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Chapter 1

Learning Forward Models for the
Operational Space Control of
Redundant Robots

Camille Salatin, Vincent Padois, and Olivier Sigaud

Abstract We present a control approach combining model incremental learn-
ing methods with the operational space control approach. We learn the for-
ward kinematics model of a robot and use standard algebraic methods to
extract pseudo-inverses and projectors from it. This combination endows the
robot with the ability to realize hierarchically organised learned tasks in par-
allel, using tasks null space projectors built upon the learned models. We
illustrate the proposed method on a simulated 3 degrees of freedom planar
robot. This system is used as a benchmark to compare our method to an
alternative approach based on learning an inverse of the extended Jacobian.
We show the better versatility of the retained approach with respect to the
latter.

Key words: learning, redundancy, robotics, inverse velocity kinematics

1.1 Introduction

Real-world Robotics applications are evolving from the industrial domain
(well-defined tasks in structured environment) to the service domain where
it is much harder to model all the aspects of the mission. Service Robotics
induces complexity both in terms of the tasks that have to be achieved and in
terms of the nature of the environment where robots are supposed to evolve.
Part of the answer to the problems raised by this growing complexity lies in
the increasing number of sensors with which robots are now equipped as well
as in the increasing number of degrees of freedom of the robots themselves
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(e.g., Mobile manipulators such as the humanoid robot iCub (Metta et al,
2008) or the wheeled assistant PR2 (Willow Garage, 2009)).

As a matter of fact, the motion controllers developed for such robots have
to be either highly robust to uncertainties in the model of the robot and
its environment or adaptive, i.e., able to build their own model on-line. The
former gets more and more difficult as the complexity of the context grows.
When the structure of the model is known, the latter can be acheived with
classical parametric identification methods (Ljung, 1986). When this struc-
ture is more difficult to obtain, due to different physical phenomena such
as friction, internal delays, unmodeled nonlinearities, etc., machine learning
methods can be more versatile: they learn a model based only on the inputs
and outputs of the real system without making assumptions on their physical
relationship.

In this context, learning the model of the robot is achieved using specific
representations such as Neural Networks (Van der Smagt, 1994) or Radial Ba-
sis Function Networks (Sun and Scassellati, 2004), Gaussian Processes (Shon
et al, 2005) or (Nguyen-Tuong et al, 2009a) in this issue, Gaussian Mixture
Models (Calinon et al, 2007), Locally Weighted Projection Regression (LWPR)
(D’Souza et al, 2001; Natale et al, 2007; Peters and Schaal, 2008), but the
control methods used in the corresponding work do not always take advantage
of the state-of-the-art techniques developed in recent Robotics research.

Among these techniques, operational space control Khatib (1983) is a
model-based approach which provides a mathematical framework giving rise
to an easy definition of the tasks and constraints characterising a robotic
mission in a hierarchical manner (Liégeois (1977), Nakamura (1991). Readers
can refer to Sentis and Khatib (2005) for a more recent work and Nakanishi
et al (2008) for a survey. In order to take advantage of this framework, one
must develop learning methods and associated representations which fit the
needs of the corresponding control techniques.

Actuators of a robot generally act on joints, but the tasks or constraints as-
sociated to a mission cannot often be described in the joint space in a natural
way. The operational space (also called task space) provides an alternative,
more natural space, for such a definition.

The robot being controlled at the level of joints, the operational or task
space control approach requires the knowledge of the mapping between the
joint space and the task space. More specifically, it is the inverse mapping
which is often of interest: given a task, what are the actions required in the
joint space to achieve it. Considering minimum representations for the joint
and task spaces, it is important to notice that when the dimension of the joint
space is larger than the one of the task space, there is an infinite number of
inverse mappings and the robot is said redundant with respect to the task.
That is the case we are focusing on in this chapter.

More precisely, we examine how one can combine learning techniques and
operational space control in such a way that we can hierarchically deal with
several tasks and constraints when the robot is redundant with respect to the
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task. Our method learns a forward kinematics model using LWPR, a state-
of-the-art method already used in the context of learning robot models (Vi-
jayakumar et al, 2005). We show how we can both carefully derive the forward
and inverse mappings at the velocity level and the projectors which are nec-
essary to combine several tasks. We compare this approach to an alternative
approach presented in the literature where the inversion problem that arises
in the redundant case is solved in less generic manner (D’Souza et al, 2001).

The chapter is organised as follows. In section 1.2, we give some back-
ground on operational space control and the different levels of forward and
inverse mappings which can be used to relate the joint space to the task space
and vice versa. We also present different contexts in which several tasks can
be combined depending on their compatibility. In section 1.3, we give an
overview of the learning methods that have been applied to learn these for-
ward and inverse mappings, before focusing on our approach. In section 1.4,
we introduce our experimental apparatus and protocol, as well as the se-
ries of simulated experiments that we perform. The corresponding results are
presented in section 1.5. Finally, section 1.6 highlights the properties of our
approach before concluding on the potential extensions that are unique to
the perspectives raised by our work.

1.2 Background in Operational Space Control

In this section, we give some background information (Sciavicco and Siciliano,
2000) on joint to operational space mappings with a focus on the velocity
level. We recall the general expression of minimum norm solutions in the
redundant case and give an overview of redundancy resolution schemes.

1.2.1 Joint space to operational space mappings

The joint space is the space of the configuration parameters q of size n, where
n is the number of parameters chosen to describe the robot configuration. In
the holonomic, fully actuated, minimum representation case, n is also the
number of degrees of freedom of the robot as well as the dimension of the
actuation torque vector I'.

As stated in the introduction, the tasks or constraints associated to a
mission can rarely be described in the joint space in a natural way. The op-
erational space is often associated to the end-effector(s) of the robot but can
actually be any point of the robot and more generally any set of parameters
of interest which can be described as a function of the robot configuration.
This is the case for external collision avoidance where the constraint point
can evolve along the robot body. Joint limits avoidance is also a particular
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case of constraint where the operational space is a subset of the joint space
itself. Independently from their physical meanings, operational spaces can be
described by operational space parameters & of size m where m is, in the case
of a minimum representation, the number of degrees of freedom required to
achieve the task.

The joint space to operational space mapping can be described at three
different levels. At the geometric level, the forward kinematics model can be
described as a non-linear function f such as:

§=1(a). (1.1)

As stated before, if the robot is redundant, there is an infinite number of
possible inverses for f. However, there is no simple method to span the set of
possible solutions at the geometric level and the mapping is often described
at the velocity level by the Jacobian matrix J (q) = 0f (q) /0q such that:

&=J(a)a. (1.2)

J(q) is a m x n matrix and thus can be inverted using linear algebra
techniques. Once again, there is an infinity of inverse mappings corresponding
to the infinity of possible generalised inverses of J (q) (Ben Israel and Greville,
2003).

The last mapping of interest is the dynamic one. It relates forces applied
to the system, among which the control input I', to the resulting acceleration
q. It can be written:

I'=A(q)q+b(q,q) +g(q)+e(q,q) — e, (1.3)

where A (q), b(q,q), g(q), €(q,q) and T, are respectively the n xn inertia
matrix of the system, the vector of Coriolis and centrifugal effects, the vector
of gravity effects, the vector of unmodeled effects and the torque resulting
from external forces applied to the system.

This equation represents a joint space to joint space mapping at the dy-
namics level with only one solution. It is of course of interest to learn this
mapping since it captures a lot of properties of the system among which
effects such as friction which cannot always be easily identified using para-
metric identification techniques. However, the learning of this mapping is out
of the scope of the work presented here (interested readers can refer to Pe-
ters and Schaal (2008) and Nguyen-Tuong et al (2008)) and it is supposed
to be known in the experiments presented here. We rather focus on the ve-
locity kinematics mapping which is sufficient to capture and characterise the
redundancy of the system?.

1 A velocity kinematics and dynamic combined mapping known as the Operational
Space Formulation is proposed by Khatib (1987).
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1.2.2 Model-based control at the velocity level

In the redundant and non singular case, i.e., rank (J(q)) = m and m < n,
there is an infinite number of generalised inverses of J(q). Among these
inverses, weighted pseudoinverses provide minimum norm solutions (Doty
et al, 1993) and can be written as

J(@f =W, (@) [J (@) W, (@) 7, (1.4)

where W, is a symmetric and positive definite matrix of dimension n x n.

Given a desired operational velocity é*, the inverse mapping of Equation
(1.2) which minimises the Euclidean W,-weighted norm? of the solution is
given by

a=J(a) ¢
The Moore-Penrose inverse or pseudoinverse .J (q)* of J (q) corresponds to
the case where W, = I,,.

The system being redundant with respect to the task, Equation (1.5) is
not the unique solution to the inverse mapping problem and other solutions
of interest are those giving rise to internal motions that do not induce any
perturbation on the task. This particular subset of solutions corresponds to
the nullspace of J (q) and the general form of the minimum norm solutions
to Equation (1.2) can be written

(1.5)

a=J ()" & + P;s(q)d (1.6)

where Py (q) is a projector on the nullspace of J (q) and q, is any vector of
dimension n. Equation (1.6) is the minimum norm solution that minimises
lla — @olly,- A commonly used expression for P; (q) is

Py(@) = (I~ J (@) J (@) (17)

Efficient computation of J (q)* and P;(q) can be done using the SVD
(Golub and Van Loan, 1996) of J(q). The SVD of J(q) is given by J =
UDVT where U and V are orthogonal matrices with dimensions m x m and
n X n respectively. D is a m x n diagonal matrix with a diagonal composed
of the m singular values of J in decreasing order. Given this decomposition,
the pseudoinverse of J can be computed as follows

Jt=vDtUuT, (1.8)

where the computation of DT is straightforward given its diagonal nature.
Regarding Pj (q), it can be computed using the m + 1 to n columns of V

2 1/4TW,q, also noted llellyy, -
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which form a basis for the nullspace of J (q)

Pr(@) = [Vims1- vl V0. VT, (1.9)

where v; is the i*" column of V.
A weighted extension of the SVD can be used in the case where W, # I,,.
Details about this extension can be found in Ben Israel and Greville (2003).

1.2.3 Redundancy resolution schemes

Different possible redundancy resolution schemes can be applied, depending
on the compatibility of the tasks or constraints which have to be solved.
Let us consider two tasks of respective dimensions m; and ms and with
associated Jacobian matrices J; and Jy such as rank (Ji(q)) = my and
my < n and rank (J2 (q)) = mg and my < n. These two tasks are said to be

compatible if Jo,; = [JlT J2T ]T is full row rank. This condition is equivalent
to saying that the me,; parameters of the augmented operational space are
in minimum number and that rank (Jez:) < n.

Given this definition, one has to consider the underconstrained (compat-
ible, infinity of solutions), fully-constrained (compatible, one solution) and
over-constrained (incompatible, no exact solution) cases. In these three cases,
one can write the solution to the inverse velocity kinematics problem using
the solution proposed initially by Maciejewski and Klein (1985)

q=Ji& + (1P, (é; = Jszé’{) : (1.10)

In the compatible case, tasks 1 and 2 will be achieved perfectly. In the
incompatible case task 1 will also be perfectly achieved whereas the error on
the achievement of task 2 will be minimised. This solution can present sin-
gularities when tasks are highly incompatible, i.e., me,¢ is much greater than
n, but this can be compensated for using a proper damped-least square regu-
larisation (Chiaverini, 1997). This task projection scheme can be extended to
several tasks, interested readers can refer to Mansard and Chaumette (2007).

Another method, originally proposed in Baillieul (1985), consists in writ-
ing an extended Jacobian J.,; in order to reach the fully constrained case
(Megt = n and rank(Jeyt) = Meqt) and thus to simplify the inversion prob-
lem to a square, regular matrix inversion. In the fully constrained case, this is
achieved automatically. However, in the under constrained case, this requires
to artificially add tasks whereas in the over constrained one, some projec-
tions have to be done in order to ensure both a square Jacobian matrix and
priorities between tasks.

Similarly to what is shown in the non learning case literature, we will
show hereafter that in the case of complex missions where the tasks and
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constraints constantly evolve, one cannot ensure compatibility at all time.
Thus, the solution provided by Equation (1.10) is more general and should
be preferred.

Finally, in the case of constraints such as joints limits, a possibility consists
in choosing ¢, in Equation (1.6) as the opposite of the gradient of a cost
function @ (q). The resulting solution leads to the local maximisation of
the cost function as long as this secondary constraint does not induce any
perturbation on the first task. The general form of this solution is written

a=J() & —aP;vQ(a), (1.11)

where « is a positive scalar used to tune the steepness of the gradient descent
Snyman (2005). This method is often used in the incompatible case, i.e., when
it is known in advance that the task will not be perfectly achieved, or when
only a global trend has to be followed: minimise the kinetic energy of the
system, avoid joint limits or collisions, etc.

1.3 Learning forward and inverse velocity kinematics
models

Machine learning researchers have developed several families of methods ca-
pable of approximating linear and non-linear functions: perceptrons, multi-
layer perceptrons, radial basis function networks, gaussian processes, support-
vector regression, gaussian process regression, learning classifiers systems and
locally weighted regression methods such as LWPR Vijayakumar and Schaal
(2000). In this section, we briefly explain basic concepts of some of these
methods focusing on LWPR which we use and then mention how they are
used to learn forward or inverse kinematics model. Then we expose the ad-
vantages of learning forward (instead of inverse) velocity kinematics mappings
in redundant cases.

1.3.1 An overview of neural networks function
approximation

Neural networks Rojas (1996) are a wide class of general function approxi-
mators. They are declined under different forms. The general neural network
algorithm may be split into three steps. First, compute an excitation level for
each neuron depending on the inputs. Second, apply an activation function
on this excitation level to determine if the neuron is active or not. Third,
compute an error of the global network output to update all weighted con-
nections. A commonly used feedforward neural network is the Multi-Layer
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Perceptron (MLP) where the activation level of each neuron i is calculated
as z;(x) = vazl w;x; where N is the number of neurons, x; is an input of
the neuron and w; is the associated weight. Classical activation functions
are y(z;) = tanh(z;) or y(z;) = (1 4+ e *)~!. The weights are updated
through a backpropagation error method based on the error e; between
the desired value and the real output of each neuron. This method con-
sists in computing an energy function, such as E(k) = 1/23, e3(k), which
is minimised to update each weighted connection with a gradient descent:
owy (k) = —yOE(k) /0w (k). v is the learning rate which updates the weights
wi.; of a layer in the opposite direction with respect to the energy gradi-
ent. For a general review on learning non-linear models, readers can refer to
Jordan and Rumelhart (1992).

Radial basis function networks are another type of neural networks where
weighted sum and activation functions are temporally inverted compared to
multi-layer perceptrons. The algorithm consists in calculating the function
activation ¢(r) = exp(—pr?),8 > 0 of the norm 7 = ||x — ¢;|| which is then
weighted and summed: y(x) = Zf\;l w;(r).

A fundamental problem with those approaches is that neural networks
are always considered as black boxes and tuning is usually empirical. Radial
basis function networks tend to avoid this limitation and could be treated as
grey boxes. They have the advantage of generating differentiable continuous
approximations (Sun and Scassellati, 2004).

An extension of radial basis function networks are the locally weighted re-
gression methods (Atkeson, 1991) which combine gaussian and linear models.
Some of those methods, such as LWPR, make a projection on the relevant sub-
space to decrease the dimension of the input space. We focus on this method
below since it is the one we use.

1.3.2 Locally Weighted Projection Regression

Locally weighted regressions were first used by Atkeson (1991) to realise su-
pervised learning on robots. As described in Schaal et al (2002), lots of models
have followed, such as LWPLS which include partial least square to reduce in-
put dimensionality or RFWR (Schaal and Atkeson, 1997) which transform the
algorithm into an incremental regression method, avoiding to store data.
Locally Weighted Projection Regression (LWPR) is an algorithm which
perform both incremental regression and inputs projection. It is a function
approximator which provides accurate approximation in very large spaces in
O(k), where k is the number of data points used to perform this estimation.
LWPR uses a combination of linear models that are valid on a zone of the input
space. This space, delimited by a gaussian, may change during the training to
match the trained data. Each model is called a receptive field. The prediction
of an entire LWPR model on an input vector is the weighted sum of the results
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of all the active surrounding receptive fields. Receptive fields are created or
pruned in order to keep an optimal repartition.

Each receptive field first projects the input vector on the most relevant
dimensions to estimate the output vector. This is done by using the covari-
ance matrix of the input/output vectors. At each modification, the projector
is updated and the algorithm checks if increasing the complexity, by adding
another dimension to the input projection, significantly improves the recep-
tive field results and modifies the projector accordingly. The projected vector
is then used in the m dimension linear model (m being the output dimen-
sion) to give the output of the receptive field. During prediction, only the
significant receptive fields are activated. The algorithm may also computes
the gradient of the output with respect to the input.

Different methods listed above have been used to learn various models
among the ones listed in Section 1.2. Before presenting our own approach,
we provide an overview of these different works.

1.3.3 Learning inverse kinematics

Some authors learn the inverse kinematics with a neural network which re-
alise the mapping between operational and joint velocities, solving an uncon-
strained optimisation problem formulated as an energy function. This energy
function is minimised during the gradient descent and weights are conse-
quently updated. It is thus possible to obtain a desired articular velocity
which correspond to a minimum energy function as

" = argmin (E (¢))
q

where E is an energy function which is based on different errors. Pourboghrat
(1989) minimises an energy which leads to learn the Moore-Penrose inverse
minimising the weighted norm (as seen in Equation 1.5). Barhen et al (1989)
resolve redundancy in minimising different Lyapunov function with goal at-
tractors. Guez and Ahmad (1988) and Ahmad and Guez (1990) optimise the
manipulability criterion: H = +/||JJT|| in each configurations. Lee and Kil
(1990) minimise an energy function composed of two types of constraints: one
is minimising the angle difference of the first joint and another is locating the
joints in the middle of joint-limits. They consider the forward kinematics as
known. Briiwer and Cruse (1990) keep the system away from joint limits and
compare their results to planar human motion. Finally, DeMers and Kreutz-
Delgado (1997) includes the topology to bring flexibilities in his redundant
kinematic inverse model.

Based on self-organising maps (Kohonen, 2001), Martinetz et al (1990b,a);
Walter and Schulten (1993) learn a mapping between end effector position
measured by two cameras and joint positions on a three degrees of freedom
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robot. The mapping is made by a three dimensional self-organising map.
They automatically resolve redundancy minimising the variation of the joint
angles during the learning process, using motor babbling or just learning
along target trajectories.

Closer to our approach, D’Souza et al (2001) et al. learn an inverse kine-
matic model with LwPR. The learned inverse model is an inverse of the ex-
tended Jacobian learned on the task with the input q,é and the output
(@ .

M= LWPRlearn ([(L £:| 7q) .

Doing so, no inversion is involved and singularity problems are avoided.

1.3.4 Learning forward kinematics

As forward models of serial robots can easily be computed analytically, there
are few papers treating this subject.

A few authors have used multi-layer perceptrons networks or self-organising
maps to learn the forward kinematics model of various simple systems
(Nguyen et al, 1990; Wang and Zilouchian, 1997; Sadjadian and Taghirad,
2004), but in general the evaluation is based on the accuracy of the model
itself rather than on its control capabilities. Boudreau et al (1998) and Sang
and Han (1999) learn in a more convenient way the forward models of par-
allel robots which involves highly coupled nonlinear equations and which are
difficult to model analytically.

More related to our work, Sun and Scassellati (2004, 2005) learn a for-
ward geometric model with a radial basis function network. They derive each
function to obtain a Jacobian, using classical operational space control tech-
niques similarly to what we propose. They specifically use the two cameras of
a humanoid robot to obtain the operational position used in their controller.
Their approach is very similar to the one we present hereafter, provided that
they use radial basis function networks whereas we use IWPR. On a similar
line, Butz and Herbort (2008) learn a forward kinematics model and inverse
it, using the learning classifier system XCSF as a model learning tool.

In fact, learning forward models for a redundant robot does not raise par-
ticular problems. By contrast, as explained in section 1.2, there exists an
infinity of possible inverse mappings, thus, unless one always wants to use
the same inverse mapping, it does not really make sense to directly learn
kinematics or velocity kinematics inverse mappings since this leads to a loss
of information regarding the redundant nature of the system. Instead, one can
learn the forward mappings and invert them with the methods described in
section 1.2.2, keeping the infinity possibilities for the inversion. One may ar-
gue that inverting a learned mapping will lead to the amplification of learning
errors. This is true. However, the results we present in this chapter demon-
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strate that this approach actually provides very good results when combined
with a closed-loop controller as well as when keeping the learning active while
controlling the robot.

Taking into account these considerations and in order to compare the two
approaches, in this paper we propose to learn the forward kinematics model
in Equation (1.1) of a 3 degrees of freedom robot, giving as input the joint
parameters q adjusted in [0, 27[ and the operational space parameters £ as
output

M = LW PRicarn (q7 5) .

LWPR. does not return directly the global model, but only the predicted
output for a particular input. However, the Jacobian matrix is the first order
derivative of the forward kinematics model relatively to joint space param-
eters q, thus this matrix is provided “for free” while learning the forward
kinematics model. This calculation is made easier by the fact that the learned
model is a simple sum of multiple linear functions which are easily differen-
tiated.

1.4 Experimental study

In this section, we present simulation based experiments designed to compare
the under, fully and over-constrained cases using both the projection and the
extended Jacobian approaches. When using the latter, we do not learn the
inverse mapping as in D’Souza et al (2001) but rather the forward mapping
which we inverse.

1.4.1 Control architecture

We have chosen to evaluate the compared approaches on a 3 degrees of free-
dom planar system, shown in Figure 1.1. Sticks lengths are 0.50m, 0.40m and
0.20m. To simulate this system, we use Arboris, a dynamic simulator based
on Newton-Euler equations which is implemented in matlab (Barthelemy and
Bidaud, 2008). The integration step time of the simulator is chosen to be 10
milliseconds.

Our control scheme uses the resolved motion rate control principle, i.e.,
the desired task space velocity is computed using the task space parameters

error
*

§ =K, (& -9, (1.12)
when £* denotes the desired value of the task space parameters and K, is
a symmetric positive definite matrix. The actual task space parameters are
obtained from the simulator model and, in the case of a real robot, they
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Fig. 1.1 Schematic view of our simulated system

would be measured from exteroceptive sensors. One could think about using
LWPR forward kinematics prediction however this would lead to a drift with
respect to the real target since no external reference would then be used to
close the control loop.

Regarding the projection method, the inverse velocity kinematics is done
using solution (1.10) and the estimated Jacobian matrices and projector
which can be written as

_ . . + e aoal ik
a=Ji&+ (hPy) (&-0JtE). (1.13)
Ji and Js are respectively obtained from LWPR predictions
|:é1, jl] = LWPRpTedict (q,Ml)

and o
[&,,.] = LWPRypcaice (0, M)

The extended Jacobian method leads to a solution that can be written:

Ao =1 -%
. J1:| &
= | % >1. 1.14
a=7 [ 3 (1.14)
P 7 and pseudoinverses of jl and ng 7, are obtained using their SVD as
presented in Section 1.2.2.
g obtained from Equations (1.13) or (1.14) is then differentiated and the

resulting joints acceleration vector is used to compute the actuation torque
based on the dynamics model in Equation (1.3) which we suppose to know
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and is obtained from Arboris (see above). A short version of this control
scheme is presented on Figure 1.2.

T 1
Crmnomy & @ Gl r,
— o —>»[ 7 > a > DM :
A ' S

| - A A i
! q q I
FKM |, :
LWPR |! !
1 1

A A, :

g el 9] : qllq ¢

1 1

Fig. 1.2 Our control scheme including a Forward Velocity Kinematics Model learned
with LWPR and an Inverse Dynamics Model. The dashed line is executed only during
the learning process.

1.4.2 Choice of parameters for the LWPR algorithm

Before performing our experiments, we start with an initial exploration phase
that can be seen as motor babbling, to initialise the model, as suggested in
Klanke et al (2008). We generate random configurations taking ¢; € [0, 2x][.
Depending on the corresponding configurations, we measure task parameters
and feed the LWPR model with the corresponding (q, &) pairs.

Then LWPR comes with some parameters that need to be initialised. We
initialise LWPR as proposed by Klanke et al (2008). The initp coeflicient cor-
responds to the initial size of all receptive fields. This coefficient significantly
affects the convergence time of LWPR. initp is tuned experimentally from
comparing the performance of a set of motor babbling phases to find the best
value corresponding to the minimal prediction error.

Two important parameters for our simulations are wge, and penalty. The
first one is a threshold responsible for the creation of a new local model if no
model responds high enough. The penalty coefficient is critical to the evolu-
tion of the size of receptive fields. A small penalty term increases precision
but decreases the smoothness of the model. We have chosen wge, = 0.5 and
penalty = le % to have the best precision while avoiding ”overlearning”.
Finally, from our experiments, updating D is not so important once the ini-
tialisation is well done but we still keep this option. We set init, to 10000
and activate meta learning (see Klanke et al (2008)).



14 Camille Salaiin, Vincent Padois, and Olivier Sigaud

1.4.3 Experiments

In this Section, we detail three different constrained cases and associated
tasks in order to study the robustness of our control scheme.

1.4.3.1 Under-constrained case

The first studied task is a reaching task. From an initial end-effector position
¢ =1[0.10 l.OO]T m, the end-effector (E7) of the robot has to reach a target
¥ =10.20 0.50}T m with a specified precision of 0.01 meters. Once the task

is achieved, the end-effector is sent back to its initial position with the same

controller and the same required precision. This point to point movement is
repeated until the end of the simulation.

For this simple reaching task, the task space dimension is 2, thus the
Jacobian is redundant and there is an infinity of ways to reach the goal.
We compare the projection approach presented in Section 1.2.3 without any
secondary task to the extended Jacobian approach, where the extension is
realised by adding a one dimension constraint on point (Es):

&, =0.40 m.

1.4.3.2 Fully constrained case

The second experiment consists in reaching &} = [0.20 0.50]T m and keeping
the end effector in this position while realising a second task. This second
task alternatively requires the parameter &5, to reach the values 0.10 m and
0.30 m which are accessible. The first task is a two dimensional task whereas
the second one is a one dimensional task. The system is thus fully constrained.
For these two tasks, the same redundancy resolution schemes are tested.
In the case of the projection method, the second task is projected in the
nullspace of the first one accordingly to Equation (1.13). In the case of the
extended Jacobian method, .J..; is chosen as in the previous experiment.

1.4.3.3 Over-constrained case

The last experiment is very similar to the previous one. The first task is
identical whereas the second one is a two dimensional task for point (Es)
which has to reach &5 = [0.45 0.25]T m. This second task is not compatible
with the first one. The system is over constrained.

Regarding this experiment, the projection method is the only one to be
tested since the extended Jacobian method would require the same projection
in order to obtain a square Jacobian matrix Je.¢.
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1.5 Results

In this section, results from the babbling phase and the experiments described
in Section 1.4.3 are presented and analysed. Except for the babbling phase
where the presented results are an average over 40 trials, the results presented
below correspond to representative trials.

1.5.1 Babbling phase

To evaluate the effectiveness of the forward velocity kinematics model pre-
diction, we use the Normalised Mean Square Error (NMSE) computed as:

11
NMSE = — — i —9)°

where N is the number of points used to compute this error. y; is the i*"
value of the data obtained by the real model of the robot, ¥; is the i*"
predicted value by the learned model and o2 is the sample variance of y:
0% = % Sl gk — 7)™

To actually compute this error, we fixed the velocity of each joint to
1.00 rad.s~'. As can be seen on Figure 1.3, the NMSE of the predicted
velocity decreases during motor babbling. A babbling phase with 5000 sam-
ples is, in this case, sufficient for LWPR to cover roughly the joint space,
having an output, even bad, in each configurations, and to predict an accu-
rate enough Jacobian matrix.

0.5 10000
0451 o000
0.4 -18000
0351 F7000
03- 6000
w
L o025+ 5000
z

0.2 —14000

Number of Receptive Fields

0.15- -3000

0.1F 2000

0.05 -1000

o . h n ¥ 1 o
(] 05 1 15 2 25 3
Number of training samples

Fig. 1.3 Evolution of the Normalised Mean Square Error of the LWPR operational
space velocity prediction (blue, scale left) and of the number of receptive fields for
one output (red, scale right) for a 50000 samples babbling phase (average over 40
trials).
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Regarding the number of receptive fields, in the end of each experiment,
it varies between 2000 and 8000 for each output depending on the length of
the babbling phase. For babbling phases with a large number of samples, this
number is almost reached at the end of the babbling phase.

The relatively large number of receptive fields required in these experi-
ments is due to two factors. The first one is the precision of the prediction
which is asked for and that can be related to our choice of parameters for
the LWPR algorithm. The second factor is more specific to the redundancy
of the robot which we wish to exploit. This redundancy induces possible in-
ternal motions from secondary tasks which cannot be predicted a prior: and
thus require a good coverage of the joint space in complement to specific
trajectory learning.

1.5.2 Under-constrained case

In this experiment, in order to highlight the model adaptation during the
control phase, we only realise motor babbling using 2000 samples. Figure
1.4(a) represents the two first seconds of simulation. The model of the robot
is still quite approximative and the resolved motion rate controller is not suf-
ficiently robust to compensate for inaccuracies in the learned model. Figures
1.4(b) (between 2s and 4s) and 1.4(c) (between 6s and 8s) show the evolution
of the trajectories. It can be noticed that the learned model is being adapted
during the control phase. Also, the precision requirements (errors smaller
than 0.01m) in terms of the point that has to be reached are met. After 20s
(see Figure 1.4(d)), the precision is improved and the trajectory of the robot
trajectory is almost linear as one would expect when using a resolved motion
rate controller.

This is not illustrated here but, as expected, the results obtained using the
projection and the extended Jacobian methods are equivalent in the under
constrained case.

1.5.3 Fully constrained case

In the fully constrained case, the precision requirements (0.01m) are also met
for the two tasks which respectively constrain the position of the end-effector
(point (E7)) and the position along the x¢ axis (see Figure 1.1) of the wrist
of the robot (point (E2)). This is illustrated on Figure 1.5 for the first task.
It is shown, that there is no major difference in the precision obtained when
controlling redundancy using an extended Jacobian or using the projector
approach. From 0 to 1s, the reference operational point is not reached yet,
which explains the large error (the initial error, not shown on the figure, is
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Fig. 1.4 Evolution of operational trajectories while learning. Each graphic represents
two seconds of simulation.(a): 0s to 2s.(b): 2s to 4s.(c): 6s to 8s.(d): 20s to 22s.

0.65m). After 1s, the required precision is obtained and errors are due to the
cyclic change of reference point for the second task. These errors decrease
with time thanks to the on-line improvement of the learned model.

These errors are due to the fact that a learned model is used as well as
to the fact that learning errors are propagated when computing the inverse
velocity kinematics mapping from the forward one. Using the extended Jaco-
bian approach or ours, if the Jacobian matrices are not accurately predicted,
errors disturbs the tasks. Similarly, when specifically using the projection
method, an error in the prediction of the first task Jacobian induces an er-
ror in the computation of the associated projector leading to disturbances
induced by the second task on the first one.

Despite these error propagation effects, the achieved performances are sat-
isfactory.
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Fig. 1.5 Norm of the end-effector error induced by a second compatible task for two
different controllers.

1.5.4 Owver-constrained case

The results obtained from the last experiment illustrate the effectiveness of
the projection method. The controller maintains the distance between the
end effector point (E7) and the desired reference point (A) under 0.01m.
In the same time, the second task is partially achieved as expected from
the redundancy resolution scheme which was chosen. It is achieved with the
minimum possible error and without inducing any disturbance on the first
task: the task hierarchy is respected.

These results are illustrated on Figure 1.6 where the final configuration
of the system is shown as well as intermediate configuration, illustrating the
convergence of the second task to the best possible result.

Figure 1.7 gives a view of the positioning errors for both tasks. Similarly
to the last experiment, error propagation effects are present but once again
the end effector error in position is very low.

1.6 Discussion

First, our results demonstrate the necessity of a babbling phase in the redun-
dant case. The number of receptive fields associated to the learned model is
quite important but this is explained by the required precision as well as by
the necessity to cover the joint space appropriately (see Section 1.5.1).

The results of the experiments for the under constrained case shows that
after some initialisation with motor babbling, our method is able to im-
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Fig. 1.6 Stroboscopic view of the robot realising two prioritised tasks in the incom-
patible case. The task hierarchy is respected as the end effector E; reach point A
while the distance between point E2 and point B is minimum.
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Fig. 1.7 Reaching errors for the first (blue, plain line) and second task (red, dotted
line) in the incompatible case.

prove the model of the system while controlling it so that a reaching task is
achieved with a prescribed precision. The end-effector trajectory converges
to what would be expected in the case of resolved motion rate control. A
similar result has already been obtained by D’Souza et al (2001), using the
extended Jacobian approach and learning directly the inverse velocity kine-
matics mapping.

The second series of experiments (fully constrained case) convey more orig-
inal results. To our knowledge, our approach is original in the sense that the
forward velocity kinematics mapping is learned (through the learning of the
forward kinematics model) and the obtained Jacobian matrix is used to de-
rive the required inverse and projector allowing to combine several learned
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tasks. We show that this method induces error propagations but the perfor-
mance of the controller remains satisfactory. This is mostly due to the fact
that learning is still active while performing the task, inducing on-line model
adaptation. Also, closing the control loop at the operational level using ex-
teroceptive sensor information results in the possibility to compensate for
model uncertainties.

The last series of experiments (over constrained case) reinforces the results
of the fully constrained case by showing that several learned tasks can be
combined in a hierarchical manner in the case where those tasks are not
compatible. This has been a state-of-the-art result for a while in model-
based control in Robotics (Nakamura, 1991). However, to the best of our
knowledge, this is the first time that such results are achieved in the case of
learned models.

The retained redundancy resolution scheme in that last case is the projec-
tion method which leads to the optimal solution for both tasks. In fact, in
the over constrained case, the only effective redundancy resolution scheme is
the projection method. The extended Jacobian approach can be applied in
that case but in a way that requires projections similarly to our approach.

Taking these considerations into account, we draw two conclusions. The
first one is that the extended Jacobian approach is not satisfactory in the
case where models have to be learned. Combining two tasks in a single one in
order to simplify inversion leads to unnecessary constraints on the learning
problem to be solved whereas it is simpler to learn elementary tasks sepa-
rately. Furthermore, tasks combination is easier when the tasks are learned
separately. In the extended Jacobian method, the learned inverse velocity
kinematics model depends on the supplementary task. The whole model has
to be learned again if this task changes whereas learning separately different
Jacobian matrices leave them independent and changing one of them does
not impact the others.

Our second conclusion is that in the redundant case, learning forward
models does not lead to a loss of information about the system. In our method,
one can choose to add any secondary task independently from the first one
and any weighting matrix W, can be used® when performing the inverse of
the Jacobian (see Equation (1.4)). That is not the case when inverse models
are learned directly since this corresponds to a specific choice of inverse. Also,
learning the nullspace of a given mapping at the velocity level would require
a complex learning process and thus it sounds more appropriate to compute
them from the learned forward velocity kinematics mapping.

3 The use of a proper weighting matrix (different from the Identity) can be crucial
in the dynamic case (Khatib, 1987).
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1.7 Conclusion

In the work presented in this paper, we have used a state-of-the-art function
approximation technique, LWPR, to learn the forward kinematics and, by
extension, forward velocity kinematics models of a simple robotic system.
We have shown that this model learning process could be combined with
state-of-the-art operational space control techniques to control a robot. In
particular, we demonstrated that we can benefit from the hierarchical com-
bination capabilities of the operational space control framework to achieve
several learned tasks in parallel even when those tasks are not fully com-
patible. This is made possible by learning the unique forward mapping for
each task and then inversing it instead of directly learning an inverse map-
ping. Two methods were tested: the extended Jacobian approach and the
projection method. The latter is shown to be more versatile than the former.

There are several possible extensions to this work. The most immediate
one consists in dealing with the case of trajectory tracking instead of reach-
ing tasks using resolved motion rate control. This may require faster on-line
learning capabilities during the control phase and we will have to demonstrate
that benefiting from redundancy and combining tasks is still possible in that
more complex case. More generally, we should study the performance of our
approach in a wider variety of tasks and combinations (joint limits avoidance,
external collision avoidance) as well as in the case of using different types of
inversion.

A second extension consists in learning the dynamics of the system and
studying the behaviour of our approach under perturbations to validate its
on-line adaptation capabilities to external forces, that will make it possible
to interact with unknown objects and human users.

Longer term perspectives include an extension of our framework to sys-
tems with a larger number of degrees of freedom. Even though our example is
complex enough to present our approach to learning for the control of redun-
dant systems, model learning is of interest for complex systems. Increasing
the number of dimensions leads to more complex learning problems. In that
context, replacing LWPR, by the Local Gaussian Process approach described
in this volume (Nguyen-Tuong et al, 2009b) seems a natural choice. Finally,
the control framework presented in this paper considers the system as de-
terministic, whereas in a model learning context, regarding it as stochastic
seems more adequate. As a consequence, we will examine the option of mov-
ing from our deterministic framework to its stochastic equivalent described
in (Toussaint and Goerick, 2009) in this volume.
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