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Operator calculus and invertible Clifford Appell

systems: theory and application to the n-particle

fermion algebra

René Schott∗, G. Stacey Staples†

Abstract

Motivated by evolution equations on Clifford algebras and illus-
trated with the n-particle fermion algebra, a theory of invertible left-
and right-Appell systems is developed for Clifford algebras of an ar-
bitrary quadratic form. This work extends and clarifies the authors’
earlier work on Clifford Appell systems, operator calculus, and opera-
tor homology/cohomology. A direct connection is also shown between
blade factorization algorithms and the construction of Appell systems
in these algebras.

1 Introduction

Over the years, Clifford algebras have proven advantageous for a broad
range of applications in physics and engineering. More recently, their
utility in implementing quantum algorithms has been shown [4], [12].
Some familiar examples of Clifford algebras include the algebra of
quaternions and the n-particle fermion creator/annihilator algebra.

Appell systems can be interpreted as polynomial solutions of gen-
eralized heat equations. In probability theory, they are also used to
obtain non-central limit theorems. Their analogues have been defined
on Lie groups [8], the Schrödinger algebra [7], and quantum groups [6].
Clifford Appell systems are natural objects of interest for constructing
solutions of Clifford evolution equations.

The current authors first defined general Appell systems within a
Clifford algebra of arbitrary signature in [14]. The operator calcu-
lus (OC) appearing in that preliminary work was subsequently used
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in a treatment of operator homology and cohomology in Clifford al-
gebras [18]. More recently, OC methods were extended to commuta-
tive subalgebras of the Grassmann exterior algebra referred to herein
as “zeon” algebras and used to give an OC formulation of partition-
dependent stochastic measures [19].

The authors’ OC approach is implicit in a number of earlier works
in graph theory (cf. [22], [20]). Operator calculus on zeon algebras
provides the common context for relating graph theory and quantum
random variables [15]. Moreover, the OC approach was advantageous
in developing a graph-theoretic construction of stochastic integrals in
Clifford algebras of arbitrary signature [21].

The goal of the current work is to clarify the role of operator calcu-
lus in solving Clifford Appell systems. Geometric interpretations are
given for combinatorially-defined operators. Notions of invertible left-
and right-Appell systems are developed, and the role of blade factor-
ization in constructing Appell systems is clarified.

2 Essential background

Presented here are some concepts, definitions, and notational conven-
tions used throughout subsequent sections.

2.1 Appell systems

Following the formalism of Feinsilver, Kocik, and Schott [7], the space
of polynomials with degree not exceeding n can be considered as the
space of solutions, Zn, to the equation Dn+1ψ = 0, where D is the
differentiation operator. In this context, an Appell system is a sequence
of nonzero polynomials satisfying two conditions:

i. ψn ∈ Zn, ∀n ≥ 0, and

ii. Dψn = ψn−1, ∀n ≥ 1.

A simple example of an Appell system is to define ψn = xn/n! with
D = d/dx. Other examples of Appell systems include shifted moment
sequences

ψn(x) =

∫ ∞

−∞

(x+ y)np(dy) (2.1)

where p is a probability measure on R with all moments finite. This
includes the Hermite polynomials,

Hn(x) =
1√
2πt

∫ ∞

−∞

(x+ y)ne−y2/2tdy, t > 0, (2.2)
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for the Gaussian case. These polynomials are the solutions of the heat
equation

∂tf(x, t) =
1

2
∂2

xf(x, t)

with limt→0 f(x, t) = xn.
More generally, for any operator A, one sets

Zn = {ψ : An+1ψ = 0}

for n ≥ 0, and defines an A-Appell system as a sequence of nonzero
functions {ψ0, ψ1, . . . , ψn, . . .} satisfying

i. ψn ∈ Zn, ∀n ≥ 0, and

ii. Aψn = ψn−1, for n ≥ 1.

The system of embeddings Z0 ⊂ Z1 ⊂ Z2 ⊂ · · · is referred to as a
canonical A-Appell system decomposition.

2.2 Clifford algebras

For convenience, the following notation is recalled for the commutator
and anti-commutator of algebraic elements, respectively:

[x, y] := xy − yx

[x, y]+ := xy + yx.

Let n ∈ N, and let p, q be nonnegative integers such that p+ q = n.
Let V be a real inner product space with orthonormal basis {ei :
1 ≤ i ≤ n}. The Clifford algebra of signature (p, q), denoted Cℓp,q, is
defined as the real associative algebra generated by the vectors {ei},
along with the unit scalar 1 subject to the following multiplication
rules:

[ei, ej ]+ =











2 if 1 ≤ i = j ≤ p,

−2 if p+ 1 ≤ i = j ≤ n,

0 if i 6= j.

(2.3)

Denote the n-set {1, . . . , n} by [n], and denote the associated power
set by 2[n]. Adopting multi-index notation, the ordered product of
generators is denoted

∏

i∈I

ei = eI , (2.4)

for any subset I ⊆ [n], also denoted I ∈ 2[n].
These products of generators are referred to as basis blades for the

algebra. The grade of a basis blade is defined to be the cardinality of
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its multi-index. An arbitrary element u ∈ Cℓp,q has a canonical basis
blade decomposition of the form

u =
∑

I⊆[n]

uI eI , (2.5)

where uI ∈ R for each multi-index I. The grade-k part of u ∈ Cℓp,q is
then naturally defined by

〈u〉k :=
∑

|I|=k

uIeI . (2.6)

It finally becomes evident that Cℓp,q has a canonical vector space de-
composition of the form

Cℓp,q =

n
⊕

k=0

〈Cℓp,q〉k. (2.7)

An arbitrary element u ∈ Cℓ(Q) is said to be homogeneous of grade
k if

〈u〉k 6= 0, and

〈u〉ℓ = 0, ∀ℓ 6= k.

As the degree of a polynomial refers to the maximal exponent appear-
ing in terms of the polynomial, an arbitrary multivector u ∈ Cℓ(Q) is
said to be heterogeneous of grade k if

〈u〉k 6= 0, and

〈u〉ℓ = 0, ℓ > k.

Recall the ordering symbol θi j defined by

θi j =

{

1 if i < j

0 otherwise,

and let elements of multi-indices be expressed as I = {I1, . . . , I|I|}.

The multi-index product signature map ϑ : 2[n] × 2[n] → {±1} is
defined by

ϑ(I, J) = exp



ıπ



|{I ∩ J ∩ (p, n]}| +

|J|
∑

k=1

|I|
∑

ℓ=1

θjk iℓ







 .

The product of basis blades in Cℓp,q is now correctly given by

eIeJ = ϑ(I, J)eI△J , (2.8)

where △ represents the set symmetric difference operator, i.e., I△J :=
(I ∪ J) \ (I ∩ J).

4



Example 2.1. Specific examples of Clifford algebras include the fol-
lowing:

i. Cℓ0,1 ≃ C

ii. Cℓ0,2 ≃ H

iii. Cℓ3,0 ≃ APS algebra of physical space

iv. Cℓ1,3 ≃ STA spacetime algebra

v. Cℓn,0 ≃ {n-particle fermion Fock space}
vi. Cℓn,n ≃ {n-particle fermion creator/annihilator algebra}

The principal motivation for discussing Appell systems in the con-
text of Clifford algebras is obtaining solutions to Clifford evolution
equations. The evolution equations detailed herein describe discrete
Clifford-valued processes taking the form of sequences (uk)k>0. The
meaning of ∂t is thus understood by

∂tu(k) = ∆u = uk+1 − uk. (2.9)

One straightforward example is

∂t u = Λu, (2.10)

where u = u(t) ∈ Cℓ(Q) and Λ is an operator acting as generalized
differentiation, or combinatorial lowering. Similarly, one can have an
equation of the form

∂t u = Ξu, (2.11)

where Ξ is a generalized integral, or combinatorial raising. Considering
discrete processes of sums of raising and lowering operators gives

∂t u = (Λ + Ξ)u, (2.12)

which can be regarded as a random walk on a directed hypercube [16].
It will be shown in a subsequent section that all solutions of the

Clifford heat equation
∂t u = Λ2u (2.13)

are constant.
Before constructing Appell systems in Clifford algebras, an operator

calculus for Clifford algebras must be discussed. Within the context of
this calculus, the construction of Appell systems will be natural.

3 Operator calculus in Clifford algebras

The motivation for development of Clifford operator calculus is based
on polynomial operator calculus. To begin, raising and lowering oper-
ators are defined naturally in terms of polynomial differentiation and
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integration operators on Clifford multivectors regarded as polynomials
in anticommuting variables.

In this formulation, the generators {ei} of Cℓp,q are fixed a priori,
and are regarded both as vectors in the Clifford algebra sense and as
anti-commuting variables in the polynomial sense. In this context, the
Clifford algebra Cℓp,q is naturally regarded as an algebra of “Clifford
polynomials” as well as Clifford multivectors.

After an initial discussion based on the notion of Clifford polyno-
mials, the construction is subsequently generalized to Clifford algebras
associated with arbitrary, non-degenerate quadratic forms. In this con-
struction, no such generating set need be fixed, as a basis-free definition
of the Clifford algebra over V is given in terms of a non-degenerate
quadratic form Q. The notation for this more generally constructed
algebra is Cℓ(Q). In this setting, the combinatorially and algebraically
defined raising and lowering operators are more naturally envisioned
in terms of the exterior product and left-contraction operators.

Analogous to polynomial differentiation and integration, the fol-
lowing operators are defined in the Clifford algebra context.

Definition 3.1. Let I ∈ 2[n] be an arbitrary multi-index. For 1 ≤
j ≤ n, define the jth Clifford differentiation operator ∂/∂ej by linear
extension of

∂

∂ej
eI =

{

ϑ({j}, I)eI\{j} if j ∈ I,

0 otherwise.
(3.1)

Definition 3.2. The Clifford integrals are defined by

{dei,dej} = 0 for i 6= j (3.2)
∫

dej = ej , (3.3)

∫ ∫

dei dej =

∫

ei dej =











ej ei if i 6= j

1 if 1 ≤ i = j ≤ p

−1 if p+ 1 ≤ i = j ≤ p+ q

(3.4)

so that
∫

eI dej =

{

ϑ({j}, I)eI∪{j} if j /∈ I

ϑ({j}, I)eI\{j} if j ∈ I.
(3.5)

These polynomial operators induce combinatorial raising and low-
ering operators by which Clifford monomials (blades) are “raised” from
grade k to grade k+1 or “lowered” from grade k to grade k−1. These
raising and lowering operators can also be regarded as fermion creation
and annihilation operators in the sense of quantum mechanics.
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Definition 3.3. For each 1 ≤ j ≤ n, define the jth (left) raising
operator Rj by linear extension of

Rj eI =

〈∫

eI dej

〉

|I|+1

= ej ∧ eI . (3.6)

Define the jth (left) lowering operator Dj by linear extension of

Dj eI =
∂

∂ej
eI = 〈ej eI〉|I|−1 . (3.7)

Remark 3.4. Note that one can similarly define right raising and low-
ering operators. Indeed, these are the operators appearing in the au-
thors’ preliminary work [14]. The formulation involving left lowering
and raising was considered in the authors’ subsequent work [18]. For
the remainder of the current work, all lowering and raising operators
are regarded from the left unless specified otherwise.

Example 3.5. In the Clifford algebra Cℓ2,2 the raising and lowering
operators act in the following manner:

D1 e{1,2,3} = e{2,3}

R2 e{1,3} = −e{1,2,3}.

The Clifford algebra Cℓp,q admits a number of involution automor-
phisms, including reversion. The reversion of an element u is denoted
by ũ and is defined by

ũ :=

n
∑

k=0

(−1)k(k−1)/2〈u〉k. (3.8)

The action of this automorphism is seen by reversing the order of
vectors appearing in basis blades of u.

Reversion is useful in expressing the Euclidean inner product, de-
fined on Cℓp,q, by

〈u, v〉 := 〈ũv〉0 =
∑

I∈2[n]

uIvI . (3.9)

Another inner product induced by the quadratic form associated with
Cℓp,q will also be useful in the discussion of Clifford operator calculus.

Letting Q denote the following quadratic form on the vector space
V spanned by the generators of Cℓp,q:

Q(x) = x1
2 + · · · + xp

2 − xp+1
2 − · · · − xn

2, (3.10)

the algebra Cℓp,q is also denoted by Cℓ(Q). More generally, Q will be
considered any non-degenerate quadratic form on the vector space V .
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Associate with Q the symmetric bilinear form

〈x,y〉Q =
1

2
[Q(x + y) −Q(x) −Q(y)] , (3.11)

and extend to simple k-vectors in
∧k

V by

〈x1 ∧ x2 ∧ · · · ∧ xk,y1 ∧ y2 ∧ · · · ∧ yk〉Q = det 〈xi,yj〉Q . (3.12)

This inner product extends linearly to all of
∧k

V and by orthogonality
to
∧

V .
The Q-inner product and exterior product extend to Cℓ(Q) via the

canonical vector space isomorphism. The left contraction operator is
defined by (cf. [13, Chapter 14])

xyy = 〈x,y〉Q ∀x,y ∈ V ; (3.13)

xy(u ∧ v) = (xyu) ∧ v + û ∧ (xyv), ∀u, v ∈
∧

V,x ∈ V ; (3.14)

(u ∧ v)yw = uy(vyw), ∀u, v, w ∈
∧

V. (3.15)

In particular, left and right contraction are dual to the exterior
product and satisfy the following:

〈uyv, w〉Q = 〈v, ũ ∧ w〉Q , (3.16)

〈uxv, w〉Q = 〈u,w ∧ ṽ〉Q . (3.17)

Of particular importance, the exterior product and left contraction
act as combinatorial raising and lowering operators in Cℓp,q:

ej ∧ eI = 〈ej eI〉|I|+1 =

{

ϑ({j}, I)eI∪{j} if j /∈ I,

0 otherwise;
(3.18)

and

ejyeI = 〈ej eI〉|I|−1 =

{

ϑ({j}, I)eI\{j} if j ∈ I,

0 otherwise.
(3.19)

It is now instructive to define the lowering operators in terms of
contractions. In particular, the jth left lowering operator in Cℓp,q is
given by

DjeI =
∂

∂ej
eI = ejyeI . (3.20)

Remark 3.6. The jth right lowering operator in Cℓp,q is correctly re-
garded as right contraction according to

eIDj = eI
∂

∂ej
= eIxej . (3.21)
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The raising and lowering operators have a number of interesting
properties, including those recalled here. The interested reader is re-
ferred to the authors’ earlier work for detailed proof and additional
properties [18].

The Kronecker delta function appearing below is defined by

δjk =

{

1 if j = k,

0 otherwise.
(3.22)

Lemma 3.7. Fix nonnegative integers p, q and let n = p+ q. In Cℓp,q

the operators {Dj : 1 ≤ j ≤ n} and {Rj : 1 ≤ j ≤ n} satisfy the
following:

[Rj , Dk]+ = δjk ej
2 , and (3.23)

[Rj , Rk]+ = [Dj , Dk]+ = 0. (3.24)

4 Weighted raising and lowering operators

Given a vector x =

n
∑

i=1

xiei in Cℓp,q, the corresponding linear com-

bination of lowering operators has a natural interpretation as a left
contraction. In particular, for any u ∈ Cℓp,q,

∂

∂x
u =

(

n
⊕

i=1

xiDi

)

u =

n
∑

i=1

xieiyu = xyu. (4.1)

It also makes sense to define the composition of lowering (differen-
tial) operators as multivector left contraction operators. In particular,
for canonical grade-k basis blade eJ and arbitrary basis blade eI ,

∂

∂eJ1

· · · ∂

∂eJk

eI = eJ1
y(· · ·y(eJk

yeI)) := eJyeI . (4.2)

As a consequence,

eJyeI :=

{

ϑ(J, I)eI\J if J ⊆ I,

0 otherwise.
(4.3)

This multivector contraction operator extends linearly to all of Cℓp,q.
This contraction operator is correctly regarded as a kth order lowering
operator

DJeI = ϑ(J, I)eI\J ∈ 〈Cℓp,q〉|I|−|J| . (4.4)

One defines multivector right contraction operators in similar fashion.
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Due to associativity, the exterior product already has a natural
generalization; i.e.,

eI ∧ eJ = eI1 ∧ · · · ∧ eI|I| ∧ eJ1 ∧ · · · ∧ eJ|J|
. (4.5)

Consequently,

eI ∧ eJ =

{

ϑ(I, J) eI∪J if I ∩ J = ∅,
0 otherwise.

(4.6)

Note that the general blade product eI eJ has the operator calculus
formulation

eI eJ =

(

∂

∂eI1

+RI1

)

◦ · · · ◦
(

∂

∂eI|I|

+RI|I|

)

eJ . (4.7)

Observe that the linear combination of raising operators in Cℓp,q

also has a natural interpretation as a weighted raising operator of the
form

∫

udx =





n
⊕

j=1

xjRj



u =

n
∑

j=1

xjej ∧ u = x ∧ u, (4.8)

and is correctly regarded as a linear operator mapping grade k elements
to grade k + 1 elements for k = 0, . . . , n− 1.

Property (3.23) of Lemma 3.7 gives the Clifford vector analog of the
number operator. The following lemma is obtained as an immediate
corollary.

A more general analog to the number operator of quantum mechan-
ics is the signed grade operator defined on blades by

Γ(u1 ∧ · · · ∧ uk) =

(

k
∑

ℓ=1

uℓyuℓ

)

u1 ∧ · · · ∧ uk. (4.9)

Lemma 4.1. In Cℓp,q, the operator sum

n
⊕

j=1

(RjDj) corresponds to the

signed grade operator by

n
⊕

j=1

RjDjeI =
∑

j∈I

ej
2eI = Γ(eI). (4.10)

Moreover, in the Euclidean Clifford algebra Cℓn,0 isomorphic to n-
particle fermion Fock space,

Γ(eI) = |I|eI . (4.11)
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Proof. The result follows from Lemma 3.7 by noting that RjDjeI = 0
if j /∈ I.

Since the choice of basis {ei : 1 ≤ i ≤ n} for the vector space of
generators for Cℓp,q is arbitrary, it is convenient to pass to the basis-
free definition of the Clifford algebra with quadratic form Q. With this
general framework in mind, the weighted lowering operator is now for-
mally defined. For reasons that will become apparent later, vectors x

used to define the weighted raising and lowering operators are required
to be non-null, i.e., it is required that x2 6= 0.

Definition 4.2. Let x be a non-null vector in Cℓ(Q) and define the
weighted lowering operator Λx on Cℓ(Q) by

Λxu =
∂

∂x
u = xyu (4.12)

for any u ∈ Cℓ(Q).

The weighted (left) lowering operator Λx is correctly regarded as
an operator taking elements of grade k to elements of grade k − 1 for
k = 1, . . . , n.

Definition 4.3. Let x be a non-null vector in Cℓ(Q) and define the
corresponding weighted raising operator Ξx on Cℓ(Q) by

Ξxu =

∫

u dx = x ∧ u (4.13)

for any u ∈ Cℓ(Q).

The role of raising and lowering operators in the Clifford (geomet-
ric) product is made explicit by considering the left regular represen-
tation of multiplication by a vector x. Specifically, this is the operator
sum (Ξx ⊕ Λx), as seen by

xu = (Ξx ⊕ Λx)u (4.14)

for u ∈ Cℓ(Q).
The relationship between the weighted raising and lowering opera-

tors is made clear by the next lemma.

Lemma 4.4. For fixed non-null vector x in Cℓ(Q), the operators Ξx

and Λx are dual to each other with respect to the inner product 〈·, ·〉Q;
i.e., 〈Λx u,w〉Q = 〈u,Ξx w〉Q for all u,w ∈ Cℓ(Q).

Proof. The result follows immediately from (3.16) and the definitions
of weighted lowering and raising operators.
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Lemma 4.5. For any non-null vector x ∈ Cℓ(Q), the corresponding
weighted lowering and raising operators are nilpotent of index 2. That
is,

Λx

2 := Λx ◦ Λx = 0, (4.15)

Ξx

2 := Ξx ◦ Ξx = 0. (4.16)

Proof. The result follows from Lemma 3.7 by linearity of lowering and
raising operators Dj and Rj .

An immediate consequence is that solutions of the Clifford heat
equation must be constant.

Lemma 4.6. For fixed non-null vector x in Cℓ(Q) and Clifford-valued
u := u(t), the Clifford heat equation

∂tu = Λx

2u (4.17)

has only solutions of the form u(t) = c for some constant c.

Proof. Index-2 nilpotency of Λx implies ∂tu = 0.

5 Clifford Appell systems

Motivated by polynomial Appell systems, one intuitively expects to
define a Clifford Appell system as a pair Ψ = ({ψk : 1 ≤ k ≤ n}, D),
where {ψk} is a collection of Clifford multivectors and D is a lowering
operator defined on Cℓ(Q) such that

i. ψk is a grade-k Clifford multivector for each k, and

ii. Dψk = ψk−1.

A problem with this definition is seen immediately. Assuming ψk 6=
0, the index-2 nilpotency of lowering operators seen in Lemma 4.5
gives ψℓ = 0 for 0 ≤ ℓ ≤ k − 2 for any fixed lowering operator D. In
order to define Clifford Appell systems with more than two Clifford
multivectors, one must construct a sequence of lowering operators.

Analysis of Clifford Appell systems will be simplified by considering
homogeneous Clifford Appell systems defined below. General Clifford
Appell systems can then be constructed as sums of homogeneous sys-
tems.

Definition 5.1. A homogeneous (left) Clifford Appell system is a pair
Ψ = ({ψk}, {Λxk

}), where {ψk} ⊂ Cℓ(Q), and {Λxk
} is a collection of

weighted (left) lowering operators associated with a sequence of non-
null Clifford vectors (xk) such that

i. for each k, either ψk = 0 or ψk is homogeneous of grade k, and
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ii. Λxk
ψk = ψk−1 for each k.

One similarly defines a homogeneous right Clifford Appell system in
terms of weighted right lowering operators.

Definition 5.2. The order of Ψ is defined as the maximum grade
among the elements of {ψk}. The system Ψ is said to be of rank r if
{ψk} contains r + 1 nonzero elements .

This definition of rank follows naturally from Appell systems of
polynomials of a single variable, since a polynomial’s degree is always
one greater than its number of nonzero derivatives.

Remark 5.3. In Cℓn,0, which is canonically isomorphic to the n-particle
fermionic Fock space, the lowering operator maps monomials repre-
senting k-particle systems to monomials representing (k − 1)-particle
systems. In other words, the lowering operator acts as an annihilation
operator.

Remark 5.4. Fixing nonzero ψn and xk = x ∈ V for each k results in
a rank-1 homogeneous Clifford Appell system by the index-2 nilpotent
property of lowering operators .

Lemma 5.5. Let X = {xk : 1 ≤ k ≤ m} be a collection of vectors in
the n-dimensional vector space V . Then, the exterior product

x1 ∧ · · · ∧ xm

is nonzero in Cℓ(Q) if and only if X is linearly independent.

Proof. When the set X is linearly independent, the exterior product
represents an oriented m-dimensional volume element, or pseudoscalar,
in the subspace of V spanned by X.

On the other hand, if X is not linearly independent, let 1 ≤ ℓ ≤ m

and suppose xℓ =
∑

1≤k,ℓ,≤m

k 6=ℓ

αkxk for scalars {αk}. Then, relabeling

vectors in the set complement {x1, . . . ,xm} \ xℓ = {y1, . . . ,ym−1},
one finds (with sign changes as appropriate)

x1 ∧ · · · ∧ xm = ±xℓ ∧ y1 ∧ · · · ∧ ym−1

= ±





m−1
∑

j=1

αjyj



 ∧ y1 ∧ · · · ∧ ym−1

= ±y2 ∧ · · · ∧ (y1 ∧ y1) +

m−1
∑

j=2

±y1 ∧ · · · ∧ (yj ∧ yj) . (5.1)

Whence, index-2 nilpotency of the wedge product (i.e., raising opera-
tors) makes all terms zero.
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Writing the vectors {xk} with respect to the orthonormal basis {ei :
1 ≤ i ≤ n} for V , the exterior product can be expressed in the following
way: the coefficient of the m-vector eI for I = {I1, . . . , Im} ⊆ [n] in the
canonical expansion of the wedge product is given by the determinant
of the submatrix

detI







x1

...
xm






= det









x1,I1
x1,I2

. . . x1,Im

x2,I1
x2,I2

. . . x2,Im

· · · · · · · · · · · ·
xm,I1 xm,I2 . . . xm,Im









. (5.2)

This determinant is the scalar coefficient of the pseudoscalar in the
projection of x1 ∧ · · · ∧ xm onto the m-dimensional subspace of V
spanned by {eI1

, . . . , eIm
}. It follows that all such projections are zero

if and only if X is linearly dependent.

Remark 5.6. In terms of the Clifford (geometric) product, the element
x1 · · ·xm is an m-blade in Cℓ(Q) if and only if the set {x1, . . . ,xm} is
orthogonal with respect to the Q-inner product.

To ensure ψk 6= 0 for all 1 ≤ k ≤ n, appropriate conditions on the
sequence (xk) are addressed in the next proposition. Note that in any
homogeneous Clifford Appell system associated with an n-dimensional
vector space V , ψn is associated with a scalar multiple of the pseu-
doscalar ψn = α e[n].

Lemma 5.7. Let {Bi : 1 ≤ i ≤ M ≤
(

n
k

)

} be a collection of dis-
tinct k-blades in Cℓ(Q), and let x be a non-null Clifford vector. Then,
xy(
∑

aiBi) = 0 if and only if xy(aiBi) = 0 for each i.

Proof. One direction of the proof is obvious. On the other hand, sup-
pose that for some subset S of indices, terms {xy(aiBi) : i ∈ S} are
nonzero. Rewrite

∑

i∈S aiBi in terms of a new orthonormal basis of
the form X = {x, f1, . . . , fn−1} obtained from the canonical basis by
Gram-Schmidt orthogonalization with respect to 〈·, ·〉Q. Letting Ii de-
note the subset of the basis X associated with the canonical blade Bi

and letting bi denote appropriate nonzero coefficients,

xy

(

∑

i∈S

aiBi

)

=
∑

i∈S

ai



xy



bix ∧
∧

j∈Ii

fj









=
∑

i∈S



aibi
∧

j∈Ii

fj



 =
∑

i∈S

aibifIi
, (5.3)

which is nonzero by linear independence of the (k−1)-blades {fIi
}.
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Proposition 5.8. Let Ψ = ({ψk}, {Λxk
}) be an order-n homogeneous

Clifford Appell system. The rank of Ψ is m if and only if the set
X = {xn−m+1, . . . ,xn} is linearly-independent; i.e., rank(X) = m.

Proof. By definition,

ψn−m =
∂

∂xn−m+1

(

· · ·
(

∂

∂xn
ψn

))

= xn−m+1y (xn−m+2y (· · ·y (xnyψn)))

= (xn−m+1 ∧ · · · ∧ xn)yψn. (5.4)

Observing that ψn is a scalar multiple of the pseudoscalar, it follows
that xkyψn is homogeneous of grade n − 1 for each k. Moreover, it
follows that ψn−m 6= 0 if and only if ψn−m is homogeneous of grade
n−m; i.e., (xn−m+1 ∧ · · · ∧ xn) must be an m-blade.

Note that Proposition 5.8 guarantees the existence of an order-n,
rank-n homogeneous Clifford Appell system associated with any basis
of the vector space V generating Cℓ(Q). The construction algorithm is
straightforward:

1. Order the basis {v1, . . . ,vn} for V .

2. Set ψn = αe[n] for some scalar α.

3. Set ψk−1 = vkyψk for each k = n, n− 1, . . . , 1.

Further, note that Proposition 5.8 does not guarantee the existence
of such a system in infinite-dimensional Clifford algebras. Moreover,
it does not address the construction of invertible Appell systems as
defined below.

Definition 5.9. An invertible homogeneous (left) Clifford Appell sys-
tem is a pair Ψ = ({ψk}, {Λxk

}), where {ψk} ⊂ Cℓ(Q), and {Λxk
} is a

collection of weighted (left) lowering operators such that

i. for each k, ψk is homogeneous of grade k, and

ii. Λxk
ψk = ψk−1 for each k, and

iii. Ξxk
ψk−1 = ψk for each k.

Theorem 5.10 (Solutions). Let x be a non-null Clifford vector, and
let ψk−1 be a grade-(k − 1) Clifford multivector. Then, the Clifford
equation

∂

∂x
ψk = ψk−1 (5.5)

has a solution ψk if and only if
∂

∂x
ψk−1 = 0. Moreover, a solu-

tion of (5.5) is the homogeneous grade-k multivector given by ψk =
1

x2

∫

ψk−1 dx.
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Proof. Suppose
∂

∂x
ψk = ψk−1 holds for some grade-k element ψk.

Index-2 nilpotency of lowering operators then gives

∂

∂x
ψk−1 =

∂

∂x

∂

∂x
ψk = 0. (5.6)

On the other hand, if
∂

∂x
ψk−1 = 0, then x ∧ ψk−1 = xψk−1 since x

must be orthogonal to any blades appearing in the expansion of ψ by
Lemma 5.7. Moreover, x orthogonal to u1, . . . , uk implies xy(x ∧ u1 ∧
· · · ∧ uk) = x2(u1 ∧ · · · ∧ uk). Whence letting ψk = x ∧ ψk−1 gives

∂

∂x
ψk =

∂

∂x
(x ∧ ψk−1) = xy(xψk−1) = xxψk−1 = x2ψk−1. (5.7)

In light of Theorem 5.10, fixing xk ∈ V and considering

Λxk
: 〈Cℓ(Q)〉k−1 ∪ 〈Cℓ(Q)〉k → 〈Cℓ(Q)〉k−2 ∪ 〈Cℓ(Q)〉k−1, (5.8)

define the grade-k subspace

Ak = Ξxk
(〈kerΛxk

〉k) ⊂ 〈Cℓ(Q)〉k. (5.9)

Then, letting I denote the identity operator, one finds

Ξxk
Λxk

∣

∣

∣

∣

Ak

= xk
2I. (5.10)

Corollary 5.11. [Appell System Solutions] Let {xk : 1 ≤ k ≤ m} be
an ordered collection of vectors, orthogonal with respect to the quadratic
form Q. Let ψ0 be a scalar. Then, setting

ψk :=
1

xk
2

∫

ψk−1 dxk (5.11)

for each k = 1, . . . ,m gives an order-m, rank-m invertible homogeneous
Clifford Appell system Ψ = ({ψk}, {Λxk

}).

5.1 Heterogeneous Clifford Appell systems

A more general definition of Clifford Appell systems is now developed
by considering heterogeneous multivectors. By extending results for
solutions of homogenous systems, it is possible to construct invertible
heterogeneous Clifford Appell systems.
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Appell system:

Ψ_0 = 1

Ψ_1 = -1 + 1.24343 e81< + 0.19745 e82< - 0.283519 e83< - 0.313961 e84<

Ψ_2 = 2 + 0.186501 e81< - 0.565485 e82< - 0.544298 e83< - 0.602741 e84< -

0.739966 e81,2< - 0.623921 e81,3< - 0.690913 e81,4< - 0.267797 e82,3< - 0.296551 e82,4<

Ψ_3 = -0.480642 e81< - 1.11981 e82< - 0.392058 e83< + 1.55336 e84< +

0.240321 e81,2< + 0.167366 e81,3< + 0.193905 e82,3< + 0.77668 e82,4< + 0.5409 e83,4< -

0.139925 e81,2,3< - 0.890296 e81,2,4< - 0.620026 e81,3,4< - 0.266125 e82,3,4<

Ψ_4 = 1 + 0.472769 e81,3< - 0.426928 e81,4< + 1.10147 e82,3< - 0.994668 e82,4< + 1.17967 e83,4< +

0.236384 e81,2,3< - 0.213464 e81,2,4< - 0.148662 e81,3,4< - 0.936192 e82,3,4< - 1. e81,2,3,4<

Figure 1: Heterogeneous Appell multivectors in Cℓ1,3 associated with se-
quence (xk) of Example 5.15.

Definition 5.12. A heterogeneous (left) Clifford Appell system is a
pair

Ψ = ({ψk}, {Λxk
}),

where {ψk : 1 ≤ k ≤ n} is a collection of Clifford multivectors, and
{Λxk

: 1 ≤ k ≤ n} is a collection of weighted (left) lowering operators
such that

i. ψk is a heterogeneous, grade-k Clifford multivector for each k and

ii. Λxk
ψk = ψk−1 for each k.

Theorem 5.13. Let {xk : 1 ≤ k ≤ m} be an ordered collection of vec-
tors, orthogonal with respect to the quadratic form Q. Let {c1, . . . , cm}
be a collection of scalars, at least one of which is nonzero, and set
ψ0 := c0 6= 0. Then, setting

ψk :=
1

xk
2

∫

ψk−1 dxk + ck (5.12)

for each k = 1, . . . ,m gives an order-m, rank-m heterogeneous Clifford
Appell system Ψ = ({ψk}, {Λxk

}).

Proof. By induction on 1 ≤ ℓ ≤ m, it will be shown that ψℓ is of the
form

ψℓ =
c0

∏ℓ
j=1 xj

2
(xℓ ∧ · · · ∧ x1) +

c1
∏ℓ

j=1 xj
2

(xℓ ∧ · · · ∧ x2)+

+
c2

∏ℓ
j=3 xj

2
(xℓ ∧ · · · ∧ x3) + · · · +

cℓ−1

xℓ
2

xℓ + cℓ. (5.13)

When ℓ = 1, setting

ψ1 :=
c0
x1

2

∫

ψ0 dx1 + c1 =
c0
x1

2
x1 + c1, (5.14)
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which establishes the basis step of the induction. Assuming ψℓ is of
the form (5.13), it follows that

ψℓ+1 =
1

xℓ+1
2

∫

ψℓ dxℓ+1+cℓ =
1

xℓ+1
2

c0
∏ℓ

j=1 xj
2
xℓ+1∧(xℓ∧· · ·∧x1)

+
1

xℓ+1
2

c1
∏ℓ

j=1 xj
2
xℓ+1 ∧ (xℓ ∧ · · · ∧ x2)+

+
1

xℓ+1
2

c2
∏ℓ

j=3 xj
2
xℓ ∧ (xℓ ∧ · · · ∧ x3) + · · ·

· · · +
1

xℓ+1
2

cℓ−1

xℓ
2

xℓ+1 ∧ xℓ +
1

xℓ+1
2
cℓxℓ+1 + cℓ+1. (5.15)

Simplifying completes the inductive step.
To see that the system is a rank-m Clifford Appell system, consider

the action of Λxℓ
on ψℓ for 1 ≤ ℓ ≤ m. Since the vectors {xℓ} are Q-

orthogonal and non-null, one immediately finds

Λxℓ
ψℓ = xℓyψℓ =

c0
∏ℓ

j=1 xj
2
xℓy(xℓ ∧ · · · ∧ x1)

+
c1

∏ℓ
j=1 xj

2
xℓy(xℓ ∧ · · · ∧ x2) +

c2
∏ℓ

j=3 xj
2
xℓy(xℓ ∧ · · · ∧ x3)

+ · · · + xℓy
cℓ−1

xℓ
2

xℓ + xℓycℓ

=
c0

∏ℓ−1
j=1 xj

2
(xℓ−1 ∧ · · · ∧ x1) +

c1
∏ℓ−1

j=1 xj
2

(xℓ−1 ∧ · · · ∧ x2)+

+
c2

∏ℓ−1
j=3 xj

2
(xℓ−1 ∧ · · · ∧ x3) + · · · +

cℓ−1

xℓ−1
2
xℓ−1 + cℓ−1

= ψℓ−1. (5.16)

Remark 5.14. Note that if c0 is the only nonzero scalar in the collection
{c0, . . . , cm}, the system Ψ is homogeneous.

Example 5.15. Let (c0, . . . , c4) := (1,−1, 2, 0, 1), and consider the
Q-orthogonal Mathematica-generated vector sequence

Vector sequence HxkL:

x_1 = 0.936192 e81< + 0.148662 e82< - 0.213464 e83< - 0.236384 e84<

x_2 = 0.19745 e81< - 0.598683 e82< - 0.576252 e83< - 0.638126 e84<

x_3 = 0.267797 e81< + 0.623921 e82< + 0.218441 e83< - 0.865478 e84<

x_4 = 0.266125 e81< + 0.620026 e82< - 0.890296 e83< + 0.139925 e84<

in Cℓ1,3. The heterogeneous Clifford Appell system of Figure 1 was
obtained by defining ψ0 := c0 and proceeding inductively by setting
ψk := Ξxk

ψk−1 + ck for k = 1, . . . , n.
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5.2 Role of blade factorization in the construction

of Appell systems

A brief discussion of blade factorization algorithms is included here be-
cause they have a natural connection to solutions of invertible Appell
systems in Clifford algebras. Examples of blade factorization algo-
rithms can be found in works by Dorst, Fontijne, et al. [5], [10].

Definition 5.16. A blade factorization algorithm is defined as any

mapping k : Cℓ(Q) →
n
⊕

k=1

(〈Cℓ(Q)〉1)k such that for any m-blade u ∈

Cℓ(Q):

1. k(u) = (k(u)1, . . . ,k(u)m) is an ordered m-tuple of non-null,
Q-orthogonal Clifford vectors (1-blades), and

2. u = αk(u)1 · · ·k(u)m for some nonzero scalar α.

In light of Theorem 5.10 and Corollary 5.11, any m-blade ψm can
serve as the top-term of an order-m, rank-m invertible homogeneous
Clifford Appell system ({ψk},Λxk

), given a Q-orthogonal collection
{xk} such that

ψm = x1 ∧ · · · ∧ xk. (5.17)

The constituent vectors xk of ψm can be obtained by applying a blade
factorization algorithm to the m-blade ψm. The factorization recov-
ered, however, is not uniquely determined. Any blade factorization
algorithm acting on ψm determines such an Appell system.

Theorem 5.17. Let ψm be any m-blade in Cℓ(Q). Then, for any blade
factorization algorithm k, the m-tuple k(ψm) determines an order-m,
rank-m invertible homogeneous Clifford Appell system by

ψℓ−1 := k(ψm)ℓyψℓ (5.18)

for ℓ = 1, . . . , k.

Proof. The result follows immediately from definitions.

6 Fermion algebras and the fermion field

Of particular interest in the field of quantum probability, the Clif-
ford algebra Cℓn,n is known to be isomorphic to the n-particle fermion
algebra Fn. In fact, stochastic processes on Clifford algebras have his-
torically been studied primarily in the form of processes in the fermion
field (cf. [1], [2], [3]). Other examples include the central limit theo-
rems developed by von Waldenfels [23] and Hudson [11].
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Denoting the jth creation operator by fj
+ and the jth annihilation

operator by fj , the isomorphism Fn → Cℓn,n is made explicit by

fj
+ 7→ 1

2
(ej + en+j), (6.1)

fj 7→ 1

2
(ej − en+j). (6.2)

Regarding fj
+ and fj as raising and lowering operators on Cℓn,n, re-

spectively, one again finds the left regular representation of multipli-
cation by ej given as an operator sum

(fj
+ + fj)u = eju (6.3)

for arbitrary u ∈ Cℓn,n.

Example 6.1. Consider the Mathematica-generated collection of or-
thogonal non-null vectors

Vector sequence HxkL:

x_1 = 0.995564 e81< + 0.0932456 e82< -

0.00546402 e83< - 0.00554477 e84< - 0.00976338 e85< - 0.00103628 e86<

x_2 = -0.0879225 e81< + 0.960669 e82< - 0.114892 e83< - 0.11659 e84< - 0.205294 e85< - 0.0217898 e86<

x_3 =

-0.00580452 e81< + 0.12202 e82< + 0.992415 e83< - 0.00769708 e84< - 0.0135532 e85< - 0.00143853 e86<

x_4 =

0.00625123 e81< - 0.131411 e82< + 0.00770043 e83< + 1.02299 e84< + 0.0404897 e85< + 0.00429756 e86<

x_5 =

0.0106783 e81< - 0.224475 e82< + 0.0131538 e83< - 0.0133482 e84< + 1.06916 e85< + 0.00734107 e86<

x_6 = 0.00103727 e81< - 0.0218051 e82< +

0.00127774 e83< - 0.00129662 e84< - 0.00228312 e85< + 1.00071 e86<

in Cℓ3,3, which is canonically isomorphic to the 3-particle fermion al-
gebra F3. By defining ψ0 := 1 and proceeding inductively by setting
ψk := Ξxk

ψk−1 for k = 1, . . . , n, the invertible homogeneous Clifford
Appell system of Figure 2 was obtained.

The infinite-dimensional extension is the fermion field,

F ∼=
∞
⊕

n=1

Cℓn,n. (6.4)

Infinite-dimensional Clifford algebras (of arbitrary signature) can
be easily defined using vectors in a separable Hilbert space H equipped
with a quadratic form Q. Generally speaking, for any orthonormal
basis {ei : 1 ≤ i} of H and x ∈ H satisfying ‖x‖ < ∞, the quadratic
form Q acts according to

Q(x) =
∑

i

γi 〈x, ei〉2, (6.5)
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Appell system:

Ψ_0 = 1

Ψ_1 = 0.995818 e81< + 0.0932693 e82< -

0.00546541 e83< - 0.00554618 e84< - 0.00976586 e85< - 0.00103654 e86<

Ψ_2 = -1.08703 e81,2< + 0.129441 e81,3< + 0.131354 e81,4< + 0.231291 e81,5< +

0.0245491 e81,6< + 0.0061575 e82,3< + 0.00624851 e82,4< + 0.0110025 e82,5< + 0.0011678 e82,6<

Ψ_3 = -1.09509 e81,2,3< - 0.00770043 e81,2,4< -

0.0135591 e81,2,5< - 0.00143916 e81,2,6< - 0.131411 e81,3,4< - 0.231391 e81,3,5< -

0.0245598 e81,3,6< - 0.00625123 e82,3,4< - 0.0110073 e82,3,5< - 0.00116831 e82,3,6<

Ψ_4 = -1.06994 e81,2,3,4< - 0.0133482 e81,2,3,5< -

0.00141678 e81,2,3,6< + 0.0131538 e81,2,4,5< + 0.00139614 e81,2,4,6< +

0.224475 e81,3,4,5< + 0.0238257 e81,3,4,6< + 0.0106783 e82,3,4,5< + 0.00113339 e82,3,4,6<

Ψ_5 = 1.00071 e81,2,3,4,5< + 0.00228312 e81,2,3,4,6< - 0.00129662 e81,2,3,5,6< +

0.00127774 e81,2,4,5,6< + 0.0218051 e81,3,4,5,6< + 0.00103727 e82,3,4,5,6<

Ψ_6 = 1. e81,2,3,4,5,6<

Figure 2: Invertible homogeneous Appell multivectors in Cℓ3,3 associated
with sequence (xk) of Example 6.1.

where γi = ±1 for each i. With this quadratic form in hand, the
symmetric bilinear form 〈·, ·〉Q is defined as in the finite case by

〈x,y〉Q =
1

2
[Q(x + y) −Q(x) −Q(y)] (6.6)

for x,y ∈ H.
Left- and right-contraction are again defined in terms of the quadratic

form Q as in (3.13), and the Clifford integrals are defined as in (3.2).
In the infinite-dimensional case, one defines the weighted raising

and lowering operators by

Ξx =
∑

j

xj Rj (6.7)

Λx =
∑

j

xj Dj (6.8)

where 〈x,x〉 =
∑

j

xj
2 = 1.

Considering the quadratic form Q defined on separable Hilbert
space H having countable orthonormal basis B = {ei} by

Q(x) =
∑

i

〈x, e2i〉2 −
∑

i

〈x, e2i−1〉2, (6.9)

one obtains an infinite-dimensional Clifford algebra Cℓ(Q) isomorphic
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to the fermion field via the correspondence

fj
+ 7→ 1

2
(e2j + e2j−1), (6.10)

fj 7→ 1

2
(e2j − e2j−1). (6.11)

6.1 Further remarks on evolution equations

Returning to solutions of evolution equations, it now becomes apparent
that for interesting (i.e., non-constant) discrete processes on Clifford
algebras, the “correct” forms of evolution equations (2.10), (2.11), and
(2.12) are respectively

∂tu(k) = Λxk
u(k), (6.12)

∂tu(k) = Ξxk
u(k), and (6.13)

∂tu(k) = (Λxk
+ Ξxk

)u(k). (6.14)

That is, the differential ∆u at the kth time step

∂tu(k) := u(k) − u(k − 1) (6.15)

in the discrete process is given by the action of weighted raising and
lowering operators associated with a vector-valued process (xk) in the
vector space V generating Cℓ(Q). The Clifford-valued process then
becomes an additive process of the general form

u(k) :=

k
∑

ℓ=0

ψjℓ
, (6.16)

where (jℓ) is a sequence of Appell indices determined by the choice of
raising, lowering, or raising+lowering.

The current authors have considered both time-homogeneous dis-
crete processes (cf. [16]) and dynamic processes (cf. [17]) associated
with evolution equation (6.14) by defining multiplicative walks on ba-
sis blades considering the induced additive walks in Clifford algebras
of arbitrary signature.

Example 6.2. Letting (xk : 1 ≤ k) denote a random sequence of basis
vectors from B, consider the evolution equation

∂tu = (Λxk
+ Ξxk

)u. (6.17)

This equation is associated with a discrete additive process (u(k)) in
F associated with a random walk on an infinite-dimensional directed
hypercube. In particular, consecutive increments of the process are
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associated with adjacent vertices in the hypercube. The process (u(k))
in Cℓ(Q) is of the form

u(k) = u(k − 1) + (Λxk
+ Ξxk

)u(k − 1). (6.18)

Setting Υℓ := Λxℓ
+Ξxℓ

for each ℓ, and using back-substitution, u(k+1)
is given by the ordered product

u(k) = (I + Υk)(I + Υk−1) · · · (I + Υ1)u0, (6.19)

where u0 = u(0) is the initial value of the process. Expanding and
rewriting with ordered products of lowering and raising operators, one
finds

u(k) =

k
∑

g=0

∑

(j1,...,jg)∈[k]g

j1>···>jg

(Λxj1
+ Ξxj1

) · · · (Λxjg
+ Ξxjg

)u0. (6.20)

Implicitly defining the index function ν : B → N by x = eν(x), the
equivalent process in F is expressed by setting u0 = 1 to represent the
vacuum state and expanding, using the canonical isomorphism F ≃
Cℓ(Q). One thereby obtains the following general expression for the
kth value of the process:

u(k) =

k
∑

g=0

∑

(j1,...,jg)∈[k]g

j1>···>jg

(

fν(xj1 ) + fν(xj1 )
+
)

· · ·
(

fν(xjg ) + fν(xjg )
+
)

1.

(6.21)

7 Conclusion

The authors have shown methods for constructing invertible Appell
systems in Clifford algebras of arbitrary signature. As seen in Exam-
ples 5.15 and 6.1, these methods readily lend themselves to convenient
symbolic computations and can be used for further research involving
Clifford evolution equations.
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