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IMPLICIT ACTIVE CONTOURS FOR ULTRASOUND IMAGES SEGMENTATION DRIVEN
BY PHASE INFORMATION AND LOCAL MAXIMUM LIKELIHOOD

A. Belaid!, D. Boukerrouit, Y. Maingourd® and J-F. Lerallut!

! Heudiasyc, UMR CNRS 6599, Universitle Technologie de Conggine, France
2 PediatricEchocardiographic Center, CHU Amiens, France

ABSTRACT methods for automatically segmenting and tracking the left
entricle is extensive. As it has been pointed in [2], the most

This paper presents a new method in a variational level set

framework for ultrasound images segmentation. The ConvergZOpUIar approach has been to treat echocardiographic endo-

tional intensity gradient based methods have had limited sué:-"’lrdlal ;egmentatlon as a contour finding approach. Th!s IS
t straightforward as the contrast around the left ventricle

cess on ultrasound images. Phase based methods, which Qﬁe

theoretically intensity-invariant, offer a good alternative. The® amber boundaries varies, depending on Its relative orien-

proposed approach uses a speed term based on local phasetaggn to the transducer direction, and to attenuation. Thus,
conventional intensity gradient-based methods have had lim-

rived from the monogenic signal. In order to confront more, ) o A
gd success on typical clinical images. To avoid this draw-

. . . t

the speckle noise and local changes of intensity, the propos . -

phase based geodesic active contours term is combined wi ck, local phase an_d IOC?I image statistics based approaches
offer a good alternative, since they make the approach robust

a new local maximum likelihood region term. A Rayleigh ) : AN
probability distribution is considered to model the B-moge!© attenuation artifacts. It is within this framework that we
ropose an alternative in this paper.

ultrasound images intensities. Preliminary results show that . .
g y Several approaches have been reported in the literature

the proposed model is robust to attenuation and captures W?” ) .
or automated or semiautomated border detection from ultra-

the low contrast boundaries. X . L .
sound images. For instance, statistical models, arguing that
Index Terms— Echocardiography, Level set segmenta-these were more appropriate because of the significant noise
tion, Local phase, Monogenic signal, Maximum likelihood. and missing boundaries of ultrasound images, have been ex-
tensively used [1], [2]. For this reason, several probability
1. INTRODUCTION density functions were used to model image gray levels statis-
tics [3, 4, 5, 6]. Unfortunately, segmentation models driven by
Ultrasound imaging represents one of the most popuglobal image statistics are not robust to intensity inhomogene-
lar exploration technique commonly used in many diagnosity and, therefore, are not ideal for ultrasound images. More
tic and therapeutic applications. It has many advantagegecent techniques attempt to overcome the difficulties caused
it is non-invasive, provides images in real time and reby intensity inhomogeneities, by using local region informa-
quires lightweight material. However, ultrasound B-scartion [7, 8, 9, 10].
images segmentation is particularly difficult mainly due to ~ On the other hand, the local phase based processing has
the low signal-to-noise ratio, low contrast and high amountgttached a lot of attention in image analysis. Mulet-Parada
of speckle. This image texture, or speckle, is a correlatednd Noble [11] were the first to successfully use the local
and multiplicative noise that inherently occurs in all types ofphase information on echocardiographic images. Some phase
coherent imaging systems. Hence, it makes modeling diffibased level set segmentation methods on medical applications
cult as its statistics depend on the density and on the type ¢&n be found in the literature [12, 13, 14, 15].
scatterers in the tissues (see e.g., [1]). All these characteris- This paper concerns the development of a novel seg-
tics make segmentation difficult and therefore complicate theentation method of the left ventricle within the level set
diagnosis task [2]. framework. It uses local phase information derived from
In this study we refer to echocardiographic data. It isthe monogenic signal [16, 17]. Our idea is to use a novel
known that echocardiography has been one of the driving agpeed function, which combines a phase based edge term and
plication areas of medical ultrasound and the literature o@ Maximum Likelihood (ML) local region based term. To
Manuscript received November 11, 2010. This work was supported b mOdeI- gray Ievel-k-)eha-\/io-r Of-UItrasound- images, the classical
grant :f the Rr:egional Council of Picard,ie and.European Union /T:%DER. g ??aylelgh pmbab”lty kb I.S considered. .
E-mail:{ahror.belaid, djamal.boukerroui, jean-francois.leral@utc.fr, In the next section, we describe the monogenic edge de-
maingourd.yves@chu-amiens.r. tection measure, callddonogenic Feature Asymmetnyfhe




proposed segmentation method is presented in Section 3. S§20]. For a given scale, the A takes values iff0, 1], close to
tion 4 shows preliminary experimental results on real and synzero in smooth regions and close to one near boundaries.
thetic data. Section 5 provides a discussion followed by some The application of Kovesi'é'A in [21, 22] on ultrasound

concluding remarks. images has yielded good results. The authors used steerable
filters for the 2D extension. To avoid using steerable filters,
2. BACKGROUND MATERIALS the authors in [15] used the monogenic signal, as it is the nat-
ural extension of the 1D analytical signal. The monogenic
2.1. Monogenic signal feature asymmetry applied on ultrasound images yielded bet-
ter results.

One of the popular methods to estimate local signal in-
formations (amplitude, phase and orientation) is based on the
analytic representation of this signal. Recently, Felsberg and
Sommer [16, 17], proposed a novel n-dimensional generaliza-
tion of the analytic signal. In particular, they proposed a 2D
isotropic analytic signal, calleshonogenic signal !

3. SEGMENTATION MODEL

Let I denote a given image defined on the donfajrand
et C be a closed contour represented as the zero level set of a

For a given 2D signaf (x), the monogenic signal can be signed di_statr;]ce_ftinc_tiom,é.eb.,C - {X‘(ﬁgx) — 0’.X Et.Q}' f
represented by a scalar valued even and vector valued o%f speC|_fy_ € interior ot Dy a smooth approximation o
filtered responses, with the following simple tick: the Heaviside functiotf (¢). Similarly, the exterior ol is
’ defined ag1 — H(¢)).

even =cx f | We introduce the following classical energy functional to
odd = (cxhy * f,cx ha % f) be minimized [23, 5]:
wherec is the spatial domain representation of an isotropicEc(¢) = La(¢) + Ra () (2)
bandpass filter, and = (hy, hs) is the generalized Hilbert
transform kernel, = A/Qg5(¢)|v¢|dx
1
h(x) = (o) = = - [ H@)ogp(Dyix ~ [ (1~ H(o)logp(Dax .
27 ||x||3 Q Q

Boukerroui et al. in [18, 19], showed that Cauchy family ~ This energy model is composed of two terms: a gradi-
has better properties. In the frequency domain, a 2D isotropient edge based terfi;(¢) and a global region based term
Cauchy kernel is defined by: Ra(¢). The first term is the Geodesic Active Contour term
(GAC) [24], werel is a positive fixed parameter agds an
inverse edge indicator function, generally takery@s y) =
1/(14+|VG,+I|). Here,G,, is the Gaussian kernel with stan-
dard deviationo. The second term is a global region based
term. Specifically, it is the log likelihood function to maxi-
mize, given by the product of the inner and the outer proba-
bilities [25, 23]. Herep(I) represents the probability density
function characterizing the observed gray level of image

Step edge detection is performed using fémsgture asym- In the following, we define an alternative energy func-
metrymeasure F' A) of Kovesi [20] defined, in this paper, us- tion, similar to the form of (2), but using local image prop-
ing the previously presented monogenic signal. The identifierties. We use a local phase based edge indicator function
cation of step edges essentially involves finding points wherg = 1/(1+vF Ay s) instead of the classical inverse gradient
the absolute value of the local phaséfsat a positive edge based one. Herey is a scale parameter adtd ;s € [0, 1]
and180° at a negative edge. In other words, the differencaepresents the monogenic feature asymmetry measure defined
between the odd and the even filter responses is large. Kovesy (1). This allows us to define the local phase based GAC
suggested to usE'A over a number of scales to detect stepterm notedCp(¢). As it was mentioned in the introduction,
edge features. We define the multiple scales monogenic fesecent works showed that ultrasound images respond well to

C(u) = nc|u|®exp(—sjul) , a>1,

whereu = (uy,us), s is a scaling parameter and's is the
peak tuning frequency of the filter.. is a normalization con-
stant, see [18, 19] for more details.

2.2. Monogenic Feature Asymmetry

ture asymmetry: phase based edge detection. Moreover, a multi-scales ap-
proach offers a better control on the edge detection quality.
FAuyg = 1 Z Llodd,| — |evens| — T @ Now, we focus on our new local region term. Classical
N 5 4 /eveng + oddi +e region based methods, like the ML model, often make strong

assumptions on the intensity distributions of the searched ob-
where N is the total number of scale$;| denotes zeroing ject and background. In order to be less restrictive, the local
of negative values arf; is the scale specific noise threshold energy achieves a trade off between local features and global



region. Furthermore, the localization seems to be a good aF'(.;x) represents a local image contribution used at each
ternative to avoid the attenuation artifact, which is one of thgoint along the contour to evolve this contour.
main characteristics of ultrasound images. We aim in the re- This formulation is under the assumption that the local
mainder of this section to change this teéRgp to a new local  behavior of an ultrasound image follows the Rayleigh distri-
region based terri® ;, [26, 7, 8]. This term is a local version bution, and assuming that the size of this local region is suf-
of the one presented by Sarti and al. in [5]. Thus, we use thficient for a maximum likelihood estimation of the parameter
Rayleigh probability distributiop(1) =1 /02exp(—1%/202),  o2.
to model the behavior of the observed gray levels. It is straightforward to see that the maBky; x) is inde-

To achieve this, we introduce the following characteristicpendent of). Thus, the associated flow equationfofe; x)
function B used to define a local region in terms of a radiusis given by:
parameter [7],

Fussléizix) =108 (57 [ B H (@) I()dy)

L k=Yl <
Bly;x) = {O, otherwise. (5)
1(2)>M;(x) + [, Bly; x)H(¢(x))I(y)*dy
. ) . . i
Thus, the local region version around a given p&inof T By ) H (6(x))1 (y)2dy

the global region termR ¢ in (2), is given by ) )

~ 108 (575 | BR300 = H@()1(x%dy)

I(z)* Me(x) + Jo B(y;x) (1 — H(6(y))I(y)*dy
2

Jo Bly;x)(1 — H(¢(y)))I(y)>dy ’

. . . ) in agreement with [5].
this formulation allow as to estimate thelf parametet Finally, the gradient descent flow minimizing (4), in the
locally, inside and outside the curve. The local ML estimatesggyg| set formulation, is given by (see Appendix):

are given by:

F(¢ix) = - /Q B(y: %) H(¢) log p(1)dy @3)
+

_ /Q B(y;x)(1 — H(¢))logp(I)dy

d¢ , Vo(x)
~ 1 —(x)=6 bV
O'Z-Q(X) = m/ﬂ B(y,X)H(¢)12dy , or (X) (¢(X)) [ & (g(X) ‘V¢(X)|
1
~2 _ . 2
%) = im0 /QBWX)“ — H{@) I dy + /Q 5<¢<y>>6<y;x>FLML<¢;y;x)dy] .
wereMi andM, denote respectively the local area inside and
outside(2 and are given as: 4. RESULTS
M(x) = / Bly;x)H(¢)dy , As a preliminary validation, we have compared the semi-
Q automatic algorithm results to manual segmentations. We
. ) _ have collected a set of 10 bidimensional cardiac ultrasound
Me(x) = /QB(Y’X)(l H(¢)dy - images for different patients, obtained from a Philips IE33

. ) . ) echocardiographic imaging system. The data set was seg-
By introducing these estimates back in the local 10g-yanteqd by two specialists in an independent way, i.e. in dif-
likelihood (3), we obtain the new formulation: ferent days, at the Pediatric Echocardiographic Center, CHU
Amiens. Each specialist segments each image 5 times, so that

F(ix) = ) 10 manual segmentations are available for each image. Thus,
— M;(x)log (M- / B(y: x)H(¢)12dy) in all, we have 100 manual segmentatlons._ _
i(x) Jo Matlab 7.6 (R2008a) was used for the implementation of
1 ) B 2 the proposed method. In all of the experimental results, the
— Mo (x) log (Mo(x) Q Bly;x)(1 - H()I dy) ’ following parameters were fixed as such : bandwidth 2.5 oc-

o i taves as suggested in [18], wavelengtf2&, 22, 24, 26] pix-
By bringing the local phase and local region terms, Wes|s The radius of the localizing ballwas fixed to 11 pixels.
now define our new energy built from (2) as follow: Unless otherwise stated was set to 1.

- The experiment in Fig.1 shows the performance of the
EL(9) = Lp(#) + Re(9) ) monogenic feature asymmetry to detect step edge boundaries

— /\/ 95(¢)‘v¢|dy+/ §((x))F(¢; x)dx , in very noisy and low contrast data. The adverse effect of
Q Q FA measure is the delocalization, by moving closer to finer



Fig. 3. Comparison of the proposed method (left) and the
global ML model (right) with a manual delineation. Blue line:
manual delineation, white line: semi automatic segmentation.
ParameteA = 0.7.

Fig. 1. Example of monogenic feature asymmetry at a given
scales > 0. Top: original images, bottom: edge detections.

Fig. 4. Comparison of the local and global ML model. Left to
right: Initial contour and original synthetic image, segmenta-
tion using respectively local and global ML region term only.

garding the robustness to speckle noise and to attenuation.
The last example, Fig.4 demonstrates the effect of a non-

Fig. 2. Example of the proposed model segmentation resultgniform illumination with Speckle noise. The edge based

of the left ventricle. The inner dashed contours are the respel:(?rm_IS turned off, wile the region term play t.he leading role.
tive initializations. In this experiments, — 0.7. In this case, the local region based term gives a successful

result while the global region based segmentation algorithm
fails.
Table 1. Performance indices measures DSC and MAD ver- Table 1 shows a quantitative comparison between our
sus Interobserver, Intraobserver and computer-observer digpproach -noted LP+LML for local phase with a local ML
tances. The mean, median and standard deviation for DS@odel- and two semi-automatic segmentation methods : clas-

and MAD are shown. sical GAC and GAC with a global ML model (GAC+GML).

[ Measures | DSC (%) l MAD (pixels) | Inter and Intra-observer values are also shown in this table.

[ Indexes | Mean Median SD| Mean Median SD|  The mean, median and standard deviation of all the echocar-
GAC 87.30 8865 3.13 525 496 1.57| diographic images segmentations are shown for both mea-

GAC+GML | 89.33  89.58 3.31 443 417 166 gyres: Dice similarity coefficient (DSC) and mean absolute

LP+LML 91.90 92.70 2.53 3.53 3.17 1.48 distance (MAD) (See, for example, [27' 6, 15])
Interobserver] 94.82 9551 2.75 2.42 2.65 0.94

Intraobserver| 96.10 96.54 0.83 1.93 1.84 0.27

5. DISCUSSION AND CONCLUSION

scales, the FA measure recovers details and discontinuities, We have presented a new approach of ultrasound images
but looses regularity and continuity of the boundaries. Thisegmentation. We use known techniques: geodesic active
drawback can be reduced by using a multiscale detection, seentours and Maximum Likelihood approach. The combina-
equation (1). tion takes advantage of the benefits of both techniques.

Fig. 2 shows illustrative results of our method on two typi-  Ultrasound images characteristics, such as attenuation and
cal ultrasound images (left ventricle). Fig. 3 shows illustrativdlow contrast, suggest the use of local image properties in or-
comparison results of the proposed segmentation algorithiler to improve robustness and accuracy. In our approach, the
and the results of the global ML algorithm [5] with manual local phase based GAC term was reinforced by a local re-
delineation. These results give the reader some insight rgion based term in order to improve the capture range and the



sensitivity of the algorithm to local minima, see Fig.3. Lo- by the product rule, we obtain the following:
cal model parameter estimation is necessary to preserve the
robustness_of the algorlth_m to attenuation. AR 1(6, %) :/ 8 (¢(x))0(x) F (¢ x)dx
The radius parameteris very important for the segmen- Q
tation process. It can be adjusted according to the image in-
tensity inhomogeneities. Itis advisable not to use a very small T /Q 0(P(x))dE (¢, 3 x)dx
value ofr to ovoid a high variance in parameter estimation,
nor a very large value to avoid a high bias. This parameteweredF (¢, ¢; x) denotes the directional derivative B ¢; x)
must be relatively small and sufficiently large. We also noteas presented in the equation (6)(¢) denotes the derivative
that the localization adverse effect of FA discussed in the presf 6(¢). This term is ignored, because it does not affect
vious section can be corrected by the local region term. the movement of the curve [7]. The equationd® 1, (¢, v)
The qualitative evaluation on the natural and synthetibecomes:
data shows, as expected, that the use of phase based edge
detection with an additional local region term provides a sigdR 1, (¢,v) = [ 6(¢(x))
nificant improvement with respect to the classical GAC and Q
GAC+GML, see Table 1. A key advantage of this approach
is that it is more robust to intensity inhomogeneities, as it is x LaW(W)BW?X)FLML(@ yiX)y(y)dy pdx .
demonstrated in Fig.4. Although only preliminary results are

shown, our experiments suggest that the proposed terms can By moving the integral ovey outside the integral ovex
favorably outperform classical ones of the same nature. we obtain:
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of the data. From this equation it is easy to determine the associated
flow:
A. FUNCTIONAL MINIMIZATION 99

520 = 86(x)) | 6(y))Blyix)Fraan (0:y: )iy

To compute the first variation of equation (3), we express
F(¢;x) asF(¢ + T¢; x) and take the partial derivative with
respect tor evaluated at = 0. This allows us to represent
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