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Abstract. This paper proposes a new interpretation of the logical con-
tents of programs in the context of concurrent interaction, wherein proofs
correspond to successful executions of a processes. A type system based
on linear logic is used, in which a given process may have several differ-
ent types, each typing corresponding to a particular way of interacting
with its environment, and cut elimination corresponds to executing the
process in a given scenario. We prove that, for any process, the set of
lock-avoiding executions precisely corresponds to the set of typings of
the process. Particularly important is the role played by the axiom rule,
which allows typings to make assumptions on the events of the environ-
ment. In this interpretation, logic appears as a way of making explicit
the flow of causality between interacting processes.

1 Introduction

The extension of the familiar Curry-Howard correspondence to interactive mod-
els of computation has been an active research topic for several decades. Several
systems were proposed based on linear logic [7], following the fundamental obser-
vation that it is a logic of interaction. Interpretations of proofs as processes, first
formalized by Abramsky [1], later refined in particular by the first author [2],
stressed that proof nets [8] and process calculi have significant similarities in
dynamics. At the same time, type systems for concurrency [16] revealed to be
equivalent to variants of linear logic [9]. Nevertheless, these approaches are not
satisfactory yet as a logical account of concurrency, because they lack the inher-
ent non-determinism of actual concurrency, precisely because they use logic to
gain determinism.

Several approaches to the question of non-determinism in logic were also
proposed. The use of the additive connectives of LL as a proof-theoretic repre-
sentation of it was for instance explored by Mairson and Terui [11] to provide
a notion of non-deterministic cut-elimination, or by Maurel [12] or the second
author [14] who used it to represent the kind of non-determinism familiar in com-
plexity theory. In a different style, differential logic was recently developed by
Ehrhard and Regnier [6] and its untyped proof formalism was shown to represent
the π-calculus faithfully [5].
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The present work proposes a different approach to the topic, by questioning
the “proofs-as-programs” paradigm. Proof theory wants cut elimination to be
confluent, because the meaning of proofs, which lies in their normal forms. On
the other hand, reduction in process calculi is execution: the final term is not
the important thing, what happens to get there is the relevant information: the
meaning is in the execution. Hence we propose to match proofs with executions.

Technically, we illustrate this idea in a very simple settings, in order to stress
the technical novelties of the approach. Our model of interaction is finitary CCS
with no choice operator (a way to treat it is sketched in the perspectives). The
corresponding logic is multiplicative linear logic, with a pair of dual modalities
representing actions. By representing an execution, up to unimportant interleav-
ing aspects, as a term with linear name discipline, we get a precise correspon-
dence between runs and proofs.

In our type system, multiplicatives represent causality and independence
between parts of a run, using connectedness/acyclicity arguments to describe
avoidance of deadlocks. Modalities represent explicit scheduling, using the well-
known stratifying effect of boxes in proof nets. Axiom rules have an unusual
interpretation: they are void of interactive content (no forwarding or copycat
behaviour), but they logically implement transports of causality between differ-
ent parts of a running process. Another way to interpret them is as assumptions
on the available events of the environment, as we will see.

2 CCS runs as pairings

We consider processes of the standard language CCS [13]. The general language
is defined by the following grammar. Note that we use 1 for the inactive pro-
cess instead of the usual 0 because it is the neutral element of | which is a
multiplicative operation.

P,Q ::= a.P | ā.P | 1 | (P | Q) | P + Q | ∗P | (νa)P

where a is taken from an infinite set N of names. The main source of non-
determinism in this framework is the fact that a given action name may occur
several times in a given term. In order to simplify the naming of different occur-
rences, we decorate terms with locations, taken from an infinite set L. For the
purpose of the present study, we actually restrict to a very simplistic fragment.
The reason for this restriction will be explained in the following development.

Definition 1 (MCCS). Multiplicative CCS is the fragment of CCS that does
not use choice nor replication. Actions are annotated by location, each location is
used at most once in any term. Structural congruence is the smallest congruence
≡ that makes parallel composition associative and commutative and 1 neutral.

The set of locations occurring in P is written L(P ). Given ℓ ∈ L(P ), the
subject of ℓ is the name tagged by ℓ, written subjP ℓ. The polarity of ℓ is that of
the action tagged by its subject, written polP ℓ, element of {±1}. Intuitively, a
negative action ā represents the sending of a signal on a channel a, and a positive
action a represents the reception of such a message.
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Definition 2 (execution). Execution is the relation over structural congruence
classes, labelled by partial involutions over L, defined by the rule

āℓ.P | am.Q | R →{(ℓ,m)}
ex P | Q | R

Let →ex∗ be the reflexive transitive closure of →ex, with the annotations defined
as P →∅

ex∗ P and if P →c
ex∗ Q →d

ex∗ R then P →c∪d
ex∗ R.

The annotation c in P →c
ex Q describes which occurrences interact in the ex-

ecution step, we write P →ex Q if c is unimportant. Similarly, we keep locations
implicit when they do not matter. Remark that, for a given P and c, there is at
most one Q such that P →c

ex Q, since c describes the interaction completely.

Definition 3 (pairing). A pairing of a term P is a partial involution c over
L(P ) such that for all ℓ ∈ dom c, subj c(ℓ) = subj ℓ and pol c(ℓ) = −pol ℓ.

Let ∼c be the smallest equivalence that contains c. Let ≤P be the partial order
over L(P ) such that ℓ <P m for all subterm xℓ.Q of P and all m ∈ L(Q). c is
consistent if dom c is downwards closed for ≤P and ∼c<P∼c is acyclic.

Example 1. The total pairings of P = a1.c2 | b3.ā4 | b̄5.c̄6 | a7.b̄8 | b9 | ā0 are
c1 = {(9, 5), (1, 0), (2, 6), (3, 8), (4, 7)}, c2 = {(3, 5), (1, 4), (2, 6), (7, 0), (9, 8)},
c3 = {(1, 4), (3, 8), (7, 0), (9, 5), (2, 6)}, c4 = {(1, 0), (3, 5), (7, 4), (9, 8), (2, 6)}.
Only c1 is inconsistent as there is a cycle induced by {(3, 8), (4, 7)}. The maximal
consistent pairing included in c1 is {(9, 5), (1, 0), (2, 6)}.

Observe that pairings and consistency are preserved by structural congru-
ence, as a direct consequence of the fact that subjects, polarities and prefixing
are preserved by structural congruence.

Proposition 1. A pairing c of a term P is consistent if and only if there is a
term Q such that P →c

ex∗ Q.

Proof (Sketch). In an execution P0 →c1
ex P1 →c2

ex · · · →cn
ex Pn, the ci are disjoint,

so their union is a pairing, and consistency is ensured by the fact that executions
respect prefixing. Conversely, write c = c1 ⊎ · · · ⊎ cn with the ci atomic. By
definition, if c is consistent then ≤P induces a partial order over the domains of
the ci. Assume that the considered enumeration respects this order, then we can
prove by recurrence that there is an execution sequence P = P0 →c1

ex P1 · · · →
cn
ex

Pn, since each ci joins two actions of Pi−1 that are minimal for ≤Pi−1
.

Proposition 2. Let P be a term. Any two executions P →c
ex∗ Q and P →c

ex∗ R
with the same pairing are permutations of each other, and in this case Q ≡ R.

Proof (Sketch). Since a pairing is the union of the atomic involutions of each
step, it is immediate that the execution are permutations of each other. The
property Q ≡ R holds easily when the executions have length one, since when
reducing two independent pairs of actions, we can proceed in either order and get
the same reduct in two steps. By repeated application of this basic case, we prove
that the reducts are equal by showing that one execution can be transformed
into the other by successive exchanges of consecutive independent steps.
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We will thus consider consistent pairings as the proper notion of execution for
CCS terms. Maximal consistent pairings represent executions of processes until
a state where no more execution is possible. A useful tool in the study of pairings
is the following notion of determinisation, by which we can turn a pairing of a
term into a term that has no other pairing. In other words, determinisation is a
way to represent a run of a term in the language of MCCS itself.

Definition 4 (deterministic term). A term P is deterministic if it has at
most one occurrence of each action.

The pairings of a deterministic term form a lattice, consistent pairings too, so
there is a unique maximal consistent pairing for any deterministic term.

Definition 5 (determinisation). Assume an injective map δ : N × {±1} ×
L → N . Given a term P and a partial involution c, define the determinisation
⌊P ⌋c of P along c inductively as ⌊1⌋c = 1, ⌊P | Q⌋c = ⌊P ⌋c | ⌊Q⌋c and

⌊

aℓ.P
⌋

c
= δ(a,+1, ℓ)ℓ. ⌊P ⌋c ,

⌊

āℓ.P
⌋

c
=

{

δ(a,+1, ℓ)
ℓ
. ⌊P ⌋c if ℓ ∈ dom c,

δ(a,−1, ℓ)ℓ. ⌊P ⌋c otherwise.

By construction, ⌊P ⌋c is deterministic, the pairings of ⌊P ⌋c are the restrictions
of c, consistency preserved, so c is the unique maximal pairing of ⌊P ⌋c.

Example 2. For the term P = a1.c2 | b3.ā4 | b̄5.c̄6 | a7.b̄8 | b9 | ā0 and pairings of
example 1, we obtain the following determinisations.
c3 = {(1, 4), (3, 8), (7, 0), (9, 5), (2, 6)} induces ⌊P ⌋c3

= a.c | b.ā | ē.c̄ | d.b̄ | e | d̄,

c4 = {(1, 0), (3, 5), (7, 4), (9, 8), (2, 6)} induces ⌊P ⌋c4
= a.c | b.d̄ | b̄.c̄ | d.ē | e | ā.

If we extended our study to the whole of CCS, determinisations would still
be in MCCS. The theory of pairings would have to be refined: external choice re-
quires a notion of conflict in the space of locations (as in event structures [15]),
replications requires the introduction of indices to distinguish copies. The re-
striction operator (νa) serves two purposes: it limits the scope of a name, and it
makes it possible to have names local to each copy in a replication; both these
features are irrelevant in the deterministic case, hence we leave it out of MCCS.

3 MLL with linear modalities

We now present the logic we use to describe pairings of MCCS. For similar rea-
sons as in CCS, we use a very simple system, namely the multiplicative fragment
of linear logic [4], augmented with a pair of dual modalities that describe actions.

Definition 6 (M?LL). The formulas of M?LL are built by the grammar

A, B ::= α | α⊥ | A � B | A`B | ?aA |

?

aA

where the α are literals and the a are names in N . The negation A⊥ of a non-
literal formula A is defined by de Morgan duality as (A � B)⊥ = A⊥ ` B⊥

and (?aA)⊥ =

?

aA⊥. A type (Γ,∆ . . .) is a finite multiset of formulas. Type
derivations are built from the rules of table 1, ignoring the left side of ⊢.
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Axiom and cut rules (A is a M?LL formula):

1 ⊢ A, A⊥
(ax)

P ⊢ Γ, A Q ⊢ A⊥, ∆

P | Q ⊢ Γ, ∆
(cut)

Multiplicative rules:

P ⊢ Γ, A, B

P ⊢ Γ, A`B
(`)

P ⊢ Γ, A Q ⊢ B, ∆

P | Q ⊢ Γ, A � B, ∆
(⊗)

Modality rules (dereliction and codereliction):

P ⊢ Γ, A

aℓ.P ⊢ Γ, ?aA
(?)

P ⊢ Γ, A

āℓ.P ⊢ Γ,

?

aA
(co?)

Table 1. Inference rules in M?LL

Fig. 1. Representation of proof structures: axiom link, ` node, � node, boxes, cut.

Proofs in sequent calculus are well suited to inductive reasoning, however
their use on proof theory is uneasy because their rigid structure obscures many
reasonings, like those below in particular. For this reason, we will turn to proof
nets, using the standard machinery of linear logic [8, 4]. Modality rules are rep-
resented using boxes (like promotions in standard linear logic, but with different
typing rules). The only extra information we add to standard proof structures is
the location of each box, to reflect the use of locations in CCS terms in the sequel.
For those who are not familiar with the standard definitions of proof structures
and proof nets, they are put in appendices. We detail here specificities of M?LL.

Definition 7 (proof structure). A proof structure consists of an ordered for-
est of nodes labelled by formulas, denoted xA, together with a set Ax of axiom
links (pair of leaves), a set Cut of cuts (pair of roots) and a set Box of modality
boxes such that each box β has a unique location ℓ(β).

Each box β is associated (inductively) to a proof structure S whose conclu-
sions are in bijection with the ports of the box. The principal port xA of β for
A = ?aB or A =

?

aB is in bijection with a conclusion of S labeled B, whereas
it is the same label for the auxiliary ports.

The roots that are not part of a cut are called the conclusion nodes of S.
The conclusion type of S is the multiset of the labels of its conclusion nodes.

The graphical notation of proof structures is presented in figure 1. By defini-
tion there are arcs only to multiplicative nodes, moreover proof structures can be
drawn considering the top-bottom orientation of arcs, so we keep arc orientation
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implicit by this convention. Arcs to a ` node are joint by a circle on the side of
this node. By construction, the conclusion labels suffice to deduce all labels, so
we keep most of this information implicit.

Definition 8 (proof net). A proof net is a proof structure built following
M?LL sequent calculus rules. An immediate subnet of a proof net π is an induced
subgraph of π that is itself a proof net. A subnet of π is either an immediate
subnet of π or (inductively) a subnet of a box of π.

Well known correctness criteria [4, 8] apply to characterise proof nets among
proof structures by combinatorial means like acyclicity and connectedness.

Definition 9 (cut elimination). Let π and π′ be a proof structure and c be a
partial involution on L. We have π →c

ce π′ if π contains a cut κ = {x, y} either
at top level or inside a box and one of the following cases occurs:

– Multiplicative step and Axiom step: as usual but c = ∅.
– Modality step: If x and y are principal ports of two boxes β, β′, then c per-

mutes ℓ(β) and ℓ(β′) and π′ is obtained by replacing each box with its asso-
ciated proof structure.

– Commutation step (unused here): If x is the auxiliary port of a box β, then
c = ∅, and the cut and a subnet of π that contains y are moved inside β.

The annotated cut elimination relation →c
ce over proof structures is the reflexive

transitive closure of the rules above (if π →c
ce π′ →d

ce π′′ then π →c∪d
ce π′′).

Our proof system enjoys a standard cut-elimination theorem using this def-
inition: if π →c

ce π′ and π is a proof net, then π′ is a proof net with the same
conclusion (this is proved by standard arguments using correctness criteria, hence
we will not develop this point); if a proof π is irreducible by →ce, then it has
no cut link (this is an immediate case analysis). Note however that →ce is not
confluent, because of commutation steps.

Definition 10 (head reduction). Head reduction is the annotated relation
→c

h over proof structures defined as the restriction of →c
ce that only applies at

top level and does not use the commutation step of cut elimination.

This particular strategy is relevant because it does not reduce inside boxes,
that is under prefixes, it only affects cuts in active position (from the point of
view of processes). However, this strategy does not eliminate all cuts in general.

In the analysis of proofs, the following notion of path will be useful. It de-
scribes a way to traverse arcs and axioms/cuts in a proof structure while re-
specting the logical meaning of formulas.

Definition 11 (path). A path in a proof structure S is an alternating path
in the underlying graph of S, such that alternations occur only at axioms, cuts
and boxes. Each move between ports x and y of a box β must be associated with
a path between the corresponding conclusions in β. We further require a typing
constraint: a path can only move up a left (resp. branch) if has moved down a
left (resp. right) branch before, with a natural well-bracketing condition.
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For instance, a path starting from an axiom with type α may move down
the tree of nodes, reach a cut, move up the other side of the cut, always in the
branches that contain α, reach an axiom, and so on.

4 Typing MCCS terms

Proofs in M?LL will serve as a type system. Although this can be formulated in
usual sequent style (as in table 1), the natural notion rather relates proof nets
and structural congruence classes of terms.

Definition 12 (term assignment). Let S be a proof structure. The MCCS
term ⌊S⌋ assigned to π is the parallel composition of the ⌊β⌋ for each box β in
S. In turn, for a box β with location ℓ and associated structure Sβ, the term ⌊β⌋
is aℓ.⌊Sβ⌋ if the principal port of β has modality ?a and āℓ.⌊Sβ⌋ if the principal
port of β has modality

?

a. A term P is said to have type Γ if there is a proof
net π of conclusion Γ such that ⌊π⌋ ≡ P . In this case we write π : P ⊢ Γ .

A proof net is a proof structure that is built using the rules of table 1, ignoring
the terms on the left of the ⊢ symbols. It is obvious that these terms do reflect
the definition of term assignment: A term P has type Γ if and only if there is a
type derivation with conclusion P ⊢ Γ using the rules of table 1.

We now establish the correspondence between cut elimination in a proof and
execution steps in the assigned terms. The first result justifies head reduction:

Proposition 3. Let π be a proof structure. For all head reduction π →c
h π′ there

is an execution ⌊π⌋ →c
ex∗ ⌊π′⌋.

Proof (Sketch). Axiom and multiplicative cut eliminiation steps do not affect the
assigned terms, besides their annotation is empty, so the result holds immediately
for them. When a modality step applies, it reduces a cut between boxes with
dual modalities (because of typing), hence the associated terms are ready to
interact; the reduct is easily seen to be the assigned term of the reduct proof.

Example 3. Let π be the following proof net.

d̄ d ē eb c̄caāb̄

We have ⌊π⌋ = a.c | b.ā | ē.c̄ | d.b̄ | e | d̄. (It is ⌊P ⌋c3
of previous examples). As

it is deterministic term, we abusively merge locations with names. We consider
the head reduction sequence π →z

h π′ (where π′ is an axiom link) for z =
{(d, d̄), (b, b̄), (a, ā), (e, ē), (c, c̄)}. We have ⌊π⌋ →z

ex∗ ⌊π′⌋ ≡ 1.

Subject reduction does not hold in general, however. Indeed, a given proof
may hold several occurrences of a given modality, corresponding to different
occurrences of an action in the term, and the structure of cuts may not match
a given execution step. This is not a defect, since we actually intend to type
pairings rather than processes: we do get subject reduction if we restrict to
proofs that describe deterministic terms.
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Definition 13 (linear proof). A proof structure S is called linear if
– S contains at most one box for each modality,
– all occurences of a given modality

?

aA in the labels in S have the same
immediate subformula A, and if

?

aA and ?aB occur then A and B are dual,
– if S contains a box for both ?aA and

?

aA⊥, then neither formula occurs in
the conclusion type of S.

The essence of the linearity condition is the first constraint. Intuitively, the
second and third constraints serve to guarantee that the property is preserved by
composition. Indeed, if a formula ?aA occurs in the conclusion of a proof π, then
the proof may be cut against a proof that contains a modality box for

?

aA⊥,
which breaks linearity if π already contains a box for some

?

aB. Note that the
fact of being a linear proof is preserved by cut elimination.

Theorem 1 (subject reduction). Let P be a term of type Γ , typed by a linear
proof π. For all execution P →c

ex∗ P ′ there is a linear proof π′ : P ′ ⊢ Γ .

Proof (Sketch). An execution step ⌊π⌋ →
(ℓ,m)
ex P involves immediate subterms

aℓ.Q and ām.R for a ∈ N . Then π contains two top level boxes with respective

principal ports x?aA and y

?

aA⊥

, for A ∈ M?LL. Since π is linear, x and y are
elimination boxes for each other, ending a path ρ (as of definition 11) whose
axioms contain modalities of x and y in their types. Let π′ be the rewriting of π
where such modalities are removed (boxes are rewrited by their contents, axioms
by axioms on A/A⊥). Clearly π′ is a linear proof that infers P .

This theorem states that types are preserved by execution. However, the proof
uses a rewriting of the typing proofs that does not correspond to cut elimination
in general. Indeed, consider the following example of typing, called π the l.h.s.:

b

a ā �→

b

Then the proof is linear, irreducible by head cut elimination, but the assigned
term ⌊π⌋ = ā | b̄ | a does execute into b̄. In π, this involves a cut on the axiom
inside the middle box. As done in theorem 1 the rewriting of π in a linear proof
π′ assigned to b̄ is the r.h.s..

We can get a precise correspondence between execution and head cut elimi-
nation by imposing an additional constraint on the shape of proofs.

Definition 14 (regular proof). Let π be a proof structure. A transport axiom
is an axiom link contained in box β with modalities in its type. Such an axiom is
called anchored if there is a path from one of its conclusions to an auxilary port
of β and one from its other conclusion to the principal port. A box is simple if it
contains no axiom introducing modalities. A proof structure π is called regular
if all transport axioms in π are anchored and all codereliction boxes are simple.
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Theorem 2 (strong subject reduction). Let π be a regular linear proof net.
For all execution ⌊π⌋ →c

ex∗ P there is a regular linear proof π′ such that π →c
h π′

and ⌊π′⌋ = P .

Proof (Sketch). Consider an execution step ⌊π⌋ →
(ℓ,m)
ex P . As in theorem 1 proof,

linearity implies there is boxes at top level and a path ρ between their principal

ports x?aA and y

?

aA⊥

for immediate subterms aℓ.Q and ām.R of ⌊π⌋. Since x is
cut at top level, there is no box traversal along ρ. Otherwise linearity or regularity
is contradicted. Then ρ is a multiplicative cut path whose cut elimination →∅

h

until x and y preserves ⌊π⌋ as well as regularity and linearity of proof.

5 Divisions of proof nets

The point of this section is to provide a kind of reciprocal statement for subject
reduction: if a term T can reduce into a typed term T ′, then we can type T with
a proof that reduces to the typing of T ′. Because we want logically correct proof
structures, this operation requires some care.

Example 4. Consider the term P := a.b̄ | b.c̄ | ā.c. We cannot simply type each
thread with a simple type like ?aα,

?

bα
⊥ and then introduce a cut for each

interaction, since we would get a cyclic structure.

We now describe a general method for deducing a typing by “anti-execution”
of a proof. We stay at a partly informal level for clarity, all formal statements
are detailed in the appendix.

Consider a generic execution step P | a.Q | ā.R →ex P | Q | R. Assume the
reduct is typed by some proof π. We want to put the parts of π that correspond
to Q and R into boxes, with a cut between them, while rewriting the proof to
avoid cycles. For this purpose, we proceed in four steps:

Selection consists in moving each box belonging to Q or R away from the main
proof, by means of an axiom/cut pair, so that Q and R are represented by
simple sets of boxes, cut with the main proof (which corresponds to P ), with
no multiplicative connectives:

�→

Chaining consists in introducing an extra axiom/cut pair in the middle of each
cut between P and R, so that there are cuts only between P and Q or Q
and R, and not between P and R directly:

R�Q�P �

�→

P Q R
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Simplification consists in making sure that there is actually exactly one cut
between P and Q and one between Q and R, by multiplexing multiple cuts
through multiplicatives:

�→

Correctness criteria guarantee that we can always find two cuts for which
there is one connected component on one side, two on the other.

Boxing consists in putting Q and R into boxes, cut together, so that Q has one
auxiliary port to P and R has no auxiliary port:

�→

Following this method, we prove the following statement:

Proposition 4 (anti-execution). Let T1 →c
ex T2 be an execution step and let

π2 : T2 ⊢ Γ be a typing. There exists a typing π1 : T1 ⊢ Γ such that π1 →c
h π2.

Example 5. Consider the term of P of example 1. We consider the execution
e = (a, ā)(b, b̄)(c, c̄)(d, d̄)(e, ē) of the determinized term ⌊P ⌋c4

= a.c|b.d̄|b̄.c̄|d.ē|e|ā
for the (total and consitent) pairing c4 = {(1, 0), (3, 5), (7, 4), (9, 8), (2, 6)}. A
typing synthetized by the construction of proposition 4 is the following.

c̄

b̄

e
d

b

ēd̄ a āc

Lemma 1 (preserved regularity). In the construction of proposition 4, if π2

is regular, then so is π1. If π2 is linear and T is deterministic, then π1 is linear.

Proof. In our construction, i) all axioms added by selection are in p and even-
tually in p′′, ii) all axioms added by chaining are in q′ and eventually in q′′ by
simplification, iii) no axioms are added in r′′. The last boxing step ensures that
all axioms added in q′′ are transport axioms which are anchored, and the codere-
liction box is simple, so the regularity is preserved. Linearity is preserved when
we add new axioms on modalities and new cuts on it, it is always for already
existing modalities, up to the last added boxes introducing also news modalities.

Example 6. In the previous example 5, one can also start execution by (b, b̄)(a, ā)
as seen in the typing. All execution permutation of ⌊P ⌋c4

in the pairing c4 is
allowed by the typing proof synthetized from the execution e.
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6 Correspondence

We now summarize the previous results, about subject reduction and the reverse
operation, into a precise statement relating typings and execution.

Lemma 2 (initial typing). Every MCCS term is typable by a cut-free regular
proof with at least one non-modal conclusion.

Proof. We simply build a proof of T ⊢ AT , BT with AT non-modal by induction
on T . For T = 1, use the axiom rule to get 1 ⊢ α⊥, α. For T = P | Q, deduce
T ⊢ AP `AQ, BP � BQ by the tensor rule. For T = a.P , deduce T ⊢ AP , ?aBP

by the action rule, and similarly for co-actions. The proof thus built is obviously
regular since it has no transport axiom.

Theorem 3. For every execution P →c
ex∗ Q there are typings πP : P ⊢ Γ

and πQ : Q ⊢ Γ such that πP →c
h πQ. Moreover, for every execution sequence

P →c1
ex P1 · · · →

cn
ex Pn = Q with c1 ∪ · · · ∪ cn = c, there is a cut elimination

sequence πP →c1

h π1 · · · →
cn

h πn = πQ, with ⌊πi⌋ = Pi for all i.

Proof. By lemma 2 we can find a regular cut-free proof πQ : Q ⊢ Γ such that
some formula in Γ is non-modal. If we apply proposition 4 repeatedly to πQ with
the steps of the considered execution P →c

ex∗ Q, we get a proof πP : P ⊢ Γ that
reduces to πQ by a head reduction sequence labelled c. Clearly, the types in πP

can be consistently rewritten to get a type derivation π′
P for the determinisation

⌊P ⌋c, and π′
P will be linear and regular. Moreover, every execution sequence of

P with label c will be an execution sequence of ⌊P ⌋c with the same label. By
lemma 1, π′

P enjoys strong subject reduction as of theorem 2, hence every run
of ⌊P ⌋c labelled by c corresponds to a head reduction sequence in π′

P labelled
by c. The reduct of ⌊P ⌋c by this sequence is ⌊Q⌋c and the reduced proof π′

Q is

such that
⌊

π′
Q

⌋

= ⌊Q⌋c. By applying the relabelling used for detrminisation in
reverse, we get a head reduction sequence from πP to πQ with the same labels.

In other words, every execution of a term can be exactly characterized up
to permutation by typing, in the sense that the execution sequences of the term
within the same pairing will be exactly the head reduction sequences of the
associated typing proof. By combining determinisation (definition 5) and strong
subject reduction (theorem 2) we get that, conversely, each regular typing of a
term defines a set of executions stable by permutation.

Lemma 2 seems to state that every term is typable, hence it is legitimate to
ask what our system guarantees. However, one should remeber that, although
the typing rules of table 1 apply to terms, what we intent to type is actually
executions. Considering the set of admissible types for a given execution, we can
indeed characterize when executions can be composed.

7 Conclusion and further works

In this work we have developed, in the simple framework of multiplicative CCS,
a precise logical description of executions of processes. A key technical tool is

11



the use of pairings, by which we separate non-determinism in communication
from the multiplicity of equivalent schedulings; this technique extends well to
more expressive frameworks (full CCS, π-calculs, etc.). The logical interpreta-
tion we propose moves beyond the traditionnal Curry-Howard for concurrency
by accepting non-deterministic terms, albeit with a change of interpretation in
the correspondence. Indeed, the logic we use is well studied and has a wide
range of existing tools (efficient correctness criteria, proof search, etc.) but its
interpretation in our paradigm of proof-as-executions is new.

Logical expressiveness The restriction to purely mutliplicative objects, in MCCS
and MLL, lets us concentrate on the precise role of multiplicatives and axioms
as descriptions of how a process interacts with its environment, however it hides
the complexity inherent to the other defining features of concurrent systems:
choice and recursion.

In the first case, our system can extend rather naturally. The technique of
pairings still works, consistency simply needs to take into account a notion of
conflict as in event structures [15]. The type system is naturally extended by
additive rules:

P ⊢ Γ,A Q ⊢ Γ,B

P + Q ⊢ Γ,A & B

P ⊢ Γ,A

P ⊢ Γ,A � B

possibly with the restriction that A and B are modal. Then we can type useful
processes that use choice. For instance, describe a boolean on names t, f as some
process that will send a signal on one of the channels t, f . This can be material-
ized by the type B(t, f) := α⊥,

?
tα�

?
fα which reads like “give me control (using

α), I will terminate by a signal on t or f”. Then consider a negation function:
N := t.f̄ ′ + f.t̄′. By studying its interactions with the environments E1 := t̄ | f ′

and E2 := f̄ | t′, we see that both N |Ei have complete consistent pairings, hence
we can type α⊥, α. Extracting the types of N we get ?tα

⊥,

?

f ′α and ?fα⊥,

?

t′α,
which we combine by additives into a unique type ?tα

⊥&?fα⊥,

?

t′α�

?

f ′α. This
way we get a possible specification for N .

Using similar arguments, in the presence of replication, we can combine sev-
eral executions differing by the number of copies of a server used by using expo-
nential modalities.

Causality A crucial feature of our work is the intepretation of axioms as a way
to transfer causality. An effect is that, most of the time, the type of a term will
contain modalities for actions that it does not contain by itself. For instance, a.b̄
may have type ?a?cα

⊥,

?

b

?

cα, which can be read “give me a signal on a with the
promise of a signal on c, and I will answer with a signal on b and the promise of
a signal c”. This makes it explicit that this part of interaction will be involved
in the triggering of interaction on c, but only indirectly by allowing bearers of c
to get active. This idea suggests new ways of analysing causality in interactive
systems, and the fact that the flow of causality is often as complicated as the
flow of information. Besides, a similar fact is illustrated by the expressiveness of
solos [10, 3], where communication is used to carry all prefixing information in
processes. Our interpretation may provide a logical insight on this matter.
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A Annexe: M?LL and restricted type system

A.1 MLL with linear modalities

Proof structures are formally defined as follows:

– The forest is seen as an acyclic graph (VS , ES) oriented from leaves to roots,
with a total order on the ingoing arcs of each node.

– We write vA to signify that vertex v has label A. We impose that if a vertex
vA is not a leaf, then it has two children xB and yC (in this order) and either
A = B � C or A = B ` C; the main connective of A is the sort of v.

– Axioms are pairwise disjoint pairs of leaves labelled by dual formulas.

– Cuts are disjoint pairs of roots labelled by dual formulas.

– Boxes are disjoint non-empty sets of leaves,

– Ax ∪ Box forms a partition of the set of leaves.

– Each box β has a distinguished element called its principal port, the others
are auxiliary ports. Each box is associated (inductively) to a proof structure
Sβ with a bijection φ from the elements of β to the conclusions of Sβ .

• For the principal port xA of β we have A = ?aB or A =

?

aB where B is
the label of φ(x);

• for each other element y of β, the labels of y and φ(y) are the same.

To each box β we also associate a location ℓ(β), with the constraint that
each location is used at most once in any given structure.

The roots that are not part of a cut are called the conclusion nodes of S. The
conclusion type of S is the multiset of the labels of its conclusion nodes.

Proof nets are formally defined as follows:

(ax): ({uA
ax, vA⊥

ax }, {uv}, ∅, ∅, {u, v}) is a PN.

(`): If G = (V,E, A, P, C) is a PN and uA, vB are two conclusions of G, then
(V ⊎ {wA`B

`
}, E, A ∪ {uw, vw}, P ∪ {{uw, vw}}, C \ {u, v} ∪ {w}) is a PN.

(⊗): If G = (V,E, A, P, C) and G′ = (V ′, E′, A′, P ′, C ′) are disjoint PNs, uA is a
conclusion of G and vB is a conclusion of G′, then (V ⊎ V ′ ⊎ {wA�B

� }, E ⊎
E′, A ⊎ A′ ⊎ {uw, vw}, P ⊎ P ′, (C \ {u}) ⊎ (C ′ \ {v}) ⊎ {w}) is a PN.

(?): If G = (V,E,A, P, C) is a PN with conclusions set C = {uA, vB1
1 , . . . , vBk

k },

then ({x?aA
?a

(G), yB1
1 , . . . , yBk

k }, {uv1, . . . , uvk}, ∅, ∅, {u, v1, . . . , vk}) is a PN.

(co?): idem changing ?aA by

?

aA.

(cut): If G = (V,E, A, P, C) and G′ = (V ′, E′, A′, P ′, C ′) are disjoint PNs, uA is

a conclusion of G and vA⊥

is a conclusion of G′, then (V ⊎ V ′, E ⊎ E′ ∪
{uv}, A ⊎ A′, P ⊎ P ′, (C \ {u}) ⊎ (C ′ \ {v})) is a PN.

Cut elimination in M?LL is formally defined as follows. Let π and π′ be a
proof structure and c be a partial involution on L. We have π →c

ce π′ if π contains
a cut κ = {x, y} either at top level or inside a box and one of the following cases
occurs (note that x and y may be freely exchanged):
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Axiom and cut rules (A is a literal α or a M?LLformula):

1 ⊢ Ao, A⊥
(ax)

1 ⊢ αp, (α⊥)q
(at)

P ⊢ Γ, Ao Q ⊢ A⊥, ∆

P | Q ⊢ Γ, ∆
(cut)

Multiplicative rules:

P ⊢ Γ, Ap, Bp

P ⊢ Γ, (A`B)p (`)
P ⊢ Γ, Ap Q ⊢ Bp, ∆

P | Q ⊢ Γ, (A � B)p, ∆
(⊗)

Modality rules (dereliction and codereliction):

P ⊢ Γ, Ao

aℓ.P ⊢ Γ γ , (?aA)p
(?)

P ⊢ Γ, A

āℓ.P ⊢ Γ γ , (

?

aA)p
(co?)

Table 2. Inference rules in M?LLp

– Multiplicative step: If x and y have respective sorts � and `, then each has

two premisses, call them respectively xA
1 , xB

2 , yA⊥

1 , yB⊥

2 . Then c = ∅ and π′ is
obtained by removing κ and the nodes x and y and adding the cuts {x1, y1}
and {x2, y2}.

– Axiom step: If y is a leaf node and it is part of an axiom α = {y, z} with
x 6= z, then c = ∅ and π′ is obtained removing α, κ, y and z and rewriting
any outgoing arc of z into an outgoing arc of x.

– Modality step: If x and y are principal ports of two boxes β, β′, then c
permutes ℓ(β) and ℓ(β′) and π′ is obtained by replacing each box with its
associated proof structure, identifying the conclusions of this structure with
the ports of the box.

– Commutation step: If x is the auxiliary port of a box β, call T the smallest
subnet of π that contains y. Then c = ∅ and π′ is obtained by moving T
and κ inside β, replacing the auxiliary port x by one auxiliary port for each
conclusion of T .

The annotated cut elimination relation →c
ce over proof structures is the reflexive

transitive closure of the rules above (if π →c
ce π′ →d

ce π′′ then π →c∪d
ce π′′).

A.2 M?LLp, a restriction of M?LL

The restriction to anchored proof may be design with a restriction of our type
system as in Table 2. The idea is to enforce in each box an orientation from
auxilary ports to principal port, for axioms on modaties. We simply use a dec-
oration on formulas when needed. The letters p, q, . . . indicate the o decoration
(output) or no decoration. The sequence of formulas Γ γ is a sequence of formulas
decorated with letters.
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B Detailed proofs

B.1 Runs and pairings

Lemma 3. Let P →c
ex Q be an execution and d be a pairing of Q, then dom c∩

dom d = ∅ and c ∪ d is a pairing of P . If d is consistent, then so is c ∪ d.

Proof. First remark that, by definition of execution, we have L(P ) = L(Q) ⊎
dom c, besides dom d ⊂ L(Q) so the domains of c and d are disjoint. We can
thus define the involution c′ = c ∪ d, and check that it is indeed a pairing of P .

Let ℓ ∈ dom c′. If ℓ ∈ dom c then ℓ is the location of an action involved in the
execution step, so subjP c(ℓ) = subjP ℓ and polP c(ℓ) = −polP ℓ by definition
of execution, and subsequently the property holds for c′. Otherwise ℓ is in the
domain of d, then the same property holds for d in Q since d is a pairing of Q,
and again we get it for c′ in P . Hence c′ is a pairing of P .

Now suppose d that is consistent but c′ is not. Write ℓ ≺c
P m if there is a

location n such that ℓ <P n ∼c m. Then there exists a cycle ℓ0 ≺c
P ℓ1 ≺c

P · · · ≺c
P

ℓk = ℓ0. If all the ℓi are in Q then this cycle exists in ≺d
Q, which cannot be

since d is consistent. Since c annotates a reduction of P , all elements of dom c
are minimal for ≤P , so the cycle cannot consist only of elements of dom c. So
we may assume ℓ0 ∈ L(Q) and ℓ1 ∈ dom c. This means either ℓ0 <P ℓ1 or
ℓ0 <P c(ℓ1), in each case this implies that some location in dom c is prefixed in
P , which is impossible. Hence c′ is consistent.

Proof (proposition 1). By iterating lemma 3, from an execution P0 →c1
ex P1 →c2

ex

· · · →cn
ex Pn we can deduce a pairing c = c1 ∪ · · · ∪ cn of P0. This pairing

represents the execution above, because it contains all the choices made during
this execution. Indeed we can prove that executions that yield the same pairing
are equivalent. The converse is detailed in the main text.

Lemma 4. Let P →c1
ex Q1 and P →c2

ex Q2 be two executions with dom c1 ∩
dom c2 = ∅. Then there is a unique R such that Q1 →c2

ex R and Q2 →c1
ex R.

Proof. By the existence of the execution step P →c1
ex Q1, we know that P can be

written P ≡ āℓ.S |am.T |P ′ for some name a and with dom c1 = {ℓ, m}. Similarly,
the term P can be decomposed as P ≡ b̄ℓ′ .S′ | bm′

.T ′ | P ′′ for some name b and
with dom c2 = {ℓ′, m′} to jusitfy the execution step P →c2

ex Q2. By hypothesis
the domains of c1 and c2 are disjoint, so ℓ and m are distinct from ℓ′ and m′. As a
consequence the term P can be decomposed as P ≡ āℓ.S |am.T |b̄ℓ′ .S′ |bm′

.T ′ |P ′′′

and the terms Q1 and Q2 have execution steps with the expected annotations,
with the common reduct R = S | T | S′ | T ′ | P ′′′. Unicity of R up to structural
congruence is a consequence of the fact the c1 and c2 completely describe which
subterms of P,Q1, Q2 interact and in which way.

Proof (proposition 2). The pairing c is the disjoint union of the atomic invo-
lutions of each step, so clearly the execution sequences are permutations of
each other. Write them as P = P0 →c1

ex P1 · · · →cn
ex Pn and P = P0 →

cσ(1)
ex

P ′
1 · · · →

cσ(n)
ex P ′

n. We now prove that the final terms Pn and P ′
n are equal up to

16



structural congruence. Call d(σ) the number of pairs (i, j) such that i < j and
σ(i) > σ(j). We proceed by induction on d(σ). If this number is 0, then σ is the
identity function and the sequences match, so obviously we have Pn ≡ P ′

n. Oth-
erwise, consider a minimal i such that σ(i) 6= i, hence σ−1(i) 6= i and σ−1(i) > i,
and let j = σ−1(i)− 1. The reduction sequences match in their first i− 1 steps,
then one has a reduction labelled ci while the other has a reduction labelled
cσ(i). By repeated applications of lemma 4, we can deduce that for each k ≥ i

there is a term Qk such that P ′
k →ci

ex Qk and Qk−1 →
cσ(k)
ex Qk if k > i:

Pi

cσ(i)   A
AA

AA
A

ci+1
// · · ·

Pi−1

ci

<<zzzzzz

cσ(i) !!C
CC

CC
C

Qi

cσ(i+1)
// · · ·

cσ(j−1)
// Qj−1

cσ(j)
// Qj

P ′
i

ci

??~~~~~~cσ(i+1)
// · · ·

ci

==zzzzzzzzcσ(j−1)
// P ′

j−1

ci

;;wwwwwwcσ(j)
// P ′

j

ci

;;wwwwwwwcσ(j+1)
// P ′

j+1

Moreover, by construction cσ(j+1) = ci, so P ′
j+1 ≡ Qj , because there is at most

one possible reduction for a given annotation. Hence we can deduce a pair of
reduction steps P ′

j−1 →
cσ(j+1)
ex Qj−1 →

cσ(j)
ex Pj+1. This yields a new reduction

sequence from P0 to P ′
n that corresponds to a new permutation σ′ of the sequence

(ci), and σ′ is σ where σ(j) and σ(j +1) are swapped. By definition of j we have
σ(j) > σ(j + 1) so σ′(j) < σ′(j + 1). For any a 6∈ {j, j + 1} we have σ(a) < σ(j)
if and only if σ′(a) < σ′(j +1), and the same exchanging j and j +1, so we have
d(σ′) = d(σ) − 1, and we can conclude by induction hypothesis.

B.2 Typing

Proof (proposition 3). Clearly we can deduce the general result from the case
of each individual rule. Cut elimination steps for multiplicatives and axioms
do not affect the nesting of boxes, which is the only part of proofs used in
term assignement, so for each such step π →∅

h π′ we have ⌊π⌋ = ⌊π′⌋, hence
⌊π⌋ →∅

ex∗ ⌊π′⌋ by reflexivity. For an elimination step for modalities, we have

π →
(ℓ,m)
h π′ where ℓ and m are the locations of two boxes β and β′. By definition

there is a cut between their principal ports x and y, so these ports must have
dual types ?aA and

?

aA⊥. Call π1 and π2 the proofs associated to β and β′, then
we have ⌊β⌋ = aℓ.⌊π1⌋ and ⌊β′⌋ = ām.⌊π2⌋. Moreover, there is a term P such

that ⌊π⌋ = ⌊β⌋ | ⌊β′⌋ | P so we have ⌊π⌋ →
(ℓ,m)
ex ⌊π1⌋ | ⌊π2⌋ | P , and the latter is

equal to ⌊π′⌋ by definition of the cut elimination step for modalities.

Proof (subject reduction theorem 1). Consider an execution step ⌊π⌋ →
(ℓ,m)
ex P .

This step involves immediate subterms aℓ.Q and ām.R for some name a, hence π
must contain a box at top level with principal port x?aA and one with principal

port y

?

aA⊥

, for some formula A. Since π is linear, ?aA and

?

aA⊥ do not occur in
the conclusion type, so they are cut. Since π is linear, no other boxes introducing
these modalities can be in π. So x and y are elimination boxes for each other,
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and there is a path (as of definition 11) ρ from x to y in π. Remark that ends of
ρ are derelicition and codereliction on ?aA and

?

aA⊥ whereas all axioms along ρ
contain these modalities in their types. Let π′ be the rewriting of π where such
modalities are removed by rewriting axioms on ?aA/

?

aA⊥ in axioms on A/A⊥,
and by rewriting the end boxes by their contents. Clearly π′ is a linear proof
that infers P .

Proof (strong subject reduction theorem 2). Consider an execution step ⌊π⌋ →
(ℓ,m)
ex

P . This step involves immediate subterms aℓ.Q and ām.R for some name a, hence
π must contain a box at top level with principal port x?aA and one with principal

port y

?

aA⊥

, for some formula A. Since π is linear, ?aA and

?

aA⊥ do not occur in
the conclusion type, so they are cut. Since π is linear, no other boxes introducing
these modalities can be in π. So x and y are elimination boxes for each other,
and there is a path (as of definition 11) ρ from x to y in π. For simplification
we consider that boxes are replaced by their associated proof net keeping the
information of auxilary and principal ports (this is more like sequent calculus
derivations).

Since x is at top level and cut, suppose that along ρ we get through a box
β from x. By duality it is only with axioms on modality formulas ?aA/

?

aA⊥.
Moreover by typing rules going inside β can only be done through an auxilary
port. Since π is regular, ρ go out from β through its principal port. By typing
rules it is not possible to reach y without enconter before a principal port of a
box eliminating β. Moreover this is only possible using an axiom on modality
formulas ?aA/

?
aA⊥ in this box. Remak that since π is regular and β has axioms

on modalities, corresponding elimination box is simple. Then to use an axiom on
modalities contradict that π is regular. Then there is no box traversal along ρ.
Then by typing ρ is a multiplicative cut path whose cut elimination →∅

h until x
and y preserves ⌊π⌋ as well as regularity and linearity of proof.
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