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We study the problem of flatness of two-input driftless control systems. Although a characterization of flat systems of that class is known, the problems of describing all flat outputs and of calculating them is open. We show that all x-flat outputs are parameterized by an arbitrary function of three canonically defined variables. We also construct a system of 1 st order PDE's whose solutions give all x-flat outputs of 2-input driftless systems. We illustrate our results by describing all flat outputs of models of a rolling disk and a nonholonomic car.

INTRODUCTION

The notion of flatness has been introduced by Fliess, Lévine, Martin and Rouchon (see [START_REF] Fliess | Sur les systèmes non linéaires différentiellement plats[END_REF], [START_REF] Fliess | Flatness and defect of nonlinear systems: Introductory theory and examples[END_REF], [START_REF] Fliess | A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems[END_REF]) in order to describe the class of control systems, whose set of trajectories can be parameterized by a finite number of functions and their time-derivatives. More formally, a system with m controls is flat if we can find m functions (of the state and control variables and their time-derivatives), called flat outputs, such that the evolution in time of the state and control can be expressed in terms of flat outputs and their time derivatives (see Section 2 for a precise definition and references). This paper is organized as follows. In Section 2, we define the crucial notion of flatness and recall a description of flat driftless 2-input systems. In section 3, we give our main results. We characterize all flat outputs of driftless 2-input systems and give a way of parameterizing them: it turns out that all flat outputs can be parameterized by an arbitrary function of intrinsically defined three variables. We also construct a system of 1 st order PDE's whose solutions are flat outputs of a given system. We illustrate our results by describing, in Section 4, all flat outputs of a nonholonomic model of a disk rolling on a plane and of a nonholonomic car (1-trailer system). The latter is well known to be flat, with the position (x, y) of the trailer being a flat output. Based on our results we will find less intuitive choices of flat outputs.

FLATNESS OF DRIFTLESS TWO-INPUT CONTROL SYSTEMS

Throughout this paper, the word smooth will always mean C ∞ -smooth. Consider a smooth nonlinear control system Ξ : ẋ = f (x, u), where x ∈ X, an n-dimensional manifold and u ∈ U , an m-dimensional manifold. Given any integer l, we associate to Ξ its l-prolongation Ξ l given by

Ξ l : ẋ = f (x, u 0 ) u0 = u 1 . . . ul = u l+1 ,
which can be considered as a control system on X l = X × U × R ml , whose state variables are (x, u 0 , u 1 , . . . , u l ) and whose m controls are the m components of u l+1 . Denote ūl = (u 0 , u 1 , . . . , u l ). Definition 1. The system Ξ is called flat at a point (x 0 , ūl 0 ) ∈ X l = X × U × R ml , for some l ≥ 0, if there exist a neighborhood O l of (x 0 , ūl 0 ) and m smooth functions h i = h i (x, u 0 , u 1 , . . . , u l ), 1 ≤ i ≤ m, called flat outputs, defined in O l , having the following property: there exist an integer s and smooth functions γ i , 1 ≤ i ≤ n, and δ i , 1 ≤ i ≤ m, such that we have

x i = γ i (h, ḣ, . . . , h (s) ) u i = δ i (h, ḣ, . . . , h (s) ),
where h = (h 1 , . . . , h m ) ⊤ , along any trajectory x(t) given by a control u(t) that satisfy (x(t), u(t), u(t), . . . , u (l) s+l) . The above definition requires that π(O s+l ) ⊃ O l , where π(x, ūs+l ) = (x, ūl ), and that for all such (x, ūs+l ), the compositions yield, respectively, x i and u i . If h i = h i (x, u 0 , u 1 , . . . , u r ), r ≤ l, we will say that the system is (x, u, . . . , u r )-flat and, in particular, x-flat if h i = h i (x). In the case h i = h i (x, u 0 , u 1 , . . . , u r ), we will assume that they are defined on O r ⊂ X r = X × U × R mr , where π -1 (O r ) ⊃ O l and π stands for the projection π(x, u 0 , . . . , u r , . . . , u l ) = (x, u 0 , . . . , u r ).

(t)) ∈ O l . The compositions γ i (h, ḣ, . . . , h (s) ) and δ i (h, ḣ, . . . , h (s) ) are, a priori, defined in an open set O s+l ⊂ X s+l = X×U × R m(
The notion of flatness has been introduced in control theory by [START_REF] Fliess | Sur les systèmes non linéaires différentiellement plats[END_REF], [START_REF] Fliess | Flatness and defect of nonlinear systems: Introductory theory and examples[END_REF], [START_REF] Fliess | A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems[END_REF], see also Isidori et al. (1995), [START_REF] Jakubczyk | Invariants of dynamic feedback and free systems[END_REF], Pomet (1995)) and has attracted a lot of attention because of its extensive applications in constructive controllability and trajectory tracking, compare Martin et al. (2002) and references therein. A similar notion (of underdetermined systems of differential equations that are integrable without integration) has already been studied by [START_REF] Hilbert | Über den begriff der klasse von differentialgleichungen[END_REF] and [START_REF] Cartan | Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes[END_REF].

In this paper, we deal only with two-input driftless (equivalently, control-linear) systems of the form Σ : ẋ = f 1 (x)u 1 + f 2 (x)u 2 , on an (n+2)-dimensional manifold M , where f 1 and f 2 are C ∞ -smooth vector fields independent everywhere on M and u = (u 1 , u 2 ) ⊤ ∈ R 2 . To this system, we associate the distribution D spanned by the vector fields f 1 , f 2 , which will be denoted by

D = span {f 1 , f 2 }. Consider another 2-input driftless system Σ : ẋ = f1 (x)ũ 1 + f2 (x)ũ 2 ,
where f1 and f2 are C ∞ -smooth vector fields on M . Form the matrices f (x) = (f 1 (x), f 2 (x)) and f (x) = ( f1 (x), f2 (x)). The systems Σ and Σ are feedback equivalent if there exist an invertible 2 × 2-matrix β, whose entries β ij , 1 ≤ i, j ≤ 2, are C ∞ -smooth functions on M , and a diffeomorphism ϕ :

M → M such that Dϕ(x) • f (x) • β(x) = f (ϕ(x)).
It is easily seen that Σ and Σ are locally feedback equivalent if and only if the associated distributions D = span {f 1 , f 2 } and D = span { f1 , f2 } are locally equivalent via ϕ, i.e., Dϕ(x)(D(x)) = D(ϕ(x)).

The derived flag of a distribution D is the sequence of modules of vector fields D (0) ⊂ D (1) ⊂ • • • defined inductively by

D (0) = D and D (i+1) = D (i) + [D (i) , D (i) ], for i ≥ 0.
The Lie flag of D is the sequence of modules of vector fields

D 0 ⊂ D 1 ⊂ • • • defined inductively by D 0 = D and D i+1 = D i + [D 0 , D i ],
for i ≥ 0. In general, the derived and Lie flags are different though for any point x, the inclusion D i (x) ⊂ D (i) (x) holds, for i ≥ 0.

A characteristic vector field of a distribution D is a vector field f that belongs to D and satisfies [f, D] ⊂ D. The characteristic distribution of D, which will be denoted by C, is the subdistribution spanned by all its characteristic vector fields. It follows directly from the Jacobi identity that the characteristic distribution is always involutive but, in general, it need not be of constant rank.

The problem of flatness of driftless 2-input systems has been studied and solved by [START_REF] Martin | Feedback linearization and driftless systems[END_REF] (see also [START_REF] Martin | Feedback linearization and driftless systems[END_REF] and a related work of [START_REF] Cartan | Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes[END_REF]). Their important result proves that a system is flat if and only if its associated distribution D satisfies, on an open and dense subset M ′ of M , the conditions rank

D (i) = i + 2, 0 ≤ i ≤ n.
(1) A distribution D is called a Goursat structure (also a "système en drapeau" in Kumpera and Ruiz (1982) and a Goursat flag in [START_REF] Mormul | Goursat flags: classification of codimensionone singularities[END_REF]) if it satisfies the conditions (1) at any point x ∈ M . It is known since the work of von Weber (1898), [START_REF] Cartan | Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes[END_REF] and [START_REF] Goursat | Leçons sur le problème de Pfaff[END_REF] that the conditions (1) imply that on an open and dense subset M ′′ of M , the distribution D can be brought into the Goursat normal form, or equivalently, the corresponding control system is feedback equivalent to the chained form: [START_REF] Giaro | Sur la lecture correcte d'un resultat d' Élie Cartan[END_REF]) were the first to observe the existence of singular points in the problem of transforming a distribution of rank two into the Goursat normal form. Murry (1994) proved that the feedback equivalence of Σ to the chained form Σ chain (or, in other words, equivalence of the associated distribution to the Goursat normal form), around an arbitrary point x 0 requires, in addition to (1), the regularity condition (see

Σ chain :                ż1 = v 1 ż2 = z 3 • v 1 ż3 = z 4 • v 1 . . . żn+1 = z n+2 • v 1 żn+2 = v 2 . It is easy to see that Σ chain is x-flat with x-flat outputs cho- sen as h = (h 1 , h 2 ) = (z 1 , z 2 ) and provided that the control v 1 = 0. Giaro,
Theorem 2 below) dim D (i) (x 0 ) = dim D i (x 0 ), 0 ≤ i ≤ n.
(2) A natural question arises: can Σ be locally flat at a singular point of D, i.e., at a point not satisfying the regularity condition (2)? In other words, can a driftless 2-input system be flat without being locally equivalent to the chained form? Theorem 2 answers this question (in what concerns x-flatness).

Let D be any distribution of rank two such that rank D (1) = 3 and rank D (2) = 4. Then there exists a distribution C 1 ⊂ D of corank one which is characteristic for D (1) , i.e., [C 1 , D (1) ] ⊂ D (1) . Indeed, the above rank assumptions imply that (after permuting f 1 and f 2 , if necessary) there exists a smooth function 1) .

α such that [f 2 , [f 1 , f 2 ]] = α[f 1 , [f 1 , f 2 ]] mod D (
It follows that [f 2 -αf 1 , [f 1 , f 2 ]] = 0 mod D (1) and hence C 1 = span {f 2 -αf 1 }. Let U sing (x) be the 1-dimensional subspace of R 2 such that for any feedback control (u 1 (x), u 2 (x)) ⊤ = u(x) ∈ U sing (x), we have f 1 (x)u 1 (x) + f 2 (x)u 2 (x) ∈ C 1 (x) (clearly, U sing (x) is spanned by (α(x), -1) ⊤ ). Any control u(t) ∈ U sing (x(t)
) will be called singular and the trajectories of the system governed by a singular control remain tangent to the characteristic subdistribution C 1 . We have just given the definition of U sing (x) for dim M ≥ 4 (since we have used rank

D (2) = 4). If dim M = 3, we define U sing (x) = 0 ∈ R 2 .
Note that if l = 0, we will denote a fixed control value by u 0 (instead of more complicated u 0 0 ). Theorem 2. Consider a 2-input driftless control system

Σ : ẋ = f 1 (x)u 1 + f 2 (x)u 2 , where x ∈ M , an (n + 2)- dimensional manifold, n ≥ 1. Assume that the distribution D = span {f 1 , f 2 } associated to Σ is a Goursat structure, that is, satisfies rank D (i) = i+2, for 0 ≤ i ≤ n,
everywhere on M . Then the following conditions are equivalent:

(i) Σ is x-flat at (x 0 , ūl 0 ) ∈ M × R 2(l+1) , for a certain l ≥ 0; (ii) Σ is x-flat at (x 0 , u 0 ) ∈ M × R 2 ; (iii) dim D (i) (x 0 ) = dim D i (x 0 ), for 0 ≤ i ≤ n, and
u 0 ∈ U sing (x 0 ); (iv) Σ is locally, around x 0 , feedback equivalent to the chained form Σ chain and u 0 ∈ U sing (x 0 ).

We assume that D satisfies rank D (i) = i + 2, for 0 ≤ i ≤ n, so the characteristic distribution C 1 and the set of singular controls U sing are well defined. The above theorem implies that a driftless 2-input system is never flat at (x 0 , u 0 ) such that u 0 ∈ U sing (x 0 ). Therefore any x-flat outputs (ϕ 1 , ϕ 2 ) become singular in the control space (at u 0 ∈ U sing ) but they may also exhibit singularities in the state space M . To formalize this, assume that a pair of functions (ϕ

1 , ϕ 2 ) defined in an open set M ⊂ M is an x-flat output at (x 0 , u 0 ) ∈ M × R 2 , that is, there exists a neighborhood O 0 ⊂ M × R 2 , satisfying O 0 ⊂ π -1 (M),
where π(x, u) = x, in which the conditions of Definition 1 hold. By Sing(ϕ 1 , ϕ 2 ), called the singular locus of (ϕ 1 , ϕ 2 ), we will mean the set of points

x ∈ M such that (ϕ 1 , ϕ 2 ) is not x-flat output at (x, u) for any u ∈ R 2 .
The interest of the above theorem is two-fold. First, together with its proof, it will allow us to characterize all x-flat outputs of driftless 2-input systems (see Section 3). Secondly, it shows that a Goursat structure is x-flat at points x 0 satisfying dim [START_REF] Martin | Feedback linearization and driftless systems[END_REF] asked (see also [START_REF] Martin | Feedback linearization and driftless systems[END_REF]) whether a Goursat structure D is flat (dynamically linearizable) at points that do not satisfy dim

D (i) (x 0 ) = dim D i (x 0 ), for 0 ≤ i ≤ n, only, that is, at regular points of D.
D (i) (x 0 ) = dim D i (x 0
). So our result gives a negative answer to their question (for x-flatness). Any Goursat structure can be brought to a generalization of the Goursat normal form, called Kumpera-Ruiz normal form (see Kumpera and Ruiz (1982), [START_REF] Mormul | Goursat flags: classification of codimensionone singularities[END_REF], [START_REF] Pasillas-Lépine | On the geometry of Goursat structures[END_REF]). It follows that none of Kumpera-Ruiz normal forms is x-flat (except for the regular Kumpera-Ruiz normal form, that is, Goursat normal form). In particular, the system

         ẋ1 = x 5 u 1 ẋ2 = x 3 x 5 u 1 ẋ3 = x 4 x 5 u 1 ẋ4 = u 1 ẋ5 = u 2
which is the first historically discovered Kumpera-Ruiz normal form [START_REF] Giaro | Sur la lecture correcte d'un resultat d' Élie Cartan[END_REF]), is not x-flat at any point of its singular locus {x ∈ R 5 : x = 0}. This answers negatively another question of [START_REF] Martin | Feedback linearization and driftless systems[END_REF].

CHARACTERIZATION OF FLAT OUTPUTS

Main Theorems

Recall a useful result due to [START_REF] Cartan | Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes[END_REF] whose proof can be found in Kumpera and Ruiz (1982) and [START_REF] Martin | Feedback linearization and driftless systems[END_REF]. Lemma 3. (E. Cartan) Consider a rank two distribution D defined on a manifold M of dimension n + 2, for n ≥ 2. If D satisfies rank D (i) = i + 2, for 0 ≤ i ≤ n, everywhere on M , then each distribution D (i) , for 0 ≤ i ≤ n -2, contains a unique involutive subdistribution C i+1 that is characteristic for D (i+1) and of corank one in D (i) .

Theorem 2 implies that the only Goursat structures that are x-flat are those equivalent to the chained form (equivalently, whose associated distribution D is equivalent to the Goursat normal form). For this reason, we will consider in two theorems below such distributions only. Moreover, any distribution equivalent to the Goursat normal form obviously satisfies the assumptions of Lemma 3 and defines the involutive distribution C n-1 that is characteristic distribution for D (n-1) and of corank one in D (n-2) .

Theorem 4. (Characterization of flat outputs, first version) Consider a driftless 2-input smooth control system Σ defined on a manifold M of dimension n + 2 whose associated distribution D satisfies rank

D (i) = rank D i = i + 2, for 0 ≤ i ≤ n. Fix x 0 ∈
M and let g be an arbitrary vector field in D such that g(x 0 ) / ∈ C n-1 (x 0 ) and ϕ 1 , ϕ 2 be two smooth functions defined in a neighborhood M of x 0 . Then (ϕ 1 , ϕ 2 ) is an x-flat output of Σ at (x 0 , u 0 ), u 0 ∈ U sing (x 0 ), if and only if the following conditions hold:

(i) dϕ 1 (x 0 ) ∧ dϕ 2 (x 0 ) = 0, i.e., dϕ 1 and dϕ 2 are independent at x 0 ;

(ii

) L c ϕ 1 ≡ L c ϕ 2 ≡ L c ( L g ϕ 2 L g ϕ 1 ) ≡ 0, for any c ∈ C n-1 ,
where ϕ 1 and ϕ 2 are ordered such that L g ϕ 1 (x 0 ) = 0 which is always possible due to item (iii);

(iii) (L g ϕ 1 (x 0 ), L g ϕ 2 (x 0 )) = (0, 0).
Moreover, if a pair of functions (ϕ 1 , ϕ 2 ) satisfies (i) everywhere in M and forms an x-flat output at (x, u) for any x ∈ M and certain u = u(x), where M is open and dense in M, then Sing(ϕ 1 , ϕ 2 ) = {x ∈ M : (L g ϕ 1 (x), L g ϕ 2 (x)) = (0, 0)}. Theorem 5. (Characterization of flat outputs, second version) Consider a driftless 2-input smooth control system Σ defined on a manifold M of dimension n + 2 whose associated distribution D satisfies rank D (i) = rank D i = i + 2, for 0 ≤ i ≤ n. Fix x 0 ∈ M and let ϕ 1 , ϕ 2 be two smooth functions defined in a neighborhood M of x 0 . Then (ϕ 1 , ϕ 2 ) is an x-flat output of Σ at (x 0 , u 0 ), u 0 ∈ U sing (x 0 ), if and only if the following conditions hold:

(i) ′ dϕ 1 (x 0 ) ∧ dϕ 2 (x 0 ) = 0; (ii) ′ L = (span {dϕ 1 , dϕ 2 }) ⊥ ⊂ D n-1 in M; (iii) ′ D(x 0 ) is not contained in L(x 0 ).
Moreover, if a pair of functions (ϕ 1 , ϕ 2 ) satisfies (i) ′ everywhere in M and forms an x-flat output at (x, u) for any x ∈ M and certain u = u(x), where M is open and dense in M, then

Sing(ϕ 1 , ϕ 2 ) = {x ∈ M : D(x) ⊂ L(x)}.
Remark 1. Notice that Theorem 5 is valid for any n ≥ 1 (i.e., dim M ≥ 3) while Theorem 4 is true for n ≥ 2 only (i.e., dim M ≥ 4). In fact, in Theorem 4 we use the characteristic distribution C n-1 of D (n-1) but if dim M = 3, such a distribution does not exist and therefore Theorem 4 can not be applied in that case.

Remark 2. The two items (iii) and (iii) ′ describing the singular locus of an x-flat output (ϕ 1 , ϕ 2 ) are equivalent under the condition rank

D (i) = rank D i = i + 2, for 0 ≤ i ≤ n.
Remark 3. The conditions of both theorems are verifiable, i.e., given a pair of functions (ϕ 1 , ϕ 2 ) in a neighborhood of a point x 0 , we can easily verify whether (ϕ 1 , ϕ 2 ) forms an x-flat output of a control system under considerations and verification involves derivations and algebraic operations only (without solving PDE's or bringing the system to a normal form). Moreover, the theorems allow us to find the singular locus of a given flat output (ϕ 1 , ϕ 2 ).

A natural question to ask is if there is a lot of pairs (ϕ 1 , ϕ 2 ) which satisfy the conditions of Theorem 4 or 5?

In other words, is there a lot of pairs (ϕ 1 , ϕ 2 ) which are xflat outputs for a 2-input driftless control system? This question has an elegant answer given by the following theorem. Theorem 6. (Uniqueness of flat outputs) Consider a driftless 2-input smooth control system Σ whose associated distribution D satisfies rank

D (i) = rank D i = i + 2, for 0 ≤ i ≤ n, locally around a point x 0 ∈ M , a manifold of dimension n+2.
Let g be an arbitrary vector field in D such that g(x 0 ) / ∈ C n-1 (x 0 ). Then for a given arbitrary smooth function ϕ 1 such that L c ϕ 1 = 0, for any c ∈ C n-1 , and L g ϕ 1 (x 0 ) = 0, there always exists a function ϕ 2 such that (ϕ 1 , ϕ 2 ) is an x-flat output of Σ at (x 0 , u 0 ), u 0 ∈ U sing (x 0 ). Moreover, if for a given function ϕ 1 as above, the pairs (ϕ 1 , ϕ 2 ) and (ϕ 1 , φ2 ) are both x-flat outputs of Σ at (x 0 , u 0 ), then span {dϕ 1 , dϕ 2 }(x) = span {dϕ 1 , d φ2 }(x), for any x in a neighborhood of x 0 .

Remark. Observe that x-flat outputs (h 1 , . . . , h m ) and ( h1 , . . . , hm ) of a system with m controls such that span { dh 1 , . . . , dh m } = span { d h1 , . . . , d hm } can be considered as statically equivalent. Indeed, in that case there exist smooth functions H i and Hi of m variables such that h i = H i ( h1 , . . . , hm ) and hi = Hi (h 1 , . . . , h m ). It thus follows from Theorem 6 that for a given arbitrary ϕ 1 (satisfying the assumptions of the theorem), the choice of ϕ 2 is unique in the sense that all functions ϕ 2 giving x-flat outputs (ϕ 1 , ϕ 2 ) yield, actually, statically equivalent x-flat outputs.

Finding x-flat outputs

The importance of Theorem 4 is that it not only allows to check whether a given pair of functions forms an x-flat output but also, together with Theorem 6, to express explicitly a system of 1 st order PDE's to be solved in order to calculate all x-flat outputs for a given 2-input driftless system. Recall that the characteristic distribution C n-1 of D (n-1) can be easily calculated as (see [START_REF] Bryant | Exterior Differential Systems[END_REF])

C n-1 = {f ∈ D (n-1) : f dω ∈ (D (n-1) ) ⊥ },
where ω is any non-zero differential 1-form annihilating D (n-1) . Theorem 7. Assume that a control system Σ is x-flat at (x 0 , u 0 ), u 0 ∈ U sing (x 0 ), that is, the associated distribution D is, locally at x 0 , equivalent to the Goursat normal form on an (n + 2)-dimensional manifold M . Let C n-1 = span {c 1 , . . . , c n-1 } be the characteristic distribution of D (n-1) such that c n-1 (x 0 ) ∈ C n-2 (x 0 ) and g any vector field in D such that g(x 0 ) ∈ C n-1 (x 0 ). Then (i) For any smooth function ϕ 1 such that (Flat 1)

L ci ϕ 1 = 0, 1 ≤ i ≤ n -1, L g ϕ 1 (x 0 ) = 0, the distribution L = span {c 1 , . . . , c n-1 , v} is involu- tive, where v = (L g ϕ 1 )[c n-1 , g] -(L [cn-1,g] ϕ 1 )g.
(ii) A pair of functions (ϕ 1 , ϕ 2 ) forms an x-flat output of Σ at (x 0 , u 0 ), u 0 ∈ U sing (x 0 ), if and only if after a permutation (if necessary) ϕ 1 satisfies (Flat 1), dϕ 1 (x 0 ) ∧ dϕ 2 (x 0 ) = 0, and ϕ 2 satisfies

(Flat 2) L ci ϕ 2 = 0, 1 ≤ i ≤ n -1 L v ϕ 2 = 0.
Remark. In (ii) only one implication may need permuting ϕ 1 and ϕ 2 . Indeed, if (ϕ 1 , ϕ 2 ) satisfies (Flat 1) and (Flat 2), then it is an x-flat output (and no permutation is needed).

If (ϕ 1 , ϕ 2 ) is an x-flat output, then at least one ϕ i , 1 ≤ i ≤ 2, satisfies L g ϕ i (x 0 ) = 0 and we choose ϕ 1 such that L g ϕ 1 (x 0 ) = 0. Example 8. Consider a 2-input driftless control system ẋ = f 1 (x)u 1 + f 2 (x)
u 2 on a 4-dimensional manifold M . Assume that the system is x-flat, that is, the associated distributions D = span {f 1 , f 2 } satisfies the conditions of Theorem 7. Choose a vector field c ∈ C 1 characteristic for D (1) and g ∈ D such that g(x 0 ) ∧ c(x 0 ) = 0. According to Theorem 7 we take as ϕ 1 an arbitrary solution of L c ϕ 1 = 0, L g ϕ 1 (x 0 ) = 0 and, in order to find ϕ 2 , we have to solve

L c ϕ 2 = 0, L v ϕ 2 = 0, where v = (L g ϕ 1 )[c, g]-(L [c, g] ϕ 1
)g. Notice that the above system of three 1 st order PDE's contains a fourth one; indeed we have

L v ϕ 1 = (L g ϕ 1 )L [c,g] ϕ 1 -(L [c,g] ϕ 1 )L g ϕ 1 = 0. The system L c ϕ i = L v ϕ i = 0, 1 ≤ i ≤ 2,
(3) admits two independent functions ϕ 1 and ϕ 2 as solutions if and only if the distribution span {c, v} is integrable. A direct calculation shows that this is the case (see [START_REF] Li | Géométrie et classification des systèmes de contact: Applications au contrôle des systèmes mécaniques non holonomes[END_REF], [START_REF] Li | Flat outputs of two-input driftless control system[END_REF]). All becomes clear: the involutive distribution span {c, v} is just the distribution L of Theorem 5 while ϕ 1 and ϕ 2 satisfying (3) are x-flat outputs since their differentials span L ⊥ . We also see that L is not unique: different choices of ϕ 1 lead to different vector fields v which, in turn, give different distributions L = span {c, v}, although all of them are involutive and thus define (via span {dϕ 1 , dϕ 2 } = L ⊥ ) non equivalent flat outputs. This is in a perfect accordance with Theorem 6.

EXAMPLES

Example 9. (Vertical rolling disk) Consider a vertical disk of radius R rolling without slipping on a horizontal plane. Denote by (x, y) the position of the contact point in the xy-plane, and by θ and φ, respectively, the rotation angle of the disk and the orientation of the disk. The controls u 1 and u 2 allow the disk to rotate and turn. This leads to the following model given by a driftless system on

Q = R 2 × S 1 × S 1 : Σ disk :     ẋ ẏ θ φ     =    R cos φ R sin φ 1 0    u 1 +    0 0 0 1    u 2 = f 1 u 1 + f 2 u 2 .
x y (x, y) φ θ

Fig. 1. the rolling disk A direct computation shows that rank D (i) = rank D i = i+ 2, for 0 ≤ i ≤ 2, and C 1 = span {f 1 }. Therefore by Theorem 2, the model Σ disk is x-flat at any point of its configuration space Q. Moreover, it satisfies the hypothesis of Theorems 4, 5 and 6 and U sing is given by U sing = {u = (u 1 , u 2 ) ⊤ : u 2 = 0}. Thus the singular control corresponds to rolling the disk along a straight line. Now let us calculate all its x-flat outputs by using the procedure given in Section 3.2. We choose c = f 1 = R cos φ ∂ ∂x + R sin φ ∂ ∂y + ∂ ∂θ , and take g = f 2 = ∂ ∂φ . Then as a first flat output we can take any function ϕ 1 satisfying the following system of equations

L c ϕ 1 = R cos φ ∂ϕ 1 ∂x + R sin φ ∂ϕ 1 ∂y + ∂ϕ 1 ∂θ ≡ 0 L g ϕ 1 (q 0 ) = 0.
Solving this system of equations, we get that ϕ 1 is any function of the form ϕ 1 = ϕ 1 (φ, x -Rθ cos φ, y -Rθ sin φ)

satisfying ∂ϕ 1 ∂φ (q 0 ) = 0. Choose one such ϕ 1 and then ϕ 2 is any function independent with ϕ 1 that satisfies L c ϕ 2 = L v ϕ 2 = 0, where the vector field v is given by v = (L g ϕ 1 )[c, g] -(L [c,g] ϕ 1 )g. To illustrate this, choose the function ϕ 1 = x -Rθ cos φ around a point q 0 such that L g ϕ 1 (q 0 ) = Rθ sin φ = 0 and then

v = R 2 θ sin 2 φ ∂ ∂x -R 2 θ sin φ cos φ ∂ ∂y -R sin φ ∂ ∂φ .
Solving the system of equations L c ϕ 2 = L v ϕ 2 = 0, we get ϕ 2 = ϕ 2 (x -Rθ cos φ, y -Rθ sin φ) satisfying ( dϕ 1 ∧ dϕ 2 )(q 0 ) = 0. All such functions satisfy span {dϕ 1 , dϕ 2 } = span {dϕ 1 , d φ2 } and we can take, for instance, ϕ 2 = y -Rθ sin φ. Moreover, the singular locus of the x-flat output (x -Rθ cos φ, y -Rθ sin φ) is given by

Sing(ϕ 1 , ϕ 2 ) = {q ∈ Q : (L g ϕ 1 (q), L g ϕ 2 (q)) = (0, 0)} = {q ∈ Q : θ = 0}.
To see that sin φ = 0 is, indeed, not a singularity, we just permute ϕ 1 and ϕ 2 .

To consider another possibility, we choose ϕ 1 = φ and then we have v = R sin φ ∂ ∂x -R cos φ ∂ ∂y . Solving the system of equations L c ϕ 2 = L v ϕ 2 = 0, we get ϕ 2 = ϕ 2 (φ, Rθx cos φy sin φ) satisfying ( dϕ 1 ∧ dϕ 2 )(q 0 ) = 0. We can take, for instance, ϕ 2 = Rθx cos φy sin φ and a simple calculation shows that there does not exist singular point of the x-flat output (φ, Rθx cos φy sin φ) in the state space Q. In other words, (φ, Rθx cos φy sin φ) is an

x-flat output at any point (q, u) ∈ Q × R 2 provided that u ∈ U sing (q).

For various choices of functions, our result allows to eliminate them as candidates for x-flat outputs. For example, we can conclude that if (ϕ 1 , ϕ 2 ) is an x-flat output, then 1) . It follows that independently of the choice of ϕ 2 , neither (x, ϕ 2 ), nor (y, ϕ 2 ), nor (θ, ϕ 2 ) can serve as an x-flat output. 

L c ϕ i ≡ 0, for i = 1, 2, where c = R cos φ ∂ ∂x + R sin φ ∂ ∂y + ∂ ∂θ is a characteristic vector field of D ( 
   ẋ ẏ θ0 θ1     =    cos(θ 1 -θ 0 ) cos θ 0 cos(θ 1 -θ 0 ) sin θ 0 sin(θ 1 -θ 0 ) 0    u 1 +    0 0 0 1    u 2 ,
where q = (x, y, θ 0 , θ 1 ) ∈ R 2 × S 1 × S 1 . It is well known that the system is x-flat and that the position (x, y) of the mid-point of the rear wheels is an x-flat output (see [START_REF] Fliess | Flatness and defect of nonlinear systems: Introductory theory and examples[END_REF] and [START_REF] Jakubczyk | Invariants of dynamic feedback and free systems[END_REF]). We will illustrate our results by providing other (statically non-equivalent)

x-flat outputs that are less intuitive. We choose as a characteristic vector field c = ∂ ∂θ 1 and take g = cos(θ 1 -

θ 0 ) cos θ 0 ∂ ∂x + cos(θ 1 -θ 0 ) sin θ 0 ∂ ∂y + sin(θ 1 -θ 0 ) ∂ ∂θ 0 .
As a first x-flat output we can take any function ϕ 1 satisfying L c ϕ 1 = ∂ϕ 1 ∂θ 1 ≡ 0 and L g ϕ 1 (q) = 0, that is any function ϕ 1 = ϕ 1 (x, y, θ 0 ) such that L g ϕ 1 (q) = 0. Let us choose one such ϕ 1 then ϕ 2 satisfies L c ϕ 2 = L v ϕ 2 = 0, where the vector field v is given by v = (L g ϕ 1 )[c, g] -(L [c,g] ϕ 1 )g = -∂ϕ 1 ∂θ 0 cos θ 0 ∂ ∂x -∂ϕ 1 ∂θ 0 sin θ 0 ∂ ∂y + ( ∂ϕ 1 ∂x cos θ 0 + ∂ϕ 1 ∂y sin θ 0 ) ∂ ∂θ 0 . Therefore ϕ 2 can be taken as any functions ϕ 2 (x, y, θ 0 ) satisfying L v ϕ 2 = 0 and ( dϕ 1 ∧ dϕ 2 )(q) = 0. Given ϕ 1 as above, the space of solutions for ϕ 2 is thus parameterized by one function of two variables but any two solutions ϕ 2 and φ2 give statically equivalent flat outputs, that is span {dϕ 1 , dϕ 2 } = span {dϕ 1 , d φ2 }. On the other hand, different choices of ϕ 1 will lead to nonequivalent pairs (ϕ 1 , ϕ 2 ) of x-flat outputs.

To illustrate this, take ϕ 1 = x, then v = cos θ 0 ∂ ∂θ 0 and L c ϕ 2 = L v ϕ 2 = 0 imply that ϕ 2 is any function of the form ϕ 2 (x, y) satisfying ∂ϕ 2 ∂y (q) = 0 (because of ( dϕ 1 ∧ dϕ 2 )(q) = 0). All such functions satisfy span {dx, dϕ 2 } = span {dx, d φ2 } and we can take, for instance, ϕ 2 = y. This gives the well-known x-flat output (x, y).

To see another choice, take ϕ 1 = θ 0 , then v =cos θ 0 ∂ ∂x sin θ 0 ∂ ∂y and the general solution of L c ϕ 2 = L v ϕ 2 = 0 is ϕ 2 = ϕ 2 (θ 0 , x sin θ 0y cos θ 0 ), which gives as an xflat output (θ 0 , x sin θ 0y cos θ 0 ). Notice that the singular loci of the two choices of x-flat outputs are different. In fact, Sing(x, y) = {θ 1θ 0 = ± π 2 } and Sing(θ 0 , x sin θ 0y cos θ 0 ) = {θ 1θ 0 = 0, ±π}. 

  Fig. 2. nonholonomic carConsider a model of a nonholonomic car Σ car , equivalently of a unicycle-like robot towing a trailer (seeJean (1998),[START_REF] Laumond | Robot Motion Planning and Control[END_REF]),

  Now take ϕ 1 = x + θ 0 around cosθ 0 = 0, then v = cos θ 0 ∂ ∂x sin θ 0 ∂ ∂y + cos θ 0 ∂ ∂θ 0 . Thus the general solution of L c ϕ 2 = L v ϕ 2 = 0 is ϕ 2 = ϕ 2 (x+θ 0 , y-ln | cos θ 0 |)).We can take, for instance, ϕ 2 = yln | cos θ 0 | which gives a third x-flat output (x + θ 0 , yln | cos θ 0 |) of Σ car and its singular locus is defined by Sing(x + θ 0 , yln | cos θ 0 |) = {cos θ 0 = 0} ∪ {cos(θ 1θ 0 ) cos θ 0 + sin(θ 1θ 0 ) = 0}.