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Abstract: We propose a kinematic model of a system moving in R
m+1 and consisting of n rigid

bars attached successively to each other and subject to the nonholonomic constraints that the
velocity of the source point of each bar is parallel to that bar. We prove that the associated
control system is controllable and feedback equivalent to the m-chained form around any regular
configuration. Hence we deduce that the n-bar system is flat and the cartesian position of the
source point of the last bar is a flat output. The n-bar system is a natural generalization of the
n-trailer system and we provide a comparison of flatness properties of both systems.
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1. INTRODUCTION

The well known n-trailer system was proposed by Lau-
mond (1991) to model a unicycle-like robot towing trailers.
This nonholonomic model has attracted a lot of attention
and has been a source of inspiration to study its vari-
ous properties: controllability (Laumond (1991)), struc-
ture (Jean (1998), Pasillas-Lépine and Respondek (2001c),
Mormul (2000)), flatness (Fliess et al. (1995), Jakubczyk
(1993)), motion planning and tracking (Laumond (1998),
Murray and Sastry (1993), Pasillas-Lépine and Respondek
(2001d)), optimal control (Laumond (1998)), etc. In this
paper we propose its generalization, which we call the
n-bar system, consisting of a ”train” of n rigid bars subject
to nonholonomic constraints (see a detailed description in
Section 2 below). We study the geometry of the model
of the n-bar system and prove that around any regular
configuration (that is, none of the angles between two
consecutive bars is ±π

2 ), the associated control system is

feedback equivalent to the m-chained form. This implies
that the n-bar system is flat around any regular configura-
tion and we show that the cartesian position of the source
point of the last (from the top) bar is a flat output. We
show also that all other minimal flat outputs are equivalent
to that one. This is in contrast with the n-trailer system
for which the position of the last trailer is also a flat
output but there is a whole family of non equivalent flat
outputs (parameterized by one function of three variables,
see Li and Respondek (2010b)). As a by-product of our
considerations we deduce the global controllability of the
n-bar system since it is accessible at any (regular or not)
configuration. We send the reader to Li (2010) and Li and
Respondek (2010c) for proofs and a geometric analysis of
the n-bar system and to Slayaman (2008) and Slayaman
and Pelletier (2009) for another, although similar, model
for the n-bar system (called there an articulated arm) and
for a detailed analysis of singular configurations.

This paper is organized as follows. We define our model of
the n-bar system in Section 2. We provide geometric no-
tions and recall a characterization of Cartan distributions
CCn(R, Rm) in Section 3. Then we give our main results:
equivalence of the n-bar system in R

m+1 to the m-chained
form and global controllability in Section 4 and its flatness
in Section 5.

2. N -BAR SYSTEM IN R
M+1

In this section we will consider the n-bar system moving
in R

m+1, as shown on Figure 1, and derive a kinematic
model for it. It is assumed that all n components of the
n-bar system are attached in such a way that Pi is the
source point of the (i + 1)-th bar and simultaneously
the endpoint of the i-th bar and that the instantaneous

velocity of the point Pi is parallel to the vector
−−−−→
PiPi+1,

for 0 ≤ i ≤ n − 1. Furthermore, each rigid bar is assumed
to have length one. The coordinates of Pi in R

m+1 are
given by Pi = (x1

i , x
2
i , . . . , x

m+1
i ), 0 ≤ i ≤ n. Clearly,

the configuration of the n-bar system can be described
completely by the (n + 1)(m + 1) coordinates

x1
0, . . . , x

m+1
0 , x1

1, . . . , x
m+1
1 , . . . , x1

n, . . . , xm+1
n

in X = R
(n+1)(m+1). Due to the assumption |

−−−−→
PiPi+1| = 1,

for 0 ≤ i ≤ n − 1, we have the holonomic constraints
Ψ(x) = 0, where Ψ = (Ψ1, . . . , Ψn)⊤ : X = R

(n+1)(m+1) →
R

n is given by






















Ψ1(x) = (x1
1 − x1

0)
2 + · · · + (xm+1

1 − xm+1
0 )2 − 1

Ψ2(x) = (x1
2 − x1

1)
2 + · · · + (xm+1

2 − xm+1
1 )2 − 1

...
Ψn(x) = (x1

n − x1
n−1)

2 + · · · + (xm+1
n − xm+1

n−1 )2 − 1.

(1)
Under these n holonomic constraints, the true configu-
ration space of the n-bar system becomes the regular
embedded submanifold Q = R

m+1 × (Sm)n ⊂ X defined
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Fig. 1. n-bar system in R
m+1

by Q = {x ∈ X : Ψ(x) = 0}. Moreover, the constraint
Ψ(x) = 0 implies that for any 1 ≤ i ≤ n, there always

exists 1 ≤ σ(i) ≤ m + 1, such that x
σ(i)
i − x

σ(i)
i−1 6= 0. Now

the assumption that the instantaneous velocity of the point

Pi is parallel to the vector
−−−−→
PiPi+1, for 0 ≤ i ≤ n − 1, im-

poses the following nonholonomic constraints on the n-bar
system: the velocity of the system along any trajectory is
annihilated by the following differential 1-forms

Ωj
i = (xj

i − x
j
i−1)dx

σ(i)
i−1 − (x

σ(i)
i − x

σ(i)
i−1 )dx

j
i−1,

for 1 ≤ i ≤ n, 1 ≤ j ≤ m+1 and j 6= σ(i). The distribution

E annihilated by all forms Ωj
i is given by

E =
⋂

i,j

kerΩj
i = span {g1, . . . , gn+m+1},

where

g1 = (x1
1 − x1

0)
∂

∂x1
0

+ · · · + (xm+1
1 − xm+1

0 )
∂

∂xm+1
0

g2 = (x1
2 − x1

1)
∂

∂x1
1

+ · · · + (xm+1
2 − xm+1

1 )
∂

∂xm+1
1

...

gn = (x1
n − x1

n−1)
∂

∂x1
n−1

+ · · · + (xm+1
n − xm+1

n−1 )
∂

∂xm+1
n−1

gn+i =
∂

∂xi
n

, 1 ≤ i ≤ m + 1,

(2)
which defines the control-linear system on X = R

(n+1)(m+1)

∆ : ẋ =

n+m+1
∑

i=1

gi(x)vi, x ∈ X. (3)

To obtain a kinematic model of the n-bar system we have
to constrain the system ∆ to the regular submanifold
Q ⊂ X . Consider the embedding Φ : Q → X such that
Φ(q) = q, for any q ∈ Q. Let J be the codistribution

spanned by all differential forms Ωj
i , i.e.,

J = span {Ωj
i , 1 ≤ i ≤ n, 1 ≤ j ≤ m + 1, j 6= σ(i)}. (4)

Clearly, J = E⊥ and the pull back Φ∗ maps J into a
codistribution I = Φ∗J on Q, i.e.,

I = span {ωj
i , 1 ≤ i ≤ n, 1 ≤ j ≤ m + 1, j 6= σ(i)}, (5)

where ω
j
i = Φ∗Ωj

i . Define a distribution D on Q as
D = I⊥. Notice that D is just the intersection TQ ∩ E

and is of constant rank equal to m + 1 thus giving rise to
a driftless (control-linear) system

Γ : q̇ =

m
∑

i=0

fi(q)ui, q ∈ Q = R
m+1 × (Sm)n, (6)

where locally D = span {f0, . . . , fm}, which describes com-
pletely the n-bar system moving in R

m+1. To summarize,
the model Γ describing the n-bar moving in R

m+1, for
m ≥ 1, is defined by the control-linear system △, given by
(2)-(3), together with the holonomic constraint Ψ(x) = 0.
Notice that, we give explicit expression neither for the
distribution D nor for the vector fields fi, for 0 ≤ i ≤ m.
All their properties will be formulated and analyzed in
terms of the distribution E and the holonomic constraint
Ψ(x) = 0. Another, although similar, model for the n-
bar system (called articulated arm) has been very recently
introduced and studied in Slayaman (2008) and Slayaman
and Pelletier (2009); in the former a detailed analysis of
the singular locus (see also Section 4 below) has been
performed.

The presented model of the n-bar system in R
m+1 is a

natural generalization of the well known n-trailer system
on R

2. The latter is a model for a unicycle-like mobile
robot towing n-trailers such that the tow hook of each
trailer is located at the center of its unique axle (with the
assumption that the distances between any two consecu-
tive trailers are equal). The n-trailer system is subject to
nonholonomic constraints: it is assumed that the wheels
of each individual trailer are aligned with the body and
are not allowed to slip (Laumond (1991)). Clearly, the
nonholonomic constraint that the wheel can not slip on
the plane R

2, can be equivalently rephrased that the
instantaneous velocity of the middle point of the i-th

trailer axle, say point Pi, is parallel to the vector
−−−−→
PiPi+1

joining the two consecutive axles. These are exactly our
nonholonomic constraints imposed for the n-bar system,

the only difference being to allow the vectors
−−−−→
PiPi+1 to

move in R
m+1 and not on the plane R

2.

3. CHARACTERIZATION OF CARTAN
DISTRIBUTION CCN (R, RM )

Consider an arbitrary distribution D. The derived flag of
D is the sequence of modules of vector fields D(0) ⊂ D(1) ⊂
· · · defined inductively by

D(0) = D and D(i+1) = D(i) + [D(i),D(i)], for i ≥ 0.

The Lie flag of D is the sequence of modules of vector
fields D0 ⊂ D1 ⊂ · · · defined inductively by

D0 = D and Di+1 = Di + [D0,Di], for i ≥ 0.

In general, the derived and Lie flags are different; though
for any point p in the underlying manifold the inclusion
Di(p) ⊂ D(i)(p) holds, for i ≥ 0. Two distributions D

and D̃ defined on two manifolds M and M̃ , respectively,
are equivalent if there exists a smooth diffeomorphism ϕ

between M and M̃ such that (ϕ∗D)(p̃) = D̃(p̃), for each

point p̃ in M̃ .

An alternative description of the above notions can also
be given using the dual language of differential forms. A
codistribution I of rank s on a smooth manifold M (or a
Pfaffian system) is a map that assigns smoothly to each



point p in M a linear subspace I(p) ⊂ T ∗
p M of dimension s.

Such a field of cotangent s-planes is spanned locally
by s pointwise linearly independent smooth differential
1-forms ω1, . . . , ωs on M , which will be denoted by I =
span {ω1, . . . , ωs}. Two codistributions (Pfaffian systems)

I and Ĩ defined on two manifolds M and M̃ , respectively,
are equivalent if there exists a smooth diffeomorphism ϕ

between M and M̃ such that I(p) = (ϕ∗Ĩ)(p) for each
point p in M . For a codistribution I, its derived flag
I(0) ⊃ I(1) ⊃ · · · can be defined by

I(0) = I, I(i+1) = {ω ∈ I(i) : dω ≡ 0 mod I(i)}, for i ≥ 0,

provided that each element I(i) of this sequence has
constant rank. In this case, it is immediate to see that
the derived flag of the distribution D = I⊥ coincides
with the sequence of distributions that annihilate the
elements of the derived flag of I, that is D(i) = (I(i))⊥,
for i ≥ 0. The Engel rank, at a point p, of a codistribution
I = span {ω1, · · · , ωs} is the largest integer ρ such that
there exists a 1-form α in I for which ((dα)ρ ∧ ω1 ∧
· · · ∧ ωs)(p) 6= 0. A characteristic distribution of D is
C(D) = {f ∈ D : [f,D] ∈ D}.

Consider Jn(R, Rm), the space of n-jets of smooth maps
from R into R

m and denote its canonical coordinates by
x0

0, x
0
1, . . . , x

0
m, x1

1, . . . , x
1
m, . . . , xn

1 , . . . , xn
m, where x0

0 repre-
sents the independent variable and x0

i for 1 ≤ i ≤ m,

represent the dependent variables, and x
j
i , for 1 ≤ i ≤ m

and 1 ≤ j ≤ n, correspond to the ordinary derivatives
djx0

i

d(x0
0)

j . The Cartan distribution on Jn(R, Rm), which we

will denote by CCn(R, Rm), is the completely nonholo-
nomic distribution spanned by the following family of
vector fields

∂

∂x0
0

+
n−1
∑

j=0

m
∑

i=1

x
j+1
i

∂

∂x
j
i

,
∂

∂xn
1

, . . . ,
∂

∂xn
m

or, equivalently, annihilated by the following family of
differential 1-forms dx

j
i − x

j+1
i dx0

0, 0 ≤ j ≤ n − 1, 1 ≤
i ≤ m.

The problem of characterizing distributions that are lo-
cally equivalent to the Cartan distribution CCn(R, Rm)
has been studied and solved in the following way by
Pasillas-Lépine and Respondek (2001b) (see also Yam-
aguchi (1982), Pasillas-Lépine and Respondek (2001a),
Mormul (2004)):

Theorem 1. A distribution D of rank m + 1, with m ≥ 2,
on a manifold M of dimension (n + 1)m + 1 is equivalent,
in a small enough neighborhood of a point p in M , to the
Cartan distribution CCn(R, Rm) if and only if the following
conditions hold:

(i) D(n)(p) = TpM ;

(ii) D(n−1) is of constant rank nm + 1 and contains an
involutive subdistribution Ln−1 that has constant
corank one in D(n−1);

(iii) D(p) is not contained in Ln−1(p).

Moreover, if m ≥ 3, Ln−1 exists if and only if the Engel
rank of (D(n−1))⊥ equals 1 and rankC(D(n−1)) = (n −
1)m and is given as Ln−1 = F1 + · · · + Fm, where
Fi = {f ∈ D(n−1) : fy dωi ∈ (D(n−1))⊥} and ωi’s are

any differential 1-forms such that I(n−1) = (D(n−1))⊥ =
span{ω1, . . . , ωm}.

Remarks 1. The involutive subdistribution Ln−1, whose
existence is claimed by (ii), is unique (if it exists) and
will be called the canonical involutive subdistribution in
D(n−1). The uniqueness, involutivity, and the explicit form
of Ln−1 = F1 + · · · + Fm follow from a result of Bryant
(1979) and have been shown in Pasillas-Lépine and Re-
spondek (2001b).
Remark 2. Item (i) and (ii) describe the essential geometric
property of distributions equivalent to the Cartan distri-
bution CCn(R, Rm) while the condition (iii) distinguishes
regular points p at which D(p) 6⊂ Ln−1(p) from singular
points, where this last condition is violated.

The case m = 1 is excluded from Theorem 1 because if an
involutive subdistribution of corank one Ln−1 ⊂ D(n−1)

exists it cannot be unique and therefore there is not a
canonical one. However, a ”non-canonical” version of The-
orem 1 holds for m = 1 as well, as proved in Pasillas-Lépine
and Respondek (2001b): a rank-two distribution is equiva-
lent to CCn(R, R), called also the Goursat normal form or
chained form, if and only if there exists a distribution Ln−1

satisfying the conditions (i), (ii) and (iii) of Theorem 1.

Let a distribution D of rank m + 1, with m ≥ 1, satisfy
the items (i) and (ii) of Theorem 1. The regular locus of
D, denoted by Reg(D), is the subset of M consisting of
points at which D is equivalent to the Cartan distribution
CCn(R, Rm) at 0 ∈ R

(n+1)(m+1). It can be proved that
Reg(D) is an open and dense subset of M . In the case
m ≥ 2, since Ln−1 is unique we clearly have Reg(D) =
{p ∈ M : D(p) 6⊂ Ln−1(p)}.

4. FIRST MAIN RESULT: EQUIVALENCE OF THE
N -BAR SYSTEM TO THE M -CHAINED FORM

Consider two driftless control systems

Σ : ẋ =

m
∑

i=0

fi(x)ui = f(x)u, x ∈ M,

and Σ̃ : ˙̃x =

m
∑

i=0

f̃i(x̃)ũi = f̃(x̃)ũ, x̃ ∈ M̃,

where u = (u0, . . . , um)⊤ ∈ R
m+1, ũ = (ũ0, . . . , ũm)⊤ ∈

R
m+1 and the rows f = (f0, . . . , fm) and f̃ = (f̃0, . . . , f̃m)

are formed by C∞-smooth vector fields fi and f̃i, 0 ≤
i ≤ m, on M and M̃ , respectively. We say that Σ and
Σ̃ are feedback equivalent if there exists a diffeomorphism
ϕ : M → M̃, x̃ = ϕ(x) and a feedback transformation
u = β(x)ũ, where β(x) is an invertible C∞-smooth (m +

1)× (m+1)-matrix such that Dϕ(x) ·f(x)β(x) = f̃(ϕ(x)).

Definition 2. An (m + 1)-input driftless control system
Σ : ẋ =

∑m

i=0 uifi(x), defined on R
(n+1)m+1, is said to be

in the m-chained form if it is represented by

ẋ0
0 = u0 ẋ0

1 = x1
1u0 · · · ẋ0

m = x1
mu0

· · · · · · · · ·
ẋn−1

1 = xn
1u0 · · · ẋn−1

m = xn
mu0

ẋn
1 = u1 · · · ẋn

m = um.

A system in the m-chained form is also called the canonical
contact system on Jn(R, Rm). In fact, the vector fields



f0, . . . , fm of the m-chained form coincide with those
generating the Cartan distribution CCn(R, Rm) given in
Section 3. To any control-linear system Σ, we associate
the distribution spanned by all its vector fields DΣ =
span {f0, . . . , fm}. The (local) feedback equivalence of Σ

and Σ̃ coincides with the (local) equivalence of the asso-
ciated distributions DΣ and DΣ̃. Therefore the statement
that a control system Σ is locally feedback equivalent to
the m-chained form (equivalently, to the canonical contact
system on Jn(R, Rm)) will always mean that the associ-
ated distribution DΣ is locally equivalent to the Cartan
distribution CCn(R, Rm).

In this section we will formulate our first main result. See
Slayaman (2008) and Slayaman and Pelletier (2009) for
another approach to the problem of equivalence of the n-
bar system (called there the articulated arm system) to the
Cartan distribution (and, more generally, to the multi-flag
system).

Theorem 3. The n-bar system Γ moving in R
m+1, for

m ≥ 1, defined by (6), is locally feedback equivalent to
the m-chained form at any point x ∈ X = R

(n+1)(m+1)

satisfying Ψ(x) = 0 (that is, at x corresponding to a point
q ∈ Q) such that

(R1)
∑m+1

j=1 (xj
i − x

j
i−1)(x

j
i+1 − x

j
i ) 6= 0, for 1 ≤ i ≤ n − 1,

if m ≥ 2;

(R2)
∑m+1

j=1 (xj
i − x

j
i−1)(x

j
i+1 − x

j
i ) 6= 0, for 2 ≤ i ≤ n − 1,

if m = 1.

Moreover, at any point q ∈ Q (equivalently, at any point
x ∈ X = R

(n+1)(m+1) satisfying Ψ(x) = 0), the n-bar
system satisfies the condition (i) and (ii) of Theorem 1.

Remark 1. Let DΓ be the distribution associated to the
n-bar system Γ. Define the regular locus Reg(Γ) of Γ as
Reg(Γ) = Reg(DΓ). Then Theorem 3 implies that the
regular loci of Γ are different for the case m ≥ 2 and
m = 1 which are defined by (R1) and (R2), respectively,
together with the condition Ψ(x) = 0. It is obvious that
Reg(Γ) is open and dense in the configuration space Q for
both m ≥ 2 and m = 1.
Remark 2. The regularity condition

∑m+1
j=1 (xj

i−x
j
i−1)(x

j
i+1−

x
j
i ) 6= 0 has a clear interpretation for the n-bar system. Let

θi, for 1 ≤ i ≤ n−1, denote the angles of the (i+1)-th bar
with respect to the i-th bar, i.e., the angle between the

vectors
−−−−→
Pi−1Pi and

−−−−→
PiPi+1. Then clearly the regularity

conditions mean that θi are different from ±π
2 , in other

words, the i-th bar is not perpendicular to the (i + 1)-th
one. Using the angles θi, the regular locus can be rewritten
as

Reg(Γ)m≥2 = {q ∈ Q : θi 6= ±
π

2
, 1 ≤ i ≤ n − 1}

Reg(Γ)m=1 = {q ∈ Q : θi 6= ±
π

2
, 2 ≤ i ≤ n − 1}.

It is interesting to observe the difference between the
planar (m = 1) and all other cases (m ≥ 2). Namely, the

angle ±π
2 between the bars

−−−→
P0P1 and

−−−→
P1P2 (the two most

far from the controlled one) is a singularity for m ≥ 2 but
is not for the planar case. The latter implies, in particular,
that the 2-bar system in R

2 is transformable into the
chained form even if the bars are perpendicular. This is
not true any longer if we consider the 2-bar system in the

space R
m+1, m ≥ 2 (in R

3, for instance). Of course, the
2-bar system in R

2 is just the 1-trailer system (a unicycle-
like mobile robot towing one trailer or, equivalently, a
nonholonomic car) and it is well known that the system
can be brought into the chained form even if the axles are
perpendicular. In other words, the rank 2 distributions on
4-dimensional manifolds with the growth vector (2, 3, 4)
have no singularities, a result that goes back to Engel
(1890).

The property of controllability of the n-bar system can
also be obtained from Theorem 3.

Corollary 4. The n-bar system Γ is globally controllable
on R

m+1 × (Sm)n.

5. SECOND MAIN RESULT: FLATNESS OF THE
N -BAR SYSTEM IN R

M+1

Consider a smooth nonlinear control system Ξ : ẋ =
f(x, u), where x ∈ X , an n-dimensional manifold and
u ∈ U , an m-dimensional manifold. Given any integer l,
we associate to Ξ its l-prolongation Ξl given by

Ξl :

ẋ = f(x, u0)
u̇0 = u1

...
u̇l = ul+1

which can be considered as a control system on X l = X ×
U × R

ml, whose state variables are (x, u0, u1, . . . , ul) and
whose m controls are the m components of ul+1. Denote
ūl = (u0, u1, . . . , ul).

Definition 5. The system Ξ is called flat at a point
(x0, ū

l
0) ∈ X l = X×U ×R

ml, for some l ≥ 0, if there exist
a neighborhood Ol of (x0, ū

l
0) and m smooth functions

hi = hi(x, u0, u1, . . . , ul), 1 ≤ i ≤ m,

called flat outputs, defined in Ol, having the following
property: there exist an integer s and smooth functions
γi, 1 ≤ i ≤ n, and δi, 1 ≤ i ≤ m, such that we have

xi = γi(h, ḣ, . . . , h(s)), 1 ≤ i ≤ n

ui = δi(h, ḣ, . . . , h(s)), 1 ≤ i ≤ m,

where h = (h1, . . . , hm)⊤, along any trajectory x(t) given
by a control u(t) that satisfies (x(t), u(t), u̇(t), . . . , u(l)(t)) ∈
Ol.

The compositions γi(h, ḣ, . . . , h(s)) and δi(h, ḣ, . . . , h(s))
are, a priori, defined in an open set Os+l ⊂ Xs+l = X×U×
R

m(s+l). The above definition requires that π(Os+l) ⊃ Ol,
where π(x, ūs+l) = (x, ūl), and that for all such (x, ūs+l),
the compositions yield, respectively, xi and ui. If hi =
hi(x, u0, u1, . . . , ur), r ≤ l, we will say that the system is
(x, u, . . . , ur)-flat and, in particular, x-flat if hi = hi(x).
In the case hi = hi(x, u0, u1, . . . , ur), we will assume
that they are defined on Or ⊂ Xr = X × U × R

mr,
where π−1(Or) ⊃ Ol and π stands for the projection
π(x, u0, . . . , ur, . . . , ul) = (x, u0, . . . , ur).

Let h1, . . . , hm be flat outputs of the system Ξ. It has been
observed in Respondek (2003) that there exist integers
k1, . . . , km such that span {dx1, . . . , dxn, du1, . . . , dum} ⊂

span {dh
(j)
i , 1 ≤ i ≤ m, 0 ≤ j ≤ ki}, and if at the same

time span {dx1, . . . , dxn, du1, . . . , dum} ⊂ span {dh
(j)
i , 1 ≤



i ≤ m, 0 ≤ j ≤ µi}, then ki ≤ µi, for 1 ≤ i ≤ m. The m-
tuple (k1, . . . , km) will be called the differential m-weight
of h = (h1, . . . , hm) and k =

∑m

i=1 ki will be called the
differential weight of h.

Definition 6. Flat outputs of Ξ at (x0, ū
l
0) are called

minimal if their differential weight is the lowest among
all flat outputs of Ξ at (x0, ū

l
0).

Let Using(x) be the m-dimensional subspace of R
m+1 such

that for any control (u0(x), . . . , um(x))⊤ = u(x) ∈ Using(x)
we have

∑m

i=0 fi(x)ui(x) ∈ C1(x), where C1 ⊂ D =
span {f0, . . . , fm} is the characteristic subdistribution of
D(1). Any control u(t) ∈ Using(x(t)) will be called singular
and the trajectories of the system governed by a singular
control remain tangent to the characteristic distribution
C1. The following theorem, given in Respondek (2003),
characterizes the minimal flat outputs for systems that
are feedback equivalent to the m-chained form (i.e., the
canonical contact system on Jn(R, Rm)), with m ≥ 2.

Theorem 7. Consider the driftless control-linear system
Σ : ẋ =

∑m

i=0 fi(x)ui, defined on a manifold X and let
D = span {f0, . . . , fm} be the distribution associated to
Σ. If Σ is locally feedback equivalent, at x0 ∈ X , to the
m-chained form, with m ≥ 2, then the following conditions
are equivalent:

(i) (Ln−1)
⊥ = span {dh0, . . . , dhm} around x0, where

Ln−1 denotes the subdistribution that is involutive
and of corank one in D(n−1);

(ii) h0, . . . , hm are minimal flat outputs of Σ at (x0, u
0),

where u0 6∈ Using(x0).

The following theorem describes the flatness property of
the n-bar system Γ moving in R

m+1.

Theorem 8. (Flatness of the n-bar system) For the n-bar
system Γ moving in R

m+1, where m ≥ 2, we have

(i) Γ is x-flat at any (q0, u
0) ∈ Q × R

m+1 satisfying

(a) Ψ(x) = 0 and
∑m+1

j=1 (xj
i − x

j
i−1)(x

j
i+1 − x

j
i ) 6= 0,

where q0 ∈ Q is identified with a point x ∈
R

(n+1)(m+1) satisfying Ψ(x) = 0;

(b) u0 is such that the instantaneous velocity Ṗ0 of
the point P0 is nonzero (and thus the instanta-

neous velocities Ṗi, 0 ≤ i ≤ n − 1, are nonzero).
(ii) The coordinates P0 = (x1

0, x
2
0, . . . , x

m+1
0 ) are minimal

x-flat outputs of Γ at any (q0, u
0) as above.

(iii) If h0, . . . , hm are any minimal flat outputs at (q0, u
0),

then locally around q0 we have

span{dh0, . . . , dhm} = span{dx1
0, dx2

0, . . . , dxm+1
0 }.

The item (iii) is in contrast with the planar case m = 1,
where minimal flat outputs are not unique and their
totality is actually parameterized by an arbitrary function
of three variables (See a detailed analysis in Li (2010), Li
and Respondek (2010a) and Li and Respondek (2010b)).
Proof : The items (i), (ii) and (iii) are natural consequences
of Theorem 3 and Theorem 7. Theorem 3 assures that for
m ≥ 2, the n-bar system Γ is locally feedback equivalent
to the m-chained form at any point q0 that corresponds

to x ∈ R
(n+1)(m+1) satisfying Ψ(x) = 0 and

∑m+1
j=1 (xj

i −

x
j
i−1)(x

j
i+1−x

j
i ) 6= 0, for 1 ≤ i ≤ n−1. Moreover, it can be

proved that around q0, the subdistribution Ln−1, which is
involutive and of corank one in D(n−1), is given by

(Ln−1)
⊥ = span {dΦ∗x1

0, . . . , dΦ∗xm+1
0 }.

Notice that on the configuration space Q, we have always
that Φ∗x

j
0 = x

j
0, for 1 ≤ j ≤ m + 1. Thus according to

Theorem 7, the coordinates of P0 = (x1
0, x

2
0, . . . , x

m+1
0 )

are minimal x-flat outputs of Γ around q0 which im-
plies immediately that Γ is x-flat at (q0, u

0) for some
control u0. Before we characterize the control u0, no-
tice that Theorem 7 implies that for control systems
that are feedback equivalent to the m-chained form, for
n ≥ 2, m ≥ 2, the minimal flat outputs are equiv-
alent in the sense that for any two families of mini-
mal flat outputs (h0, . . . , hm) and (h̃0, . . . , h̃m), we have

span { dh0, . . . , dhm} = span { dh̃0, . . . , dh̃m}. In view
of this and the item (ii) of Theorem 8, any minimal
flat outputs (h0, . . . , hm) of the n-bar system in R

m+1

for n ≥ 2, m ≥ 2 satisfy span { dh0, . . . , dhm} =
span { dx1

0, dx2
0, . . . , dxm+1

0 }. This proves (iii).

Now we are going to characterize the control u0. According
to the definition of the flat output, the entire state and
all the controls should be functions of the coordinates
x1

0, x
2
0, . . . , x

m+1
0 and their time-derivatives. Recall the

system ∆ given be (2) and (3) and consider the system

of equation for the x
j
0-variables







































ẋ1
0 = v1(x

1
1 − x1

0)

...
ẋm+1

0 = v1(x
m+1
1 − xm+1

0 )

Ψ1(x) =
m+1
∑

j=1

(xj
1 − x

j
0)

2 − 1 = 0.

(7)

A direct computation shows that

v1 =
(

(ẋ1
0)

2 + · · · + (ẋm+1
0 )2

)
1

2 = η1(P0, Ṗ0), (8)

for some function η1. Substituting (8) into (7), we get

x1
1 = x1

0 +
ẋ1

0

v1
= ϕ1

1(P0, Ṗ0)

...
...

xm+1
1 = xm+1

0 +
ẋm+1

0

v1
= ϕm+1

1 (P0, Ṗ0),

for some functions ϕi
1, for 1 ≤ i ≤ m + 1. Put ϕ1 =

(ϕ1
1, . . . , ϕ

m+1
1 ), we thus have

P1 = (x1
1, . . . , x

m+1
1 ) = (ϕ1

1, . . . , ϕ
m+1
1 )(P0, Ṗ0) = ϕ1(P0, Ṗ0).

In the same way, we obtain that, for 2 ≤ i ≤ n,

vi = ηi(Pi−1, Ṗi−1) = η̃i(P0, Ṗ0, P
(2)
0 , . . . , P

(i)
0 )

and Pi = ϕi(Pi−1, Ṗi−1) = ϕ̃i(P0, Ṗ0, P
(2)
0 , . . . , P

(i)
0 ),

for some functions η̃i and ϕ̃i. Finally, the controls vn+j ,
for 1 ≤ j ≤ m + 1, can be expressed by

vn+j = ẋj
n =

d

dt
(ϕ̃j

n(P0, Ṗ0, P
(2)
0 , . . . , P

(n)
0 ))

= τj(P0, Ṗ0, P
(2)
0 , . . . , P

(n+1)
0 ),

for some functions τj . In this way, the entire state and
all controls vi, for 1 ≤ i ≤ n + m + 1, are expressed as
functions of the coordinates of P0 = (x1

0, x
2
0, . . . , x

m+1
0 ) and

their derivatives up to order n+1. The n-bar system Γ has
m + 1 controls while the system ∆ has n + m + 1 controls.



So there must be n relations between controls of ∆ when
restricted to Q = {x ∈ X : Ψ(x) = 0}. We will see this
below and at the same time we will clarify the problem of
singularities. Clearly, in order that the above computations
hold, all the controls vi, for 1 ≤ i ≤ n, cannot vanish.
It is sufficient, however, to assume that the control v1 is
nonzero since around any point x satisfying Ψ(x) = 0 and

the regularity condition
∑m+1

j=1 (xj
i − x

j
i−1)(x

j
i+1 − x

j
i ) 6= 0,

the condition v1 6= 0 implies that vi 6= 0, for 2 ≤ i ≤ n. In
fact, differentiating the constraint

Ψ1(x) = (x1
1−x1

0)
2+(x2

1−x2
0)

2+· · ·+(xm+1
1 −xm+1

0 )2−1 = 0,

we get
∑m+1

j=1 2
(

(xj
1 − x

j
0)ẋ

j
1 − (xj

1 − x
j
0)ẋ

j
0

)

= 0.

Substituting ẋ
j
0 = v1(x

j
1 − x

j
0) and ẋ

j
1 = v2(x

j
2 − x

j
1), for

1 ≤ j ≤ m + 1, into the above equation, by a simple
calculation we get v1 = v2

∑m+1
j=1 (xj

1−x
j
0)(x

j
2−x

j
1). Recall

that around any regular point q0, we have always that
∑m+1

j=1 (xj
1 − x

j
0)(x

j
2 − x

j
1) 6= 0. Therefore, the condition

v1 6= 0 implies that v2 6= 0 and similarly, it can be shown
that

vi = vi+1

m+1
∑

j=1

(xj
i − x

j
i−1)(x

j
i+1 − x

j
i ),

for 1 ≤ i ≤ n − 1 and vn =
∑m+1

j=1 (xj
n − x

j
n−1)vn+j .

The above equations show, first, that v1 6= 0 is equivalent
to vi 6= 0, 1 ≤ i ≤ n. Secondly, they imply that there exist
n relations between the controls vi, 1 ≤ i ≤ n + m + 1, of
∆ implying that the n-bar system possesses, indeed, m+1
controls. Moreover, the condition v1 6= 0 (which yields
vi 6= 0, 1 ≤ i ≤ n) implies that the instantaneous velocity

Ṗ0 of the point P0 is nonzero (and, consequently, the

instantaneous velocities Ṗi of the points Pi, 0 ≤ i ≤ n− 1,
are nonzero). Therefore the condition (b) holds.
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M. Fliess, J. Lévine, P. Martin and P. Rouchon. Sur les
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