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ABSTRACT

This paper presents a new method in a variational level set
framework for ultrasound images segmentation. The conven-
tional intensity gradient based methods have had limited suc-
cess on ultrasound images. Phase based methods, which are
theoretically intensity-invariant, offer a good alternative. The
proposed approach uses a speed term based on local phase de-
rived from the monogenic signal. In order to confront more
the speckle noise and local changes of intensity, the proposed
phase based geodesic active contours term is combined with
a new local maximum likelihood region term. A Rayleigh
probability distribution is considered to model the B-mode
ultrasound images intensities. Preliminary results show that
the proposed model is robust to attenuation and captures well
the low contrast boundaries.

Index Terms— Echocardiography, Level set segmenta-
tion, Local phase, Monogenic signal, Maximum likelihood.

1. INTRODUCTION

Ultrasound imaging represents one of the most popu-
lar exploration technique commonly used in many diagnos-
tic and therapeutic applications. It has many advantages:
it is non-invasive, provides images in real time and re-
quires lightweight material. However, ultrasound B-scan
images segmentation is particularly difficult mainly due to
the low signal-to-noise ratio, low contrast and high amounts
of speckle. This image texture, or speckle, is a correlated
and multiplicative noise that inherently occurs in all types of
coherent imaging systems. Hence, it makes modeling diffi-
cult as its statistics depend on the density and on the type of
scatterers in the tissues (see e.g., [1]). All these characteris-
tics make segmentation difficult and therefore complicate the
diagnosis task [2].

In this study we refer to echocardiographic data. It is
known that echocardiography has been one of the driving ap-
plication areas of medical ultrasound and the literature on
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methods for automatically segmenting and tracking the left
ventricle is extensive. As it has been pointed in [2], the most
popular approach has been to treat echocardiographic endo-
cardial segmentation as a contour finding approach. This is
not straightforward as the contrast around the left ventricle
chamber boundaries varies, depending on its relative orien-
tation to the transducer direction, and to attenuation. Thus,
conventional intensity gradient-based methods have had lim-
ited success on typical clinical images. To avoid this draw-
back, local phase and local image statistics based approaches
offer a good alternative, since they make the approach robust
to attenuation artifacts. It is within this framework that we
propose an alternative in this paper.

Several approaches have been reported in the literature
for automated or semiautomated border detection from ultra-
sound images. For instance, statistical models, arguing that
these were more appropriate because of the significant noise
and missing boundaries of ultrasound images, have been ex-
tensively used [1], [2]. For this reason, several probability
density functions were used to model image gray levels statis-
tics [3, 4, 5, 6]. Unfortunately, segmentation models driven by
global image statistics are not robust to intensity inhomogene-
ity and, therefore, are not ideal for ultrasound images. More
recent techniques attempt to overcome the difficulties caused
by intensity inhomogeneities, by using local region informa-
tion [7, 8, 9, 10].

On the other hand, the local phase based processing has
attached a lot of attention in image analysis. Mulet-Parada
and Noble [11] were the first to successfully use the local
phase information on echocardiographic images. Some phase
based level set segmentation methods on medical applications
can be found in the literature [12, 13, 14, 15].

This paper concerns the development of a novel seg-
mentation method of the left ventricle within the level set
framework. It uses local phase information derived from
the monogenic signal [16, 17]. Our idea is to use a novel
speed function, which combines a phase based edge term and
a Maximum Likelihood (ML) local region based term. To
model gray level behavior of ultrasound images, the classical
Rayleigh probability distribution is considered.

In the next section, we describe the monogenic edge de-
tection measure, calledMonogenic Feature Asymmetry. The



proposed segmentation method is presented in Section 3. Sec-
tion 4 shows preliminary experimental results on real and syn-
thetic data. Section 5 provides a discussion followed by some
concluding remarks.

2. BACKGROUND MATERIALS

2.1. Monogenic signal

One of the popular methods to estimate local signal in-
formations (amplitude, phase and orientation) is based on the
analytic representation of this signal. Recently, Felsberg and
Sommer [16, 17], proposed a novel n-dimensional generaliza-
tion of the analytic signal. In particular, they proposed a 2D
isotropic analytic signal, calledmonogenic signal.

For a given 2D signalf(x), the monogenic signal can be
represented by a scalar valued even and vector valued odd
filtered responses, with the following simple tick:

even = c ∗ f ,

odd = (c ∗ h1 ∗ f, c ∗ h2 ∗ f) ,

wherec is the spatial domain representation of an isotropic
bandpass filter, andh = (h1, h2) is the generalized Hilbert
transform kernel,

h(x) = (h1, h2) =
1
2π

x
||x||3

.

Boukerroui et al. in [18, 19], showed that Cauchy family
has better properties. In the frequency domain, a 2D isotropic
Cauchy kernel is defined by:

C(u) = nc|u|aexp(−s|u|) , a ≥ 1 ,

whereu = (u1, u2), s is a scaling parameter anda/s is the
peak tuning frequency of the filter.nc is a normalization con-
stant, see [18, 19] for more details.

2.2. Monogenic Feature Asymmetry

Step edge detection is performed using thefeature asym-
metrymeasure (FA) of Kovesi [20] defined, in this paper, us-
ing the previously presented monogenic signal. The identifi-
cation of step edges essentially involves finding points where
the absolute value of the local phase is0◦ at a positive edge
and180◦ at a negative edge. In other words, the difference
between the odd and the even filter responses is large. Kovesi
suggested to useFA over a number of scales to detect step
edge features. We define the multiple scales monogenic fea-
ture asymmetry:

FAMS =
1
N

∑
s

b|odds| − |evens| − Tsc√
even2

s + odd2
s + ε

, (1)

whereN is the total number of scales,b·c denotes zeroing
of negative values andTs is the scale specific noise threshold

[20]. For a given scale, theFA takes values in[0, 1], close to
zero in smooth regions and close to one near boundaries.

The application of Kovesi’sFA in [21, 22] on ultrasound
images has yielded good results. The authors used steerable
filters for the 2D extension. To avoid using steerable filters,
the authors in [15] used the monogenic signal, as it is the nat-
ural extension of the 1D analytical signal. The monogenic
feature asymmetry applied on ultrasound images yielded bet-
ter results.

3. SEGMENTATION MODEL

Let I denote a given image defined on the domainΩ, and
let C be a closed contour represented as the zero level set of a
signed distance functionφ, i.e.,C = {x|φ(x) = 0,x ∈ Ω}.
We specify the interior ofC by a smooth approximation of
the Heaviside functionH(φ). Similarly, the exterior ofC is
defined as(1−H(φ)).

We introduce the following classical energy functional to
be minimized [23, 5]:

EG(φ) = LG(φ) +RG(φ) (2)

= λ

∫
Ω

gδ(φ)|∇φ|dx

−
∫

Ω

H(φ) log p(I)dx−
∫

Ω

(1−H(φ)) log p(I)dx .

This energy model is composed of two terms: a gradi-
ent edge based termLG(φ) and a global region based term
RG(φ). The first term is the Geodesic Active Contour term
(GAC) [24], wereλ is a positive fixed parameter andg is an
inverse edge indicator function, generally taken asg(x, y) =
1/(1+ |∇Gσ ∗I|). Here,Gσ is the Gaussian kernel with stan-
dard deviationσ. The second term is a global region based
term. Specifically, it is the log likelihood function to maxi-
mize, given by the product of the inner and the outer proba-
bilities [25, 23]. Here,p(I) represents the probability density
function characterizing the observed gray level of imageI.

In the following, we define an alternative energy func-
tion, similar to the form of (2), but using local image prop-
erties. We use a local phase based edge indicator function
g = 1/(1+γFAMS) instead of the classical inverse gradient
based one. Here,γ is a scale parameter andFAMS ∈ [0, 1]
represents the monogenic feature asymmetry measure defined
by (1). This allows us to define the local phase based GAC
term notedLP (φ). As it was mentioned in the introduction,
recent works showed that ultrasound images respond well to
phase based edge detection. Moreover, a multi-scales ap-
proach offers a better control on the edge detection quality.

Now, we focus on our new local region term. Classical
region based methods, like the ML model, often make strong
assumptions on the intensity distributions of the searched ob-
ject and background. In order to be less restrictive, the local
energy achieves a trade off between local features and global



region. Furthermore, the localization seems to be a good al-
ternative to avoid the attenuation artifact, which is one of the
main characteristics of ultrasound images. We aim in the re-
mainder of this section to change this termRG to a new local
region based termRL [26, 7, 8]. This term is a local version
of the one presented by Sarti and al. in [5]. Thus, we use the
Rayleigh probability distributionp(I) =I/σ2exp(−I2/2σ2),
to model the behavior of the observed gray levels.

To achieve this, we introduce the following characteristic
functionB used to define a local region in terms of a radius
parameterr [7],

B(y;x) =

{
1, ||x− y|| < r

0, otherwise .

Thus, the local region version around a given pointx, of
the global region termRG in (2), is given by

F (φ;x) =−
∫

Ω

B(y;x)H(φ) log p(I)dy (3)

−
∫

Ω

B(y;x)(1−H(φ)) log p(I)dy ,

this formulation allow as to estimate thepdf parameterσ2

locally, inside and outside the curve. The local ML estimates
are given by:

σ̂2
i (x) =

1
2Mi(x)

∫
Ω

B(y;x)H(φ)I2dy ,

σ̂2
o(x) =

1
2Mo(x)

∫
Ω

B(y;x)(1−H(φ))I2dy ,

wereMi andMo denote respectively the local area inside and
outsideΩ and are given as:

Mi(x) =
∫

Ω

B(y;x)H(φ)dy ,

Me(x) =
∫

Ω

B(y;x)(1−H(φ))dy .

By introducing these estimates back in the local log-
likelihood (3), we obtain the new formulation:

F (φ;x) =

−Mi(x) log
( 1
Mi(x)

∫
Ω

B(y;x)H(φ)I2dy
)

−Mo(x) log
( 1
Mo(x)

∫
Ω

B(y;x)(1−H(φ))I2dy
)
,

By bringing the local phase and local region terms, we
now define our new energy built from (2) as follow:

EL(φ) = LP (φ) +RL(φ) (4)

= λ

∫
Ω

gδ(φ)|∇φ|dy +
∫

Ω

δ(φ(x))F (φ;x)dx ,

F (.;x) represents a local image contribution used at each
point along the contour to evolve this contour.

This formulation is under the assumption that the local
behavior of an ultrasound image follows the Rayleigh distri-
bution, and assuming that the size of this local region is suf-
ficient for a maximum likelihood estimation of the parameter
σ2.

It is straightforward to see that the maskB(y;x) is inde-
pendent ofφ. Thus, the associated flow equation ofF (φ;x)
is given by:

FLML(φ; z;x) = log
( 1
Mi(x)

∫
Ω

B(y;x)H(φ(y))I(y)2dy
)

(5)

+
I(z)2Mi(x) +

∫
Ω
B(y;x)H(φ(x))I(y)2dy∫

Ω
B(y;x)H(φ(x))I(y)2dy

− log
( 1
Me(x)

∫
Ω

B(y;x)(1−H(φ(y)))I(x)2dy
)

+
I(z)2Me(x) +

∫
Ω
B(y;x)(1−H(φ(y)))I(y)2dy∫

Ω
B(y;x)(1−H(φ(y)))I(y)2dy

,

in agreement with [5].
Finally, the gradient descent flow minimizing (4), in the

level set formulation, is given by (see Appendix):

∂φ

∂τ
(x) = δ(φ(x))

[
λdiv

(
g(x)

∇φ(x)
|∇φ(x)|

)

+
∫

Ω

δ(φ(y))B(y;x)FLML(φ;y;x)dy

]
.

4. RESULTS

As a preliminary validation, we have compared the semi-
automatic algorithm results to manual segmentations. We
have collected a set of 10 bidimensional cardiac ultrasound
images for different patients, obtained from a Philips IE33
echocardiographic imaging system. The data set was seg-
mented by two specialists in an independent way, i.e. in dif-
ferent days, at the Pediatric Echocardiographic Center, CHU
Amiens. Each specialist segments each image 5 times, so that
10 manual segmentations are available for each image. Thus,
in all, we have 100 manual segmentations.

Matlab 7.6 (R2008a) was used for the implementation of
the proposed method. In all of the experimental results, the
following parameters were fixed as such : bandwidth 2.5 oc-
taves as suggested in [18], wavelength =[20, 22, 24, 26] pix-
els. The radius of the localizing ballr was fixed to 11 pixels.
Unless otherwise stated,λ was set to 1.

The experiment in Fig.1 shows the performance of the
monogenic feature asymmetry to detect step edge boundaries
in very noisy and low contrast data. The adverse effect of
FA measure is the delocalization, by moving closer to finer



Fig. 1. Example of monogenic feature asymmetry at a given
scales > 0. Top: original images, bottom: edge detections.

Fig. 2. Example of the proposed model segmentation results
of the left ventricle. The inner dashed contours are the respec-
tive initializations. In this experiments,λ = 0.7.

Table 1. Performance indices measures DSC and MAD ver-
sus Interobserver, Intraobserver and computer-observer dis-
tances. The mean, median and standard deviation for DSC
and MAD are shown.

Measures DSC (%) MAD (pixels)

Indexes Mean Median SD Mean Median SD

GAC 87.30 88.65 3.13 5.25 4.96 1.57
GAC+GML 89.33 89.58 3.31 4.43 4.17 1.66
LP+LML 91.90 92.70 2.53 3.53 3.17 1.48

Interobserver 94.82 95.51 2.75 2.42 2.65 0.94
Intraobserver 96.10 96.54 0.83 1.93 1.84 0.27

scales, the FA measure recovers details and discontinuities,
but looses regularity and continuity of the boundaries. This
drawback can be reduced by using a multiscale detection, see
equation (1).

Fig. 2 shows illustrative results of our method on two typi-
cal ultrasound images (left ventricle). Fig. 3 shows illustrative
comparison results of the proposed segmentation algorithm
and the results of the global ML algorithm [5] with manual
delineation. These results give the reader some insight re-

Fig. 3. Comparison of the proposed method (left) and the
global ML model (right) with a manual delineation. Blue line:
manual delineation, white line: semi automatic segmentation.
Parameterλ = 0.7.

Fig. 4. Comparison of the local and global ML model. Left to
right: Initial contour and original synthetic image, segmenta-
tion using respectively local and global ML region term only.

garding the robustness to speckle noise and to attenuation.
The last example, Fig.4 demonstrates the effect of a non-

uniform illumination with Speckle noise. The edge based
term is turned off, wile the region term play the leading role.
In this case, the local region based term gives a successful
result while the global region based segmentation algorithm
fails.

Table 1 shows a quantitative comparison between our
approach -noted LP+LML for local phase with a local ML
model- and two semi-automatic segmentation methods : clas-
sical GAC and GAC with a global ML model (GAC+GML).
Inter and Intra-observer values are also shown in this table.
The mean, median and standard deviation of all the echocar-
diographic images segmentations are shown for both mea-
sures: Dice similarity coefficient (DSC) and mean absolute
distance (MAD) (See, for example, [27, 6, 15]).

5. DISCUSSION AND CONCLUSION

We have presented a new approach of ultrasound images
segmentation. We use known techniques: geodesic active
contours and Maximum Likelihood approach. The combina-
tion takes advantage of the benefits of both techniques.

Ultrasound images characteristics, such as attenuation and
low contrast, suggest the use of local image properties in or-
der to improve robustness and accuracy. In our approach, the
local phase based GAC term was reinforced by a local re-
gion based term in order to improve the capture range and the



sensitivity of the algorithm to local minima, see Fig.3. Lo-
cal model parameter estimation is necessary to preserve the
robustness of the algorithm to attenuation.

The radius parameterr is very important for the segmen-
tation process. It can be adjusted according to the image in-
tensity inhomogeneities. It is advisable not to use a very small
value ofr to ovoid a high variance in parameter estimation,
nor a very large value to avoid a high bias. This parameter
must be relatively small and sufficiently large. We also note
that the localization adverse effect of FA discussed in the pre-
vious section can be corrected by the local region term.

The qualitative evaluation on the natural and synthetic
data shows, as expected, that the use of phase based edge
detection with an additional local region term provides a sig-
nificant improvement with respect to the classical GAC and
GAC+GML, see Table 1. A key advantage of this approach
is that it is more robust to intensity inhomogeneities, as it is
demonstrated in Fig.4. Although only preliminary results are
shown, our experiments suggest that the proposed terms can
favorably outperform classical ones of the same nature.
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A. FUNCTIONAL MINIMIZATION

To compute the first variation of equation (3), we express
F (φ;x) asF (φ + τψ;x) and take the partial derivative with
respect toτ evaluated atτ = 0. This allows us to represent
a tiny differential of movement. Here,ψ represents a small
perturbation along the normal direction ofφ weighted by a
scalarτ . In agreement to [5], we obtain

∂

∂τ
F (φ+ τψ;x)

∣∣∣∣
τ=0

=
∫

Ω

δ(φ(y))B(y;x) (6)

× FLML(φ;y;x)ψ(y)dy ,

wereFLML(.) is the associated flow equation ofF (.) as ex-
pressed in (5).

Moreover, starting from the local energy termRL(φ)
given in (4),

RL(φ) =
∫

Ω

δ(φ(x))F (φ;x)dx ,

the tiny differential of movement is given by

∂

∂τ
RL(φ+ τψ)

∣∣∣∣
τ=0

=
∂

∂τ

{ ∫
Ω

δ(φ(x) + τψ(x))

× F (φ+ τψ;x)dx
}∣∣∣∣

τ=0

,

by the product rule, we obtain the following:

dRL(φ, ψ) =
∫

Ω

δ′(φ(x))ψ(x)F (φ;x)dx

+
∫

Ω

δ(φ(x))dF (φ, ψ;x)dx ,

weredF (φ, ψ;x) denotes the directional derivative ofF (φ;x)
as presented in the equation (6).δ′(φ) denotes the derivative
of δ(φ). This term is ignored, because it does not affect
the movement of the curve [7]. The equation ofdRL(φ, ψ)
becomes:

dRL(φ, ψ) =
∫

Ω

δ(φ(x))

×

{∫
Ω

δ(φ(y))B(y;x)FLML(φ;y;x)ψ(y)dy

}
dx .

By moving the integral overy outside the integral overx
we obtain:

dRL(φ, ψ) =
∫

Ω

∫
Ω

δ(φ(x))δ(φ(y))

× B(y;x)FLML(φ;y;x)ψ(y)dxdy .

From this equation it is easy to determine the associated
flow:

∂φ

∂τ
(x) = δ(φ(x))

∫
Ω

δ(φ(y))B(y;x)FLML(φ;y;x)dy .
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