) ] (C ′ \ {v}) ] {w}) is a PN.
(act): If G = (V,E,A, P,C) is a PN with conclusions set C = {uA, vB1

1 , . . . , vBkk },
then ({x〈a〉A〈a〉 (G), yB1

1 , . . . , yBkk }, {uv1, . . . , uvk}, ∅, ∅, {u, v1, . . . , vk}) is a PN.

Also when changing 〈a〉A by 〈a〉A.
(cut): If G = (V,E,A, P,C) and G′ = (V ′, E′, A′, P ′, C ′) are disjoint PNs, uA is

a conclusion of G and vA
⊥

is a conclusion of G′, then (V ] V ′, E ] E′ ∪
{uv}, A ]A′, P ] P ′, (C \ {u}) ] (C ′ \ {v})) is a PN.

Cut elimination in MLLa is formally defined as follows. Let π and π′ be a
proof structure and c be a partial involution on L. Annotated cut elimination
is the relation →c

ce over proof structures, labelled by partial involutions c over
L, that is the reflexive transitive closure of the rules below (such that if π →c

ce

π′ →d
ce π

′′ then π →c∪d
ce π′′). We have π →c

ce π
′ if π contains a cut κ = {x, y}

either at top level or inside a box and one of the following cases occurs (note
that x and y may be freely exchanged):



Axiom and cut rules (A is a literal α or a MLLaformula):

1 ` Ao, A⊥ (ax)
P ` Γ,Ao Q ` A⊥,∆

P |Q ` Γ,∆
(cut)

Multiplicative rules:

P ` Γ,Ap, Bp

P ` Γ, (A`B)p
(`)

P ` Γ,Ap Q ` Bp,∆
P |Q ` Γ, (A�B)p,∆

(⊗)

Modality and New rules:

P ` Γ,Ao

a`.P ` Γ γ , (〈a〉A)p
(act) P ` Γ a /∈ Γ

(νa)P ` Γ
(new)

Table 2. Inference rules in MLLa
p

– Multiplicative step: If x and y have respective sorts � and `, then each has

two premises, call them respectively xA1 , x
B
2 , y

A⊥

1 , yB
⊥

2 . Then c = ∅ and π′ is
obtained by removing κ and the nodes x and y and adding the cuts {x1, y1}
and {x2, y2}.

– Axiom step: If y is a leaf node and it is part of an axiom α = {y, z} with
x 6= z, then c = ∅ and π′ is obtained removing α, κ, y and z and rewriting
any outgoing arc of z into an outgoing arc of x.

– Modality step: If x and y are principal ports of two boxes β, β′, then c
permutes `(β) and `(β′) and π′ is obtained by replacing each box with its
associated proof structure, identifying the conclusions of this structure with
the ports of the box.

– Commutation step: If x is the auxiliary port of a box β, call T the smallest
subnet of π that contains y. Then c = ∅ and π′ is obtained by moving T
and κ inside β, replacing the auxiliary port x by one auxiliary port for each
conclusion of T .

A.2 MLLa
p, a restriction of MLLa

The restriction to anchored proofs may be designed with a restriction of our
type system as in Table 2. The idea is to enforce in each box an orientation
from auxiliary ports to principal port, for axioms on modalities. We simply
use a decoration on formulas when needed. The letters p, q, . . . indicate the o
decoration (output) or no decoration. The sequence of formulas Γ γ is a sequence
of formulas decorated with letters.

B Detailed proofs

B.1 Runs and pairings

Lemma 3. Let P →c
ex Q be an execution and d be a pairing of Q, then dom c∩

dom d = ∅ and c ∪ d is a pairing of P . If d is consistent, then so is c ∪ d.



Proof. First remark that, by definition of execution, we have L(P ) = L(Q) ]
dom c, besides dom d ⊂ L(Q) so the domains of c and d are disjoint. We can
thus define the involution c′ = c ∪ d, and check that it is indeed a pairing of P .

Let ` ∈ dom c′. If ` ∈ dom c then ` is the location of an action involved in the
execution step, so subjP c(`) = subjP ` and polP c(`) = −polP ` by definition
of execution, and subsequently the property holds for c′. Otherwise ` is in the
domain of d, then the same property holds for d in Q since d is a pairing of Q,
and again we get it for c′ in P . Hence c′ is a pairing of P .

Now suppose d that is consistent but c′ is not. Write ` ≺cP m if there is a
location n such that ` <P n ∼c m. Then there exists a cycle `0 ≺cP `1 ≺cP · · · ≺cP
`k = `0. If all the `i are in Q then this cycle exists in ≺dQ, which cannot be
since d is consistent. Since c annotates a reduction of P , all elements of dom c
are minimal for ≤P , so the cycle cannot consist only of elements of dom c. So
we may assume `0 ∈ L(Q) and `1 ∈ dom c. This means either `0 <P `1 or
`0 <P c(`1), in each case this implies that some location in dom c is prefixed in
P , which is impossible. Hence c′ is consistent.

Proof (proposition 1). By iterating lemma 3, from an execution P0 →c1
ex P1 →c2

ex

· · · →cn
ex Pn we can deduce a pairing c = c1 ∪ · · · ∪ cn of P0. This pairing

represents the execution above, because it contains all the choices made during
this execution. Indeed we can prove that executions that yield the same pairing
are equivalent. The converse is detailed in the main text.

Lemma 4. Let P →c1
ex Q1 and P →c2

ex Q2 be two executions with dom c1 ∩
dom c2 = ∅. Then there is a unique R such that Q1 →c2

ex R and Q2 →c1
ex R.

Proof. By the existence of the execution step P →c1
ex Q1, we know that P can be

written P ≡ ā`.S |am.T |P ′ for some name a and with dom c1 = {`,m}. Similarly,
the term P can be decomposed as P ≡ b̄`

′
.S′ | bm′ .T ′ | P ′′ for some name b and

with dom c2 = {`′,m′} to justify the execution step P →c2
ex Q2. By hypothesis

the domains of c1 and c2 are disjoint, so ` and m are distinct from `′ and m′. As a
consequence the term P can be decomposed as P ≡ ā`.S |am.T |b̄`′ .S′ |bm′ .T ′ |P ′′′
and the terms Q1 and Q2 have execution steps with the expected annotations,
with the common reduct R = S | T | S′ | T ′ | P ′′′. Unicity of R up to structural
congruence is a consequence of the fact the c1 and c2 completely describe which
subterms of P,Q1, Q2 interact and in which way.

Proof (proposition 2). The pairing c is the disjoint union of the atomic invo-
lutions of each step, so clearly the execution sequences are permutations of
each other. Write them as P = P0 →c1

ex P1 · · · →cn
ex Pn and P = P0 →cσ(1)

ex

P ′1 · · · →
cσ(n)
ex P ′n. We now prove that the final terms Pn and P ′n are equal up to

structural congruence. Call d(σ) the number of pairs (i, j) such that i < j and
σ(i) > σ(j). We proceed by induction on d(σ). If this number is 0, then σ is the
identity function and the sequences match, so obviously we have Pn ≡ P ′n. Oth-
erwise, consider a minimal i such that σ(i) 6= i, hence σ−1(i) 6= i and σ−1(i) > i,
and let j = σ−1(i)− 1. The reduction sequences match in their first i− 1 steps,
then one has a reduction labelled ci while the other has a reduction labelled



cσ(i). By repeated applications of lemma 4, we can deduce that for each k ≥ i

there is a term Qk such that P ′k →ci
ex Qk and Qk−1 →cσ(k)

ex Qk if k > i:

Pi

cσ(i)   

ci+1 // · · ·

Pi−1

ci
<<

cσ(i) !!

Qi
cσ(i+1)// · · ·

cσ(j−1)// Qj−1
cσ(j) // Qj

P ′i

ci
??

cσ(i+1)// · · ·

ci
==

cσ(j−1)// P ′j−1

ci
;;

cσ(j) // P ′j

ci
;;

cσ(j+1)// P ′j+1

Moreover, by construction cσ(j+1) = ci, so P ′j+1 ≡ Qj , because there is at most
one possible reduction for a given annotation. Hence we can deduce a pair of
reduction steps P ′j−1 →

cσ(j+1)
ex Qj−1 →cσ(j)

ex Pj+1. This yields a new reduction
sequence from P0 to P ′n that corresponds to a new permutation σ′ of the sequence
(ci), and σ′ is σ where σ(j) and σ(j+1) are swapped. By definition of j we have
σ(j) > σ(j + 1) so σ′(j) < σ′(j + 1). For any a 6∈ {j, j + 1} we have σ(a) < σ(j)
if and only if σ′(a) < σ′(j+ 1), and the same exchanging j and j+ 1, so we have
d(σ′) = d(σ)− 1, and we can conclude by induction hypothesis.

B.2 Typing

Proof (proposition 3). Clearly we can deduce the general result from the case
of each individual rule. Cut elimination steps for multiplicatives and axioms
do not affect the nesting of boxes, which is the only part of proofs used in
term assignment, so for each such step π →∅h π′ we have bπc = bπ′c, hence
bπc →∅ex∗ bπ′c by reflexivity. For an elimination step for modalities, we have

π →(`,m)
h π′ where ` and m are the locations of two boxes β and β′. By definition

there is a cut between their principal ports x and y, so these ports must have
dual types 〈a〉A and 〈a〉A⊥. Call π1 and π2 the proofs associated to β and β′,
then we have bβc = a`.bπ1c and bβ′c = ām.bπ2c. Moreover, there is a term P

such that bπc = bβc | bβ′c |P so we have bπc →(`,m)
ex bπ1c | bπ2c |P , and the latter

is equal to bπ′c by definition of the cut elimination step for modalities.

Proof (subject reduction theorem 1). Consider an execution step bπc →(`,m)
ex P .

This step involves immediate subterms a`.Q and ām.R for some name a, hence π
must contain a box at top level with principal port x〈a〉A and one with principal

port y〈a〉A
⊥

, for some formula A. Since π is linear, 〈a〉A and 〈a〉A⊥ do not
occur in the conclusion type, so they are cut. Since π is linear, no other boxes
introducing these modalities can be in π. So x and y are elimination boxes for
each other, and there is a path (as of definition 11) ρ from x to y in π. Remark
that ends of ρ are modality rules on 〈a〉A and 〈a〉A⊥ whereas all axioms along ρ
contain these modalities in their types. Let π′ be the rewriting of π where such
modalities are removed by rewriting axioms on 〈a〉A/〈a〉A⊥ in axioms on A/A⊥,
and by rewriting the end boxes by their contents. Clearly π′ is a linear proof
that infers P .



Proof (strong subject reduction theorem 2). Consider an execution step bπc →(`,m)
ex

P . This step involves immediate subterms a`.Q and ām.R for some name a, hence
π must contain a box at top level with principal port x〈a〉A and one with prin-

cipal port y〈a〉A
⊥

, for some formula A. Since π is linear, 〈a〉A and 〈a〉A⊥ do not
occur in the conclusion type, so they are cut. Since π is linear, no other boxes
introducing these modalities can be in π. So x and y are elimination boxes for
each other, and there is a path (as of definition 11) ρ from x to y in π. For
simplification we consider that boxes are replaced by their associated proof net
keeping the information of auxiliary and principal ports (this is more like sequent
calculus derivations).

Since x is at top level and cut, suppose that along ρ we get through a box
β from x. By duality it is only with axioms on modality formulas 〈a〉A/〈a〉A⊥.
Moreover by typing rules going inside β can only be done through an auxiliary
port. Since π is regular, ρ go out from β through its principal port. By typing
rules it is not possible to reach y without encountering before a principal port of
a box eliminating β. Moreover this is only possible using an axiom on modality
formulas 〈a〉A/〈a〉A⊥ in this box. Remark that since π is regular and β has
axioms on modalities, corresponding elimination box is simple. Then to use an
axiom on modalities contradict that π is regular. Then there is no box traversal
along ρ. Then by typing ρ is a multiplicative cut path whose cut elimination→∅h
until x and y preserves bπc as well as regularity and linearity of proof.

B.3 Anti-execution by division of proof nets

Definition 15. A 3-partition of a set X is a triple (P,Q,R) of pairwise disjoint,
possibly empty subsets of X such that P ∪Q ∪R = X.

Definition 16. A division of a proof net π is a 3-partition (P,Q,R) of the set of
nodes of π such that the subgraph πP of π induced by P (resp. Q, R) is a disjoint
union of immediate subnets of π. The division is called proper if P,Q,R are not
empty. It is called simple if πP , πQ, πR are immediate subnets of π.

Remark that, because each component must be a proof net, each node in a
component must have its ancestors in the same component, so the only edges of
π that are not part πP ∪ πQ ∪ πR must be cut edges.

Let (P,Q,R) be a division of a proof net π, let π′ be a reduct of π by some
cut elimination step. Call P ′, Q′, R′ the restrictions of P,Q,R to the node set
of π′. If (P ′, Q′, R′) is a division of π′, then we say that (P,Q,R) reduces to
(P ′, Q′, R′).

Lemma 5 (selection). Let (BP , BQ, BR) be a 3-partition of the set of boxes of
a proof net π. There is a division (P,Q,R) of a proof net π′ that reduces to π by
axiom steps such that Q′ (resp. R′) contains exactly the boxes BQ (resp. BR).

Proof. For each box β ∈ BQ ∪BR, for each auxiliary port xA ∈ β, we introduce

two new leaves yA
⊥
, zA, a cut {x, y} and an axiom {y, z}, and we turn any

outgoing edge of x into an outgoing edge of z. Call π′ the resulting proof net.



�→

Let Q be the set of auxiliary ports of boxes in BQ, R be the set of auxiliary ports
of boxes in BR, and let P be the set of all other nodes. Each box in BQ ∪ BR
is obviously a subnet of π′, moreover P induces a subnet of π′, so (P,Q,R) is a
division of π′ with the expected properties.

Lemma 6 (chaining). Let (P,Q,R) be a division of a proof net π. There exists
a proper division (P ′, Q′, R′) of a proof net π′, with no cut between πP ′ and πR′ ,
that reduces to (P,Q,R) by axiom steps.

Proof. Since π is a proof net, it must have at least one conclusion node xA. If
some set among P,Q,R is empty (say Q), extend π by adding an axiom on two

fresh nodes {yA⊥ , zA} and a cut {x, y}, and put y and z into Q. This way we
get a proper division.

Now, for each cut {xA, yA⊥} with x ∈ P and y ∈ R, introduce a fresh axiom

{uA⊥ , vA}, put u and v in Q, then remove the cut {x, y} and introduce two new
cuts {x, u} and {v, y}. This way we make sure there is no cut between P and R.

R�Q�P �

�→

P Q R

The only operation we have done here is introducing axiom/cut pairs on existing
cut links or conclusions, so the resulting structure is a proof net that reduces to
the original one by axiom steps, only removing the newly created nodes.

Lemma 7 (simplification). Let (P,Q,R) be a proper division of a proof net
π with no cut between πP and πR. There is a simple division (P ′, Q′, R′) of a
proof net π′ that reduces to (P,Q,R) by multiplicative steps.

Proof. Since π is a proof net, it must be connected, so there are cuts between
πP and πQ and between πQ and πR. We rewrite π to make sure that in each case
there is exactly one cut. Suppose there are two cuts {x, x′} and {y, y′} between
πP and πQ, with x, y ∈ P and x′, y′ ∈ Q. If x and y are in the same connected
component of πP , then x′ and y′ must be in two distinct components of πQ
(because of acyclicity of π), so we can replace the two considered cuts by a cut
on a new pair of nodes x`y and x′�y′, which we put in P ′ and Q′ respectively:

�→



Otherwise x and y are not in the same connected component of πP , so x′ and y′

must be in the same component of πQ (because of connectedness of π), so this
case is symmetric. By construction, the resulting proof net π′ reduces to π by
multiplicative reduction and it has one less cut between π′P ′ and π′Q′ . Iterating
this method, we can make sure that there is exactly one cut between π′P ′ and
π′Q′ , and also between π′Q′ and π′R′ . Subsequently, π′P ′ , π

′
Q′ , π

′
R′ are immediate

subnets of π′, since they must be acyclic and connected.

Proof (proposition 4). Let {`,m} be the domain of c. There is a name a such
that T1 ≡ (P |a`.Q|ām.R)→c

ex (P |Q|R) ≡ T2, and by hypothesis bπ2c = T2. Let
(BP , BQ, BR) be the 3-partition of the set of boxes of π2 such that BP contains
the boxes assigned to the actions in P , and similarly for Q and R.

By lemma 5 there is a division (p, q, r) a proof π that reduces to π2 by
axiom steps and such that q (resp. r) exactly contains the boxes BQ (resp. BR).
By lemma 6 there is a proper division (p′, q′, r′) of a proof π′ that reduces to
(p, q, r) by axiom steps, and with no cut between π′p′ and π′r′ . By lemma 7
there is a simple division (p′′, q′′, r′′) of a proof π′′ that reduces to (p′, q′, r′) by
multiplicative steps. Then (p′′, q′′, r′′) reduces by multiplicative and axiom steps
to π2 and all the boxes contained in π′′p′′ are the ones BP , and similarly for Q and

R. Moreover there is no cut between π′′p′′ and π′′r′′ and one cut κ = {xA, yA⊥}
between π′′q′′ and π′′r′′ .

We define π1 as the proof net π′′ as follows. The subnet π′′q′′ is replaced by a
box βq with location `, with π′′q′′ as contents, with x as its principal port and one
auxiliary port for each conclusion of π′′q′′ other than x. The subnet π′′r′′ is replaced

in the same way, with location m. The cut κ is retyped as {x〈a〉A, y〈a〉A⊥}. This
is depicted as follows.

�→

By construction there is a cut elimination step π1 →c
h π′′, besides we have

π′′ →∅h π2, so we get the expected reduction.


