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Abstract— Vision has often been considered as not suit-
able for dynamic control of robots. The experimental results
presented in this paper show that it is possible to perform
better with a vision based dynamic control than with a model-
based control. These results were obtained using a Cartesian
computed torque control fed back, without any joint sensing,
by a novel Cartesian pose and velocity estimator. The latter is
designed as a virtual visual servoing scheme based on sequential
acquisition of sub-images and a constant acceleration motion
assumption.

I. INTRODUCTION

It was shown in [1], [2] that the most appropriate space

for parallel robot (or parallel kinematic manipulator) control

is the Cartesian space. The main reason for this is that,

contrarily to serial robots, the most natural representation

space for parallel robots is the Cartesian configuration of the

end-effector [1], [3], [4]. In addition, the dynamic coupling

between legs in such robots being important even at low

speed [2], it imposes to compensate for dynamics in the

control law as soon as high performances are expected [5].

The most natural expression for the dynamic control,

taking into account the a priori knowledge over the dynamic

model, is thus a Cartesian space computed torque control,

as depicted in Fig. 1. As can be seen on the latter, the key

point in implementing a Cartesian space computed torque

control consists in how to obtain the robot Cartesian pose

x and its time derivative ẋ. The two main approaches to

get these measures differ by the kind of the sensors used

to measure the configuration of the robot, that can either be

proprioceptive or exteroceptive sensors. The implementation

of the Cartesian space computed torque control using propri-

oceptive sensors (namely, joint sensors) requires the compu-

tation of the forward kinematic model. However, the latter is

usually not trivial to compute (a huge literature is devoted to

this problem, which can be entered through [6]). In addition,
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Fig. 1. Cartesian space computed torque control scheme of parallel robots.

Fig. 2. Set-up for vision based control of parallel robot “Orthoglide”.

it is subject to modeling and numerical errors [5] since the

reliability of the end-effector pose estimation depends on

to the completeness of the modeling of the robot geometry

and to the identification accuracy of this model (calibration).

Moreover, the pose is estimated using the minimal number

of data, making it sensitive to the slightest noise in the

joint sensors. Last, and maybe least, the end-effector pose

velocity can either be obtained, in this case, by numerically

differentiating the estimated pose over time or by feeding the

differential kinematic model with joint velocities (whatever

the way the latter are obtained).

One solution to these issues is to use an exteroceptive

sensor. Indeed, measures provided by such a sensor are

independent from the modeling and/or calibration of the

mechanical system. However, these measures must reach

an acceptable accuracy as well as an acceptable frequency.

Optical sensing can satisfies these requirements. Further-

more, it is contactless and fairly insensitive to changes in

an industrial environment. Among optical sensing, vision is,

to a growing extent, also preferable to laser tracking since it

is mechanically passive.

The feasibility of this approach was shown in [7] where

a computed torque control of parallel robot based on high-

speed vision was performed. However, the pose was obtained

from the simple Dementhon algorithm [8] and was too noisy
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to get conclusive results for the vision-based control over

joint sensor-based control, although the former held the com-

parison with the latter. In addition, the velocity was obtained

by numerical time derivation of the pose, which expectedly

multiplies the noise by the high sampling frequency of the

dynamic control. Using low-pass filter for reducing noise is

not appropriate though because of the phase lag introduced

by the filter, which may affect the stability of the closed

loop system [9], [10]. The scientific and technical bolt of

this control law is thus conditionned by the achievement of a

fast and accurate pose and velocity estimation of the parallel

robot end-effector.

In [11], a vision system based on a sequential acquisition

of selected regions of interest (namely, sub-images just large

enough to contain the visual information) was used to have

a high-speed pose and velocity computation. This vision

system has two main benefits. The first one is that this

acquisition strategy allows one to reduce the data amount to

be transmitted from the camera to the process unit and then

to consequently increase the acquisition frequency by using

the communication interface bandwidth in a more efficient

way. The second benefit is that the sequential acquisition of

the visual features introduces visual motion-related artifacts

in the whole image, thanks to which the end-effector velocity

can be estimated without any numerical derivation.

However, that work was based on the assumption that

the end-effector velocity was constant during the sequential

acquisition of the whole image features. As a consequence of

this constant velocity assumption, the velocity is estimated

with a constant delay because of the velocity tracking error.

Due to the non-linearity of the dynamic model, it is hard to

take into account such a delay, resulting in loss of control

stability [9], [10]. In addition, the acquisition frequency

being higher than the control frequency, the assumption of

a constant velocity is not coherent with the dynamic control

since the motion model is closer to a constant acceleration

model.

The contribution of this paper is to propose a novel

high-speed vision-based computed torque control of parallel

robots using the sequential sub-images acquisition method.

To do so, the estimation method for Cartesian pose and

velocity presented in [11] is improved and adapted to dy-

namic control purposes. In this context, the motion and the

projection models are extended to a constant acceleration

assumption to be more coherent, as stated, with the real robot

motion. This modification also allows one to eliminate the

velocity tracking delay, making the system more stable.

The following section presents the theoretical background

of the virtual visual servoing for simultaneous pose and ve-

locity estimation. Section III is devoted to adapting the pose

and velocity estimation method to a piecewise constant ac-

celeration motion assumption. The proposed control scheme

is then presented in Section IV whereas Section V presents

the experimental setup on the Orthoglide robot (Fig 2) and

some implementation details. Finally, Section VI shows the

experimental results using the proposed control law with

comparison to a classical joint-based control scheme.

II. POSE AND VELOCITY ESTIMATION UNDER THE

VIRTUAL VISUAL SERVOING FRAMEWORK

Let us reformulate here some background results from [11]

that are useful for the completeness of the paper.

In the sequential region of interest acquisition method, a

known object, abstracted as a set of 3-d points, is observed

by successively grabbing one single sub-image containing a

single visual point at a time.

The projection model of a set of 3-d points Pi is thus

given by:

∀i = 1..n m̃i ≡ [K | 0] c
To

cδTi
o
P̃i (1)

where n is the number of 2d-3d correspondences, o
P̃i are

the homogeneous coordinates of point Pi in the object

reference frame, m̃i are the homogeneous coordinates of

the associated point projection in the camera plane, ≡ is

the projective equality c
To the homogeneous transformation

matrix between the object and camera frames at a reference

time tref and cδTi the displacement between tref and the ith

point acquisition time ti. Finally, K is the matrix containing

the camera intrinsic parameters, whilst lens distorsion is not

shown here for clarity sake but is compensated for.

The specificity of this acquisition method is that the

projection model of a rigid object depends on the object

pose and velocity. Indeed, the displacement cδTi is nothing

but the integration of the object velocity between tref and

ti:

cδTi =

∫ ti

tref

r(τ (t))dt (2)

where τ = [v, ω] is the object velocity twist and r is the

reshaping operator which transforms the kinematic twist into

a 4 × 4 matrix.

Then, the estimation method consists essentially in mini-

mizing the reprojection error built upon (1):

min
cTo,τ

1

2

n
X

i=1

‖mi − π([K | 0] c
To

Z ti

tref

r(τ (t))dt
o
P̃i)‖

2
(3)

where π(.) represents the non-linear formulation of perspec-

tive projection.

As it is non-linear, it is solved by an iterative numerical

scheme. One elegant method, taking into account the specific

structure of SE(3), is to use the virtual visual servoing

paradigm [12], [11]. This can be seen as an iterative scheme

where the linearization is done in se(3) rather than in R
6. It

is usually presented as taking the derivative of the above

criterion with respect to time, but it should be presented

as taking the derivative of the above with respect to a

virtual time u upon which depend the minimization variables
c
To = c

To(u, t) and τ = τ (u, t):

dmi

du
=

d

du
π([K | 0] c

To(u, t)

Z ti

tref

r(τ (u, t))dt
o
P̃i) (4)

which can be shown to rewrite as follows [11]:

dmi

du
= L

(

τu

τ̇u

)

(5)
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Fig. 3. Pose and velocity estimation under constant velocity assumption,
using the virtual visual servoing paradigm.

where the subscript u indicates that the velocity and acceler-

ation twists are virtual, i.e. do not correspond to actual twists

related to the actual robot but to twists related to the virtual

robot (evolving along the virtual time u) to converge to the

same state as the actual one.

An expression of L, built by stacking the individual

interaction matrices Li, i = 1..n associated to each point,

is:

Li = 2d
J3di

.
(

L3di
+ ∆tiH3di

∆tiL3di

)

(6)

where

•
2d

J3di
is the well-known Jacobian of the 2d perspective

image point with respect to the 3d point [11];

• ∆ti = ti − tref ;

• L3d is the well-known 3D point interaction matrix;

• H3di
=
(

2 [ω]
×

[

c
P̃i(t) × ω

]

×

)

and where most of the above expressions depend on the

coordinates c
P̃i of the 3d point in the camera frame and,

hence, on c
To and cδTi.

From (5) and the error between the vectors m
∗(t) and

m(c
T̂o, τ̂ ) composed respectively of the stacked measured

point images and of the corresponding stacked outputs of the

projection model (1), one estimates the virtual velocity and

acceleration updates that reduce the error:
(

τu

τ̇u

)

= −λL
+

(

m(c
T̂o, τ̂ ) − m

∗(t)
)

, λ > 0 (7)

where c
T̂o and τ̂ are the previous estimates of c

To and τ .

Since the velocity and the acceleration are not independent

variables, integrating them separately to get the new pose

and velocity estimates would yield a velocity tracking delay.

In fact, the estimated acceleration update τ̇u has to be used

as a feedforward term that adds to the estimated velocity

update as depicted in (Fig. 3).

III. VISION-BASED POSE AND VELOCITY ESTIMATION

UNDER THE CONSTANT ACCELERATION ASSUMPTION

The work in [11] made the assumption that the velocity

was piecewise constant over the time interval during which

the sub-images were grabbed. However, this assumption is

not valid anymore for computed torque control. Indeed,

under this control, the torques applied to the actuators are

computed from the output of the inverse dynamic model,

which is, in turn, fed with the pseudo-control vector made

of the acceleration to apply to the end-effector. Thus, over a

control period, the acceleration can be assumed constant (up

to the internal regulation of the torques in the actuators).

Therefore, the above method needs be reformulated under

the latter assumption, which essentially boils down to two

things: computing cδTi in order to compute the projection

model and the interaction matrix and updating the feedfor-

ward term.

Under the assumption that the acceleration is constant over

the control sampling period, τ (t) is itself the integral of the

robot end-effector acceleration (actually, the dynamic twist

τ̇ = [v̇, ω̇] of the platform expressed in the end-effector

frame):

τ (t) = τ (tref ) +

∫ t

tref

τ̇ dt,∀t ∈ [tref , ti[ (8)

and so (2) becomes

cδTi =

∫ ti

tref

r

(

τ (tref ) +

∫ t

tref

τ̇ dt

)

dt (9)

Let τ̇ i = [v̇i, ω̇i] be the value of the platform dynamic

twist at the sample time ti = i Ta, Ta being the sub-

image acquisition period. This period is taken smaller than

the control period Tc in order to gather enough object

points to update the pose and velocity between two control

refreshments.

Assuming that the platform dynamic twist is constant

between two successive control samples, the integration of

the translational acceleration to obtain the object pose and

velocity vi can be written as:

vi = vref +

i−1
∑

k=0

v̇k Ta (10)

Considering the dynamic twist constant in the camera frame

and not in the moving object frame, for the reasons exposed

in [11], one gets the translational part δti of δTi:

δti =

i−1
∑

k=0

(

1

2
v̇k T 2

a + vk Ta

)

(11)

The rotation space being non linear, the integration of

the rotation acceleration without simplification introduces an

unnecessary computational burden. However, the instanta-

neous rotation axis direction of the platform being usually

designed constant or slowly variable at trajectory planning

time, a simplification of this motion model is to consider

only the acceleration component which is parallel to the

rotation velocity. In this case, the rotation velocity will have

a constant direction and a uniformally variable norm over

one control sampling period. The object velocity and rotation

displacement are hence obtained by integrating the projection

of the rotational acceleration ω̇ on the rotational velocity axis

uω:

ωi = ω0 +
i−1
∑

k=0

(ω̇k · uω) Ta uω (12)

and

δθui =
i−1
∑

k=0

(

1

2
(ω̇k · uω) T 2

a uω + ωkTa

)

(13)

where δθui is the rotation displacement vector.

The associated homogeneous rotation matrix of the object
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displacement δRi can then be obtained from the rotation

vector using Rodrigues formula or, equivalently, the expo-

nential matrix map (expm) [13]:

δRi = expm([δθui]×) , exp(δθui) (14)

Finally, the expressions (11) and (14) are now exploitable

both for being inserted into the projection model (1) and into

the interaction matrix expression (6).

IV. VISION-BASED COMPUTED TORQUE CONTROL OF

PARALLEL ROBOTS

The control scheme (Fig. 4) is composed of a virtual

visual servoing control loop and a dynamic control loop. The

virtual visual servoing control loop task estimates the end-

effector pose and velocity while the real control loop aims at

regulating the estimated state with respect to the desired one

under computed torque control scheme of parallel robots.

Note that here, the pose and velocity estimator is launched

at each control sample time tj (see Fig. 5). Thus, the

reference time tref is set at each control sample time to

tref = tj .

Note also that the update of the feedforward term of the

pose and velocity estimator from the constant velocity as-

sumption (Fig 3) to the constant acceleration (Fig. 4) consists

in adding a feedforward acceleration term. In the proposed

control loop, it is taken from the pseudo-control vector w of

the computed torque control. Since the estimator hopefully

takes less time than the control period, the integrators in the

feed-forward term are reset at each control sample time and

work all along the control period Tc.

Therefore, the update step for the pose and velocity

estimator from one control sample to the other is given by:

τ̂ j+1 = τ̂ j +

∫ Tc

0

(τ̇uj
+ Aj wj)dt (15)

t̂j+1 = t̂j +
1

2
v̇wj

T 2
c + v̂j Tc (16)

R̂j+1 = R̂j exp

(

1

2

(

ω̇wj
· ûω

)

T 2
c ûω + ω̂jTc

)

(17)

where Aj is the transformation matrix of the acceleration

control vector to a dynamic twist. v̇wj
and ω̇wj

are the

translational and rotational acceleration components of the

control vector.

The obtained pose and velocity are then transformed into

the robot state space representation (x, ẋ) to be used in

the dynamic control loop for the regulation and dynamic

compensation.

V. IMPLEMENTATION

The proposed method was validated on the Orthoglide

robot [14] with the set-up shown in Fig. 2. The control

system architecture is composed of an off-the-shelf ”Photon

focus MV-D1024-TrackCam” camera, a standard PC and the

robot itself, controlled by a real-time PSpace DSP robot

controller (Fig. 6). The PC is taking care of the image

acquisition and the pose and velocity estimation process,

Fig. 4. The vision-based Cartesian computed torque control based on
sequential image acquisition is composed of a standard Cartesian computed
torque control (upper loop) and of a virtual visual servoing estimator (lower
loop).

Fig. 5. Control chronogram

Fig. 6. Data flow in the implemented control architecture

while the DSP computes the computed torque control and

handles the low-level control and security.

More precisely, the PC controls the camera to achieve

a high-speed sequential sub-images acquisition by running

the acquisition and the estimation processes in two parallel

threads. The acquisition thread is triggered by the robot

controller clock at a 4kHz frequency, corresponding to the

camera acquisition frequency. In this thread, the position

of the current sub-image is predicted from the previously

estimated pose and velocity, then the sub-image is grabbed

and analyzed and the extracted point image coordinates

are forwarded to the estimation process through a shared-

memory containing the image coordinates of all the points

of the object (here, to the number of 16, which an empirical

optimal number).

The robot end-effector pose and velocity are estimated by

the PC and transmitted to the DSP card via the industrial

RS-422 serial interface. Since the PC is constrained by the
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camera driver to run under a non real-time operating system,

the estimation process takes an unpredictable amount of time,

which is nevertheless expected to fit with the 400Hz robot

controller frequency. The estimation process is thus only soft-

real-time synchronized with the robot controller, so the latter

contains a watchdog checking the correct reception of the

estimates. Finally, the control vector processed by the robot

controller is sent back to the estimation process on the PC

through the RS-422 link.

VI. EXPERIMENTAL RESULTS

A. Robot stiffness and vision based estimation characteriza-

tion

To have a relevant interpretation of the results, it is neces-

sary to characterize both the vision system and the parallel
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Fig. 9. Image reprojection error with respect to time

robot in terms of reliability and accuracy before proceeding

to the implementation of the proposed control scheme. In

lack of other exteroceptive measurements (interferometric

laser, for instance), the only practical way to identify possible

defaults of the two systems is by proceeding to some tests

and confronting the results.

First of all, different static poses were estimated during

several seconds at the operating frequency (400 Hz). The

standard deviations of the corresponding position stdev(t)
and velocity stdev(v) estimation noise were measured:

stdev(t) = [2.67, 4.05, 3.45] 10−5m and stdev(v) =
[2.04, 3.2, 5.75] 10−3m/s.

Note that these values are considerably small, meaning a

very stable estimation of the pose between two iterations

(including a stable feature extraction) even though there

might exist a bias between the mean estimation of the

pose and the actual one. However, the small corresponding

normalized projection residuals (0.19 pixel/point) indicates

that this bias is small too (up to potential singularities which

have not been encountered yet in practice).

Concerning the parallel robot, some joint flexibilities

and backlashes have been noticed. To characterize the re-

sulting motion of the platform, a manual effort was ap-

plied on it while the brakes are engaged and its dis-

placement was measured with vision. The resulting dis-

placement of the target in the Cartesian space is δx =
[10.0mm, 8.1mm, 7.1mm, 2.38o, 2.65o, 2.93o]T and

the mean points displacement in the image is [δu, δv] =
[25.9, 20.3] pixels, which is much larger than the mea-

surement residual error. These results give an idea of the

correspondence between image errors and Cartesian error.

In addition, they show that in static, the vision-based pose

estimation of the platform is more accurate than the model-

based estimation. This is underlined to be one of the most

important benefit of exteroceptive sensors. After character-

izing some properties of the the robot and vision system,

the identification of the extrinsic camera parameters in the

robot frame were achieved on smooth trajectories to avoid

stimulating the robot flexibilities and backlashes. Yet, 3mm
residual errors remain.

B. Vision based computed torque control

After achieving this procedure, the proposed control law

was implemented. Note that the use of the pose and velocity

estimation method in [11] in the control law leads to robot

instability. The main instability cause, as stated, is the

velocity tracking delay due to the assumption of a constant

velocity.
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On the opposite, the implementation of the estimation

method presented here allows not only to stabilize the robot

but also to control it to 100% of its speed. Though, since

flexibilities and backlashes are measured, they are accounted

for by the control law but this causes the robot to oscillate. To

reduce this phenomena, the natural frequency of the closed

loop system was decreased by scaling down the PID regulator

gain by 20%.

In the results given below, the reference trajectory is

an oblique circle of 6cm radius which is twice traveled

through. The maximum velocity reached during the trajectory

execution is 1m/s which corresponds to 16.4m/s2 tangential

acceleration and 16.67m/s2 normal acceleration. The two

trajectory laps are achieved in less than 1.4s.

Figure (7) shows the reference trajectory, the trajectory

realized under vision-based computed torque control and the

one achieved under model-based computed torque control.

Both trajectories were recorded by vision, since the latter

has proven more accurate than the model.

First of all, note that the vision-based control trajectory

seems to be as smooth as the model-based control. One

also notices that the model-based control trajectory radius

seems to be bigger than the reference trajectory while this

is, visibly, not the case of the vision-based trajectory. Indeed,

the mean radius of the model-based trajectory and the vision-

based trajectory are respectively 61.34mm and 60.20mm. In

addition, the algebraic distance between the trajectories to the

reference circle (normal distance) is smaller for the vision-

control 2.74mm than for the model-based control 3.25mm.

Figure (8) represents the desired positions and, respec-

tively, the errors obtained from the application of the model-

based and vision-based controls. One notices first that the

vision-based control error is smaller than the measured

backlashes. In addition, a comparison between both errors

reveals that model-based control errors are important in

statics as well as in dynamics where static errors in the

vision-based control are smaller than model-based control

and almost equivalent in dynamics. This is confirmed by

the respective means and standard deviations of the tracking

errors (Tab. I).

Model-based control Vision-based control

x y z x y z
mean 0.19 0.1 0.28 0.11 -0.08 -0.06

std dev. 2.42 1.47 1.76 2.21 1.6 1.64

TABLE I

MEAN (IN MM) AND STANDARD DEVIATION (IN MM) OF THE

MODEL-BASED AND VISION-BASED CONTROL

Figure (9) shows the pose and velocity tracking errors

in the image. Note that even at this high speed, the image

reprojection errors remain smaller than 1 pixel. It also seems

that the image error increases with acceleration. This may be

caused by the errors between the estimated inverse dynamic

model and the actual one, which can be shown to yield a

computed torque control error proportional to the control

acceleration. Nevertheless, the error in the image remains

much smaller than projection residuals due to flexibilities

and backlashes, and so are the dynamic errors given in Tab. I

certainly due to the latter.

VII. CONCLUSION

This paper presented a new vision-based computed torque

control law. This control scheme uses a high-speed visual

sensor to measure the pose and the velocity of the parallel

robot platform in regulation and dynamic compensation.

Measure being achieved in the task space, there is no need

to compute the forward kinematic model which may include

parametric errors or simplistic assumptions (no flexibilities,

for instance). In addition, sensing the platform pose and ve-

locity makes dynamic computation and compensation much

easier than from joint reading. The presented results show

that the presented vision based dynamic control law may be

used even on a robot with flexibilities and backlashes and

can even be more accurate than the model based control.

The next step of this work is to design an image-based

vision-based computed torque control. The combination of

this approach with traditional joint space control schemes to

control backlashes seems also to be a promising way.
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