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Operator calculus and invertible Clifford Appell
systems: theory and application to the n-particle
fermion algebra

René Schott* G. Stacey Staples’

Abstract

Motivated by evolution equations on Clifford algebras and illus-
trated with the n-particle fermion algebra, a theory of invertible left-
and right-Appell systems is developed for Clifford algebras of an ar-
bitrary quadratic form. This work extends and clarifies the authors’
earlier work on Clifford Appell systems, operator calculus, and opera-
tor homology/cohomology. A direct connection is also shown between
blade factorization algorithms and the construction of Appell systems
in these algebras.

1 Introduction

Over the years, Clifford algebras have proven advantageous for a broad
range of applications in physics and engineering. More recently, their
utility in implementing quantum algorithms has been shown [4], [12].
Some familiar examples of Clifford algebras include the algebra of
quaternions and the n-particle fermion creator/annihilator algebra.

Appell systems can be interpreted as polynomial solutions of gen-
eralized heat equations. In probability theory, they are also used to
obtain non-central limit theorems. Their analogues have been defined
on Lie groups [8], the Schrédinger algebra [7], and quantum groups [6].
Clifford Appell systems are natural objects of interest for constructing
solutions of Clifford evolution equations.

The current authors first defined general Appell systems within a
Clifford algebra of arbitrary signature in [14]. The operator calcu-
lus (OC) appearing in that preliminary work was subsequently used
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in a treatment of operator homology and cohomology in Clifford al-
gebras [18]. More recently, OC methods were extended to commuta-
tive subalgebras of the Grassmann exterior algebra referred to herein
as “zeon” algebras and used to give an OC formulation of partition-
dependent stochastic measures [19].

The authors’ OC approach is implicit in a number of earlier works
in graph theory (cf. [22], [20]). Operator calculus on zeon algebras
provides the common context for relating graph theory and quantum
random variables [15]. Moreover, the OC approach was advantageous
in developing a graph-theoretic construction of stochastic integrals in
Clifford algebras of arbitrary signature [21].

The goal of the current work is to clarify the role of operator calcu-
lus in solving Clifford Appell systems. Geometric interpretations are
given for combinatorially-defined operators. Notions of invertible left-
and right-Appell systems are developed, and the role of blade factor-
ization in constructing Appell systems is clarified.

2 Essential background

Presented here are some concepts, definitions, and notational conven-
tions used throughout subsequent sections.

2.1 Appell systems

Following the formalism of Feinsilver, Kocik, and Schott [7], the space
of polynomials with degree not exceeding n can be considered as the
space of solutions, Z,, to the equation D"t = 0, where D is the
differentiation operator. In this context, an Appell system is a sequence
of nonzero polynomials satisfying two conditions:

i Y, € Z,,¥n >0, and

ii. Dty = bn_1, ¥n > 1.

A simple example of an Appell system is to define ¥,, = ™ /n! with
D = d/dz. Other examples of Appell systems include shifted moment
sequences

oo

vn() = [ @ u)"play) 2.)
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where p is a probability measure on R with all moments finite. This
includes the Hermite polynomials,

H,(z x4+ y)”eny/Qtdy, t>0, (2.2)
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for the Gaussian case. These polynomials are the solutions of the heat
equation

0uf(2,1) = 502 (a1

with limy ¢ f(z,t) = ™.
More generally, for any operator .4, one sets

Z, ={¢: A"y =0}

for n > 0, and defines an A-Appell system as a sequence of nonzero
functions {tg, ¥1,...,Pn, ...} satisfying

i Y, € Z,,Yn >0, and

ii. Ay, =p_1, forn > 1.

The system of embeddings Zy C 2Z; C Z5 C --- is referred to as a
canonical A-Appell system decomposition.

2.2 Clifford algebras

For convenience, the following notation is recalled for the commutator
and anti-commutator of algebraic elements, respectively:

[z, y] =2y — yax
[z, Y]+ = 2y + Y.

Let n € N, and let p, ¢ be nonnegative integers such that p+ ¢ = n.
Let V be a real inner product space with orthonormal basis {e; :
1 < i < n}. The Clifford algebra of signature (p,q), denoted C¥, 4, is
defined as the real associative algebra generated by the vectors {e;},
along with the unit scalar 1 subject to the following multiplication
rules:

2 ifl1<i=j<p,

[eiejl+ =9 -2 ifp+1<i=j<n, (2.3)
0 ifi#j.
Denote the n-set {1,...,n} by [n], and denote the associated power

set by 2"l Adopting multi-index notation, the ordered product of
generators is denoted
H e, =ey, (24)

iel
for any subset I C [n], also denoted T € 2.

These products of generators are referred to as basis blades for the
algebra. The grade of a basis blade is defined to be the cardinality of



its multi-index. An arbitrary element v € Cf, , has a canonical basis
blade decomposition of the form

u = Z urer, (25)
IC[n]

where u; € R for each multi-index I. The grade-k part of u € Cf, 4 is
then naturally defined by

(W= > urer. (2.6)

It finally becomes evident that C/, , has a canonical vector space de-
composition of the form

n

Clyy = @mp,m. (2.7)

k=0
An arbitrary element u € C4(Q) is said to be homogeneous of grade
k if
(u), # 0, and
(u)y, =0, VL #k.

As the degree of a polynomial refers to the maximal exponent appear-
ing in terms of the polynomial, an arbitrary multivector u € C4(Q) is
said to be heterogeneous of grade k if

(u), #0, and
(uy, =0, £>k.
Recall the ordering symbol 0; ; defined by

1 ifi<y
i = .
0 otherwise,

and let elements of multi-indices be expressed as I = {I1,..., 1|1 }.
The multi-index product signature map ¥ : 2" x 2" — {41} is
defined by

[J] 1]

I, J)=exp (wr [ {INT O (p.nl}+ > ) 054

k=1 =1
The product of basis blades in C/, 4 is now correctly given by
ere; =9(I,JJ)eray, (2.8)

where A represents the set symmetric difference operator, i.e., INJ :=
(TuJ)\(InJ).



Example 2.1. Specific examples of Clifford algebras include the fol-
lowing:
i. Clp1 ~C
ii. C€072 ~ H
iii. Cls o =~ APS algebra of physical space
iv. Cl; 3 ~ STA spacetime algebra
v. Cl, o ~ {n-particle fermion Fock space}
vi. Cly, ., =~ {n-particle fermion creator/annihilator algebra}
The principal motivation for discussing Appell systems in the con-
text of Clifford algebras is obtaining solutions to Clifford evolution
equations. The evolution equations detailed herein describe discrete

Clifford-valued processes taking the form of sequences (uy)r>o. The
meaning of 0; is thus understood by

Ou(k) = Au = ugy1 — ug. (2.9)
One straightforward example is
O u = Au, (2.10)

where u = u(t) € C4(Q) and A is an operator acting as generalized
differentiation, or combinatorial lowering. Similarly, one can have an
equation of the form

O u = Zu, (2.11)

where = is a generalized integral, or combinatorial raising. Considering
discrete processes of sums of raising and lowering operators gives

Biu = (A+E)u, (2.12)

which can be regarded as a random walk on a directed hypercube [16].
It will be shown in a subsequent section that all solutions of the

Clifford heat equation
Oru = Au (2.13)

are constant.

Before constructing Appell systems in Clifford algebras, an operator
calculus for Clifford algebras must be discussed. Within the context of
this calculus, the construction of Appell systems will be natural.

3 Operator calculus in Clifford algebras

The motivation for development of Clifford operator calculus is based
on polynomial operator calculus. To begin, raising and lowering oper-
ators are defined naturally in terms of polynomial differentiation and



integration operators on Clifford multivectors regarded as polynomials
in anticommuting variables.

In this formulation, the generators {e;} of C¢, , are fixed a priori,
and are regarded both as vectors in the Clifford algebra sense and as
anti-commuting variables in the polynomial sense. In this context, the
Clifford algebra C¢, 4 is naturally regarded as an algebra of “Clifford
polynomials” as well as Clifford multivectors.

After an initial discussion based on the notion of Clifford polyno-
mials, the construction is subsequently generalized to Clifford algebras
associated with arbitrary, non-degenerate quadratic forms. In this con-
struction, no such generating set need be fixed, as a basis-free definition
of the Clifford algebra over V is given in terms of a non-degenerate
quadratic form ). The notation for this more generally constructed
algebra is C(Q). In this setting, the combinatorially and algebraically
defined raising and lowering operators are more naturally envisioned
in terms of the exterior product and left-contraction operators.

Analogous to polynomial differentiation and integration, the fol-
lowing operators are defined in the Clifford algebra context.

Definition 3.1. Let I € 2[" be an arbitrary multi-index. For 1 <
j < n, define the j*® Clifford differentiation operator 0/de; by linear
extension of

Definition 3.2. The Clifford integrals are defined by
{de;,de;} = 0for i # j (3.2)
/dej =e;, (3.3)

€; €; 1f7,7éj

//deidejz/eidej: 1 1f1§z:]§p (34)

-1 ifp+1<i=j<p+gq

so that

o de. — 4 VWih Dergy g ¢l
/’dj {ﬂ({j},])el\{j} ifjel (8:5)

These polynomial operators induce combinatorial raising and low-
ering operators by which Clifford monomials (blades) are “raised” from
grade k to grade k+1 or “lowered” from grade k to grade k— 1. These
raising and lowering operators can also be regarded as fermion creation
and annihilation operators in the sense of quantum mechanics.



Definition 3.3. For each 1 < j < n, define the ;" (left) raising
operator R; by linear extension of

Rj er = </e1 d6j> =ej/N\ey. (36)
\7]+1

Define the j* (left) lowering operator D, by linear extension of

Djer = ;ejel = (e, e1>m71. (3.7)
Remark 3.4. Note that one can similarly define right raising and low-
ering operators. Indeed, these are the operators appearing in the au-
thors’ preliminary work [14]. The formulation involving left lowering
and raising was considered in the authors’ subsequent work [18]. For
the remainder of the current work, all lowering and raising operators
are regarded from the left unless specified otherwise.

Example 3.5. In the Clifford algebra C/; 5 the raising and lowering
operators act in the following manner:

Dieqi233 = eq23
Raeqsy = —ef1,2,3)-
The Clifford algebra C¢,, ; admits a number of involution automor-

phisms, including reversion. The reversion of an element u is denoted
by u and is defined by

n

=y (=1)FED2 ), (3.8)

k=0

The action of this automorphism is seen by reversing the order of
vectors appearing in basis blades of u.

Reversion is useful in expressing the Fuclidean inner product, de-
fined on C¢, 4, by

(u,v) := (tw), = Z usvy. (3.9)
Ie2ln]

Another inner product induced by the quadratic form associated with
Cl, 4 will also be useful in the discussion of Clifford operator calculus.

Letting @ denote the following quadratic form on the vector space
V spanned by the generators of C/,, 4:

Q(X) :x12+'.'+xp2_xp—‘,-l?_"'_an, (310)

the algebra C{), 4 is also denoted by C/4(Q). More generally, ) will be
considered any non-degenerate quadratic form on the vector space V.



Associate with @) the symmetric bilinear form

(6. ¥)g = 5 Q) ~ Q) ~ Q)] (311)

and extend to simple k-vectors in /\k V by

(XiAX2 A AXp, Y1 AY2 A Aye)g = det (x4,y5) . (3.12)

This inner product extends linearly to all of /\k V' and by orthogonality
to A V.

The Q-inner product and exterior product extend to C4(Q) via the
canonical vector space isomorphism. The left contraction operator is
defined by (cf. [13, Chapter 14])

xiy = (X,¥)g VX, y €V (3.13)
xa(uAv) = (xou) Ao+ 4 A (x0), Yu,v € /\ V,x eV, (3.14)
(u A v)ow = us(vow), Yu,v,w € /\V. (3.15)

In particular, left and right contraction are dual to the exterior
product and satisfy the following;:

(U, w)g = (v, i Aw)g , (3.16)
(wv, w)g = (U, wAD)g . (3.17)

Of particular importance, the exterior product and left contraction
act as combinatorial raising and lowering operators in C¢,, 4:

d({i}, Derogyy ifjé¢1,
ej A\ e; = <ej e1>u|+1 = {0 {7} otherwise: (318)
and
I({j}, Denyy ifj el
ejJeI - <e] eI>|I|_1 - {0 \{]} Otherwise. (319)

It is now instructive to define the lowering operators in terms of
contractions. In particular, the j*® left lowering operator in Cf,, is
given by

Djel = aieje[ = ejuey. (320)
Remark 3.6. The j* right lowering operator in Clp 4 is correctly re-
garded as right contraction according to

0
erD; = 815 =ejLe;. (3.21)
j



The raising and lowering operators have a number of interesting
properties, including those recalled here. The interested reader is re-
ferred to the authors’ earlier work for detailed proof and additional
properties [18].

The Kronecker delta function appearing below is defined by

1 ifj=k
i = ’ 3.22
ik { 0 otherwise. ( )

Lemma 3.7. Fiz nonnegative integers p,q and let n =p+q. InClp
the operators {D; : 1 < j < n} and {R; : 1 < j < n} satisfy the
following:

[Rj, Dk]Jr = 5jk e]—2 5 and (323)
[Rj, Rk]+ = [Dj, D]+ = 0. (3.24)

4 Weighted raising and lowering operators

n
Given a vector x = inei in Cly 4, the corresponding linear com-
i=1
bination of lowering operators has a natural interpretation as a left
contraction. In particular, for any u € Cfp 4,

8 n n
&u = (ZG_? T Di> u = ;xielqu = X_u. (4.1)

It also makes sense to define the composition of lowering (differen-
tial) operators as multivector left contraction operators. In particular,
for canonical grade-k basis blade e; and arbitrary basis blade ey,

0 0
86]1 ~~@e1 :ejl_l("'J(eJkJe])) =ejuey. (4.2)

As a consequence,

i C
o) o {ﬂ(J, Depy ifJCI, 43)

0 otherwise.

This multivector contraction operator extends linearly to all of Cf, ,.
This contraction operator is correctly regarded as a k' order lowering
operator

Djer = 19(;],[)8]\] S <C€p,q>|[|_|.]| . (44)

One defines multivector right contraction operators in similar fashion.



Due to associativity, the exterior product already has a natural
generalization; i.e.,

eI/\eJ:ell/\~~/\eI|”/\eJI/\~~~/\eJm. (45)

Consequently,

elAeJ:{ﬁ(I,J)eIUJ if1NJ =0, (16)

0 otherwise.

Note that the general blade product e; ey has the operator calculus
formulation

0 0
eleJ:((‘?eIl_FRIl)O.“O(aeIm —|—R]I>eJ. (47)

Observe that the linear combination of raising operators in C/, 4
also has a natural interpretation as a weighted raising operator of the
form

/udX: @ijj u:ijej/\uzx/\u, (4.8)
j=1

j=1

and is correctly regarded as a linear operator mapping grade k elements
to grade k + 1 elements for k =0,...,n — 1.

Property (3.23) of Lemma 3.7 gives the Clifford vector analog of the
number operator. The following lemma is obtained as an immediate
corollary.

A more general analog to the number operator of quantum mechan-
ics is the signed grade operator defined on blades by

k
Plug A+~ Aug) = (ZIMJLI@> u A Auy. (4.9)
=1

n
Lemma 4.1. In Cl, 4, the operator sum @(RJ—D]-) corresponds to the
j=1
signed grade operator by

@ R;jDjer = Zej2e[ =T'(er). (4.10)
Jj=1 Jjel

Moreover, in the Buclidean Clifford algebra Cly o isomorphic to n-
particle fermion Fock space,

T(e;) = |I]er. (4.11)

10



Proof. The result follows from Lemma 3.7 by noting that R;D;je; =0
ifjé¢l. O

Since the choice of basis {e; : 1 < i < n} for the vector space of
generators for C/p 4 is arbitrary, it is convenient to pass to the basis-
free definition of the Clifford algebra with quadratic form . With this
general framework in mind, the weighted lowering operator is now for-
mally defined. For reasons that will become apparent later, vectors x
used to define the weighted raising and lowering operators are required
to be non-null, i.e., it is required that x? # 0.

Definition 4.2. Let x be a non-null vector in C/(Q) and define the
weighted lowering operator Ax on C4(Q) by

Axu = %u = xXJu (4.12)

for any u € C4(Q).

The weighted (left) lowering operator Ax is correctly regarded as
an operator taking elements of grade k to elements of grade k — 1 for
k=1,...,n.

Definition 4.3. Let x be a non-null vector in C4(Q) and define the
corresponding weighted raising operator Zx on CL(Q) by

Exu:/udx:x/\u (4.13)

for any u € C4(Q).

The role of raising and lowering operators in the Clifford (geomet-
ric) product is made explicit by considering the left regular represen-
tation of multiplication by a vector x. Specifically, this is the operator
sum (25 @ Ax), as seen by

xu = (Ex ® Ax)u (4.14)

for u € CU(Q).
The relationship between the weighted raising and lowering opera-
tors is made clear by the next lemma.

Lemma 4.4. For fized non-null vector x in C€(Q), the operators Zx
and Ax are dual to each other with respect to the inner product (-,-)q;
e, (Axu,wyg = (u,Exw)g for all u,w € CUQ).

Proof. The result follows immediately from (3.16) and the definitions
of weighted lowering and raising operators. O

11



Lemma 4.5. For any non-null vector x € CL(Q), the corresponding
weighted lowering and raising operators are nilpotent of index 2. That
18,

A2 = Ax oAy =0, (4.15)
x 0 5% =0. (4.16)

Proof. The result follows from Lemma 3.7 by linearity of lowering and
raising operators D; and R;. O

An immediate consequence is that solutions of the Clifford heat
equation must be constant.

Lemma 4.6. For fized non-null vector x in C4(Q) and Clifford-valued
u = u(t), the Clifford heat equation

O = A u (4.17)
has only solutions of the form u(t) = ¢ for some constant c.

Proof. Index-2 nilpotency of Ay implies d,u = 0. O

5 Clifford Appell systems

Motivated by polynomial Appell systems, one intuitively expects to
define a Clifford Appell system as a pair ¥ = ({¢y : 1 < k < n}, D),
where {1} is a collection of Clifford multivectors and D is a lowering
operator defined on C4(Q) such that

i. 1y is a grade-k Clifford multivector for each k, and
. Dy =t 1.
A problem with this definition is seen immediately. Assuming v, #
0, the index-2 nilpotency of lowering operators seen in Lemma 4.5
gives Yy = 0 for 0 < ¢ < k — 2 for any fixed lowering operator D. In
order to define Clifford Appell systems with more than two Clifford
multivectors, one must construct a sequence of lowering operators.
Analysis of Clifford Appell systems will be simplified by considering
homogeneous Clifford Appell systems defined below. General Clifford
Appell systems can then be constructed as sums of homogeneous sys-
tems.

Definition 5.1. A homogeneous (left) Clifford Appell system is a pair
U = ({¢r}, {Ax,}), where {tx} C CL(Q), and {Ax, } is a collection of
weighted (left) lowering operators associated with a sequence of non-
null Clifford vectors (xj) such that

i. for each k, either v, = 0 or vy is homogeneous of grade k, and

12



il. Ax ¥k = g1 for each k.

One similarly defines a homogeneous right Clifford Appell system in
terms of weighted right lowering operators.

Definition 5.2. The order of ¥ is defined as the maximum grade
among the elements of {1}. The system ¥ is said to be of rank r if
{tx} contains r + 1 nonzero elements .

This definition of rank follows naturally from Appell systems of
polynomials of a single variable, since a polynomial’s degree is always
one greater than its number of nonzero derivatives.

Remark 5.3. In Cl,, o, which is canonically isomorphic to the n-particle
fermionic Fock space, the lowering operator maps monomials repre-
senting k-particle systems to monomials representing (k — 1)-particle
systems. In other words, the lowering operator acts as an annihilation
operator.

Remark 5.4. Fixing nonzero v, and x; = x € V for each k results in
a rank-1 homogeneous Clifford Appell system by the index-2 nilpotent
property of lowering operators .

Lemma 5.5. Let X = {x; : 1 <k < m} be a collection of vectors in
the n-dimensional vector space V. Then, the exterior product

X1 A ANXy,
is nonzero in CL(Q) if and only if X is linearly independent.

Proof. When the set X is linearly independent, the exterior product
represents an oriented m-dimensional volume element, or pseudoscalar,
in the subspace of V' spanned by X.

On the other hand, if X is not linearly independent, let 1 < /¢ <m

and suppose x; = Z axy for scalars {ag}. Then, relabeling
1<k,,<m
)
vectors in the set complement {x1,...,Xx,} \x¢ = {y1,- -, ¥m-1},

one finds (with sign changes as appropriate)

XA AKXy =EXAYIA A Ym—1

m—1
=E | Doy | AYIA AV
=1
m—1
:iY2/\"'/\(Y1/\Y1)+ZiY1/\"'/\(Yj/\Yj)- (5.1)
=2

Whence, index-2 nilpotency of the wedge product (i.e., raising opera-
tors) makes all terms zero. O

13



Writing the vectors {xy} with respect to the orthonormal basis {e; :
1 <4 < n} for V, the exterior product can be expressed in the following
way: the coefficient of the m-vector er for I = {I1,..., I} C [n]in the
canonical expansion of the wedge product is given by the determinant
of the submatrix

X1 Ti,n I, .- TLI,
dety | @ | =det [ T2 P20 2n | (5.2)
Xm T x ... T
m,[l m,IQ m71m,

This determinant is the scalar coefficient of the pseudoscalar in the
projection of x; A --- A X,,, onto the m-dimensional subspace of V'
spanned by {er,,...,er, }. It follows that all such projections are zero
if and only if X is linearly dependent.

Remark 5.6. In terms of the Clifford (geometric) product, the element
X1 -+ X 18 an m-blade in C£(Q) if and only if the set {x1,...,X,,} is
orthogonal with respect to the Q-inner product.

To ensure 9 # 0 for all 1 < k < n, appropriate conditions on the
sequence (xj) are addressed in the next proposition. Note that in any
homogeneous Clifford Appell system associated with an n-dimensional
vector space V', 1, is associated with a scalar multiple of the pseu-
doscalar 9, = a ey,

Lemma 5.7. Let {B; : 1 < i < M < (Z)} be a collection of dis-
tinct k-blades in CL(Q), and let x be a non-null Clifford vector. Then,
x1(>"a;B;) = 0 if and only if x12(a;B;) =0 for each i.

Proof. One direction of the proof is obvious. On the other hand, sup-
pose that for some subset S of indices, terms {x1(a;B;) : i € S} are
nonzero. Rewrite Zie 5@;B; in terms of a new orthonormal basis of
the form X = {x,f;,...,f,_1} obtained from the canonical basis by
Gram-Schmidt orthogonalization with respect to (-,-)g. Letting I; de-
note the subset of the basis X associated with the canonical blade B;
and letting b; denote appropriate nonzero coefficients,

X (Z G;iBi) = Zai xJ | bix A /\ fj

i€s i€S jel;

= Z a;b; /\ fj = Zaibifha (53)

i€es jeI; i€s

which is nonzero by linear independence of the (k—1)-blades {f;,}. O

14



Proposition 5.8. Let U = ({¢1.}, {Ax, }) be an order-n homogeneous
Clifford Appell system. The rank of V is m if and only if the set
X ={Xpn—m+1,-..,Xn} is linearly-independent; i.e., rank(X) = m.

Proof. By definition,

0 0
e (- ()

= Xn—m+1-J (Xn—m+2—‘ ( ced (Xn—‘wn)))
= (Xp—mi1 A AXp)athy.  (5.4)
Observing that 1, is a scalar multiple of the pseudoscalar, it follows
that xj 1), is homogeneous of grade n — 1 for each k. Moreover, it

follows that v, _,, # 0 if and only if ¥,,_,, is homogeneous of grade
n—m; ie, (Xn—mt1 A -+ A Xp,) must be an m-blade. O

Note that Proposition 5.8 guarantees the existence of an order-n,
rank-n homogeneous Clifford Appell system associated with any basis
of the vector space V' generating C/¢(Q). The construction algorithm is
straightforward:

1. Order the basis {vy,...,v,} for V.

2. Set ¢, = aeyy, for some scalar a.

3. Set Y1 =via, foreach k=n,n—1,...,1.

Further, note that Proposition 5.8 does not guarantee the existence
of such a system in infinite-dimensional Clifford algebras. Moreover,

it does not address the construction of invertible Appell systems as
defined below.

Definition 5.9. An invertible homogeneous (left) Clifford Appell sys-

tem is a pair U = ({¢r.}, {Ax, }), where {¢1} C C(Q), and {Ax,} is a
collection of weighted (left) lowering operators such that

i. for each k, v is homogeneous of grade k, and
ii. Ax,¥r = Yr—1 for each k, and
iii. Ex,Yr—1 = Yy for each k.

Theorem 5.10 (Solutions). Let x be a non-null Clifford vector, and
let Y1 be a grade-(k — 1) Clifford multivector. Then, the Clifford
equation

D = (53

has a solution vy if and only if 631/11@71 = 0. Moreover, a solu-
X

tion of (5.5) is the homogeneous grade-k multivector given by 1y =

1
; /wkfl dx.

15



Proof. Suppose gwk = 1;—1 holds for some grade-k element .
X

Index-2 nilpotency of lowering operators then gives

0 0 9
&7/%—1 = &&wk = 0. (5.6)

0
On the other hand, if a—xz/)k-_1 =0, then x A 1 = X9p_1 since x

must be orthogonal to any blades appearing in the expansion of 1 by
Lemma 5.7. Moreover, x orthogonal to w1, ..., u implies x1(x A ug A
< Aug) =x3(ug A+ Auyg). Whence letting ¢ = x A y,_1 gives

%¢k = %(x A1) = X0(XPp—1) = XXPp_1 = x2y_1. (5.7)
O

In light of Theorem 5.10, fixing x; € V and considering

Ax,  {CHQ)) k-1 U (CUQNE — (CUQ) k-2 U (CUQ) k-1, (5:8)

define the grade-k subspace

Ak = Exk (<kerAxk>k) - <CE(Q)>]C (5.9)

Then, letting Z denote the identity operator, one finds

= x,°7. (5.10)
Ag

—
Ex, Ax,

Corollary 5.11. [Appell System Solutions] Let {xx : 1 < k < m} be
an ordered collection of vectors, orthogonal with respect to the quadratic
form Q. Let iy be a scalar. Then, setting

¢k = XikQ /%—1 ka (5.11)

foreachk =1,...,m gives an order-m, rank-m invertible homogeneous
Clifford Appell system U = ({¢r}, {Ax, })-

5.1 Heterogeneous Clifford Appell systems

A more general definition of Clifford Appell systems is now developed
by considering heterogeneous multivectors. By extending results for
solutions of homogenous systems, it is possible to construct invertible
heterogeneous Clifford Appell systems.
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Appel | system
v 0 =1
Y_1 = -1+1.24343 e1, +0.19745 e, - 0. 283519 e (3, - 0. 313961 e 4,

¥ 2 = 2+0.186501 e(1; - 0. 565485 €2, - 0. 544298 €3, - 0. 602741 €4, -
0. 739966 €1, 2, - 0. 623921 €1 3, - 0. 690913 €3 4, - 0. 267797 € . 3; - 0. 296551 € . 4,

y_3 = -0.480642 e, -1.11981 e, - 0. 392058 e 3, + 1. 55336 €4, +
0.240321 e 1,7, +0. 167366 €1, 3, + 0. 193905 € 5 3, + 0. 77668 €2, 4 + 0. 5409 € 3 4, -
0.139925 €1 5,3, - 0. 890296 € 1, 5, 4) - 0. 620026 € 1 3 4, - 0. 266125 € 5 3 4,

U_4 = 1+0.472769 €1 3, - 0. 426928 €1 4) + 1. 10147 € 2.3, - 0. 994668 € 5 4, + 1. 17967 €3 4, +
0.236384 €1 2.3, -0.213464 €1 2 4, - 0. 148662 €13, 4, - 0. 936192 €5 3.4, - 1. €123 4

Figure 1: Heterogeneous Appell multivectors in C/; 3 associated with se-
quence (xi) of Example 5.15.

Definition 5.12. A heterogeneous (left) Clifford Appell system is a
pair
U= ({vr} {Ax 1),
where {¢, : 1 < k < n} is a collection of Clifford multivectors, and
{Ax, : 1 <k <n}is a collection of weighted (left) lowering operators
such that
i. 1y is a heterogeneous, grade-k Clifford multivector for each k and

il. Ax, ¥k = g1 for each k.

Theorem 5.13. Let {xj : 1 < k < m} be an ordered collection of vec-
tors, orthogonal with respect to the quadratic form Q. Let {c1,...,cm}
be a collection of scalars, at least one of which is nonzero, and set
Yo :=cg # 0. Then, setting

1
Vg = —5 /'(/)k—l dxy, + ¢, (5.12)
X

foreach k =1,... m gives an order-m, rank-m heterogeneous Clifford
Appell system ¥ = ({¢r}, {Ax, })-

Proof. By induction on 1 < ¢ < m, it will be shown that ), is of the

form
c c
WZ - 0 2(Xg/\"'/\X1)+ - 1 2(Xz/\.../\X2)_{_
c Co—
b (XA AXg) o —xg e (5.13)
Hj:3Xj2 Xy
When ¢ = 1, setting
c c
’L/Jl = 702 /’L/JQ dx1+ ¢ = 702X1 + ¢y, (514)
X1 X1
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which establishes the basis step of the induction. Assuming ), is of
the form (5.13), it follows that

1 Co
¢ 2
X412 H]:1 X;

— X A (xe A AXo)+

her1 = 7/1/112 dxpp1+ce =

1
_|_
X412 H
1 C2
<, 2170 . o
X041 Hj:3xj2

1 Cy—

Xg+1/\(Xg/\' . '/\Xl)

Xg/\(Xg/\"-/\Xg)+"'

—_— ! —5 Xe41 NXp+ 1 5 CeXeq1 + Coq1. (5.15)
X£+1 X2 £+1
Simplifying completes the inductive step.

To see that the system is a rank-m Clifford Appell system, consider
the action of Ay, on ¢y for 1 < ¢ < m. Since the vectors {x;} are Q-
orthogonal and non-null, one immediately finds

co
A, Vr = x4 0pp = ﬁxw(xe Ao AXq)
Hj:l X
C1 Co
+ XX A AX2) + ————Xpa(Xe A AX3)

Il=: %2 IT;=5 %52

Ce—1
+ -+ Xpa X¢ + Xgce
Xg2

— o c1
= m(mq/\.../\xl)er(xe_l/\.../\Xz)Jr
+ Hf_c}j#(xe_l Ao s AXg)+ o+ XCZ:;XZ_l ¥ oy
=1i_1. (5.16)

O

Remark 5.14. Note that if ¢y is the only nonzero scalar in the collection
{co,...,Cm}, the system ¥ is homogeneous.

Example 5.15. Let (cg,...,cq4) := (1,—1,2,0,1), and consider the
Q@-orthogonal Mathematica-generated vector sequence

Vector sequence (Xy):

X_1 = 0.936192 ey, + 0. 148662 €5, - 0. 213464 e 3, - 0. 236384 € 4,

X_2 = 0.19745e(;, - 0.598683 e, - 0. 576252 e 3, - 0. 638126 e 4,

X_3 = 0.267797 ey, + 0. 623921 e 5, + 0. 218441 e 3, - 0. 865478 € 4,

X_4 = 0.266125 e 1, +0. 620026 € 2, - 0. 890296 €3, + 0. 139925 e 4,

in Cl; 3. The heterogeneous Clifford Appell system of Figure 1 was
obtained by defining ¥y := ¢p and proceeding inductively by setting
wk = Ekak—l + ¢, for k = 1,...,7’L

18



5.2 Role of blade factorization in the construction
of Appell systems

A brief discussion of blade factorization algorithms is included here be-
cause they have a natural connection to solutions of invertible Appell
systems in Clifford algebras. FExamples of blade factorization algo-
rithms can be found in works by Dorst, Fontijne, et al. [5], [10].

Definition 5.16. A blade factorization algorithm is defined as any
mapping 1 : C4(Q) — @((Cﬁ(@))l)k such that for any m-blade u €

k=1
ClQ):
1. T(u) = (Nw)1,..., W(u)m) is an ordered m-tuple of non-null,
Q-orthogonal Clifford vectors (1-blades), and

2. u=a(u); - Wu)y, for some nonzero scalar «.

In light of Theorem 5.10 and Corollary 5.11, any m-blade 1, can
serve as the top-term of an order-m, rank-m invertible homogeneous
Clifford Appell system ({¢x}, Ax,), given a @Q-orthogonal collection
{xx} such that

Um = X1 A+ A Xg. (5.17)

The constituent vectors xj of 1, can be obtained by applying a blade
factorization algorithm to the m-blade 1,,. The factorization recov-
ered, however, is not uniquely determined. Any blade factorization
algorithm acting on v, determines such an Appell system.

Theorem 5.17. Let 1, be any m-blade in C4(Q). Then, for any blade
factorization algorithm 71, the m-tuple 1(¢,,) determines an order-m,
rank-m invertible homogeneous Clifford Appell system by

Ye—1 = 1(Ym) ety (5.18)
fore=1,... k.

Proof. The result follows immediately from definitions. O

6 Fermion algebras and the fermion field

Of particular interest in the field of quantum probability, the Clif-
ford algebra C¢,, ,, is known to be isomorphic to the n-particle fermion
algebra F,,. In fact, stochastic processes on Clifford algebras have his-
torically been studied primarily in the form of processes in the fermion
field (cf. [1], [2], [3]). Other examples include the central limit theo-
rems developed by von Waldenfels [23] and Hudson [11].
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Denoting the j*" creation operator by fj+ and the j* annihilation
operator by f;, the isomorphism F,, — C/, , is made explicit by

1

fit— 5 (€5 +ensj), (6.1)
1

fi— g(ej —enyj) (6.2)

Regarding fj+ and f; as raising and lowering operators on C/,, ,, re-
spectively, one again finds the left regular representation of multipli-
cation by e; given as an operator sum

(fjJr + fj)U =e;u (6.3)

for arbitrary u € Cly, 5.

Example 6.1. Consider the Mathematica-generated collection of or-
thogonal non-null vectors

Vector sequence (Xg):

X_1 = 0.995564 ey, +0. 0932456 € 5, -
0. 00546402 e 3, - 0. 00554477 e 4, - 0. 00976338 € 5, - 0. 00103628 € g,

X_2 = -0.0879225¢e 3, + 0. 960669 e, - 0. 114892 e 3, - 0. 11659 e 4, - 0. 205294 e 5, - 0. 0217898 e 6,

x_3 =

-0. 00580452 € 1; + 0. 12202 € 5, + 0. 992415 e 3, - 0. 00769708 € 4, - 0. 0135532 e 5, - 0. 00143853 € ¢,
x_4 =

0.00625123 ey - 0. 131411 e ; + 0. 00770043 e 3, + 1. 02299 e 4, + 0. 0404897 (s, + 0. 00429756 e 5,
X_5 =

0.0106783 e 1, - 0. 224475 € 5, + 0. 0131538 €3, - 0. 0133482 e 4, + 1. 06916 € s, + 0. 00734107 € 5,

X_6 = 0.00103727 ey, - 0. 0218051 e 5, +
0.00127774 e 3, - 0. 00129662 € 4, - 0. 00228312 e 5, + 1. 00071 €5,

in Cl3 3, which is canonically isomorphic to the 3-particle fermion al-
gebra F3. By defining 1y := 1 and proceeding inductively by setting
Vi = Ex,Yr—1 for k = 1,...,n, the invertible homogeneous Clifford
Appell system of Figure 2 was obtained.

The infinite-dimensional extension is the fermion field,
[ee]
F=PClon. (6.4)
n=1

Infinite-dimensional Clifford algebras (of arbitrary signature) can
be easily defined using vectors in a separable Hilbert space H equipped
with a quadratic form @. Generally speaking, for any orthonormal
basis {e; : 1 < i} of H and x € H satisfying ||x| < oo, the quadratic
form @ acts according to

Q(x) = Z% (x,e;)?, (6.5)
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Appel | system
Y 0 =1

y_1 = 0.995818 ey, + 0. 0932693 5, -
0. 00546541 e 3, - 0. 00554618 e 4, - 0. 00976586 €5, - 0. 00103654 € ¢,

Y 2 = -1.08703 €1 2, +0. 129441 e 1,3, + 0. 131354 1 4, + 0. 231291 e 15, +
0.0245491 e 1,6, + 0. 0061575 5 3, + 0. 00624851 € 5, 4; + 0. 0110025 € 5, 5, + 0. 0011678 €2, 6,

U3 = -1.09509 € 1,2 3, - 0. 00770043 € 1. 5,4, -
0.0135591 €1, 2,5, - 0. 00143916 € 15,6, - 0. 131411 e 13,4, - 0. 231391 e 1 3,5, -
0.0245598 € 1,3 6, - 0. 00625123 € 5, 3,4, - 0. 0110073 € (2,35, - 0. 00116831 € 5,3, 6,

U_4 = -1.06994 € 5 54, -0.0133482 €1 235, -

0.00141678 €1 5 5 6, + 0. 0131538 (1,2 4,5, + 0. 00139614 € 1 5 4.6, +
0.224475 €1 3 4.5, + 0. 0238257 €1, 5.4.6) + 0. 0106783 € 2.3, 4.5, + 0. 00113339 € 5 3.4, 6

Y_5 = 1.00071 €1 2345 +0.00228312 € 1,2 5 4.6, - 0. 00129662 € 1.2 35,6, +

0.00127774 € 1,245 6, + 0. 0218051 €1 5 4,56, + 0. 00103727 € 5.3,4.5. 6

Y6 = 1. e@,2345.6

Figure 2: Invertible homogeneous Appell multivectors in Cl33 associated
with sequence (xj) of Example 6.1.

where v; = £1 for each ¢. With this quadratic form in hand, the
symmetric bilinear form (-, )¢ is defined as in the finite case by

(. ¥)a = 5 [Q0x+y) ~ Q) ~ Q) (6.6)

for x,y € H.
Left- and right-contraction are again defined in terms of the quadratic
form @ as in (3.13), and the Clifford integrals are defined as in (3.2).
In the infinite-dimensional case, one defines the weighted raising
and lowering operators by

Ex=» x;R; (6.7)
J

Ax = a;D; (6.8)
J

where (x,x) = Zxﬁ =1

J
Considering the quadratic form @ defined on separable Hilbert
space H having countable orthonormal basis B = {e;} by

Z<X7 e2)” — Z<X, e2i-1)°, (6.9)

7 A

Q(x)

one obtains an infinite-dimensional Clifford algebra C/(Q) isomorphic
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to the fermion field via the correspondence

1

fjJr — §(egj + egj_l), (6.10)
1

fi 5le —ezj). (6.11)

6.1 Further remarks on evolution equations

Returning to solutions of evolution equations, it now becomes apparent
that for interesting (i.e., non-constant) discrete processes on Clifford
algebras, the “correct” forms of evolution equations (2.10), (2.11), and
(2.12) are respectively

Oyu(k) = Ax, u(k), (6.12)
Owu(k) = Ex, u(k), and (6.13)
Oru(k) = (Ax, + Ex, )u(k). (6.14)

That is, the differential Au at the k' time step
Owu(k) == u(k) —u(k —1) (6.15)

in the discrete process is given by the action of weighted raising and
lowering operators associated with a vector-valued process (x) in the
vector space V generating C£(Q). The Clifford-valued process then
becomes an additive process of the general form

k
u(k) == ijl’ (6.16)
£=0

where (jg) is a sequence of Appell indices determined by the choice of
raising, lowering, or raising+lowering.

The current authors have considered both time-homogeneous dis-
crete processes (cf. [16]) and dynamic processes (cf. [17]) associated
with evolution equation (6.14) by defining multiplicative walks on ba-
sis blades considering the induced additive walks in Clifford algebras
of arbitrary signature.

Example 6.2. Letting (x; : 1 < k) denote a random sequence of basis
vectors from B, consider the evolution equation

0w = (Ax, + Zx, )u. (6.17)

This equation is associated with a discrete additive process (u(k)) in
F associated with a random walk on an infinite-dimensional directed
hypercube. In particular, consecutive increments of the process are
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associated with adjacent vertices in the hypercube. The process (u(k))
in C4(Q) is of the form

u(k) = u(k — 1) + (Ax, + Zx, Juk — 1). (6.18)

Setting Ty := Ax,+Ex, for each ¢, and using back-substitution, u(k+1)
is given by the ordered product

u(k) = (I+Tk)(I+Tk,1)-~-(I+T1)u0, (6.19)

where uy = w(0) is the initial value of the process. Expanding and
rewriting with ordered products of lowering and raising operators, one
finds

k
uk) =) >, (Ax, T5x,) (A, +Ex,Juo. (6:20)

g=0 (i1,-,dg)E[K]9

j1>>dg

Implicitly defining the index function v : B — N by x = e,x), the
equivalent process in F is expressed by setting ug = 1 to represent the
vacuum state and expanding, using the canonical isomorphism F o~
Cl(Q). One thereby obtains the following general expression for the
kY value of the process:

uk) =3 > (fv<le>+fu(xj1>+)"'(fu<xjg>+f»<xjg>+)1-

g=0 (j1.-ig)€ElR]I
1> >hg

(6.21)

7 Conclusion

The authors have shown methods for constructing invertible Appell
systems in Clifford algebras of arbitrary signature. As seen in Exam-
ples 5.15 and 6.1, these methods readily lend themselves to convenient
symbolic computations and can be used for further research involving
Clifford evolution equations.
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