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Vector-Based Dynamic Modeling and Control of the Quattro

Parallel Robot by means of Leg Orientations

Erol Özgür, Nicolas Andreff, Philippe Martinet

Abstract— One of the key steps in high-speed control of
a parallel robot is to define an efficient dynamic model.
It is usually not easy to have such a model for parallel
robots, since many of them have complex structures. Here, we
propose a vector-based approach, which employs the robot leg
orientations, to obtain a simplified inverse dynamic model. At
the least, this vector-based methodology is pioneering, when
combined with the observation of orientations by a calibrated
camera, in the sense of solving the entire control-oriented (hard)
modeling problem, both kinematics and dynamics, in an almost
algebraic manner through the knowledge of only a nominal set
of image features: the edges of the robot legs and their time
derivatives. Proposed method is verified on a simulator of the
Quattro robot with a computed torque control where the leg
orientations are steered.

I. INTRODUCTION

Parallel robots are claimed to have superior skills than

serial robots: they can reach high-speeds, show high-dynamic

performances and achieve good repeatability [1].

However, their control is troublesome because of the

complex mechanical structure, highly coupled joint motions

due to the closed-loop kinematic chains and many factors

such as clearances in passive joints, assembly errors, etc.,

which degrade stability and accuracy. Hence, to profit fully

from these parallel mechanisms, one requires an efficient

dynamic model, which should be purified from the com-

plexity of the system, to use in the well-known computed

torque control (CTC) [2]. Generally, in the literature, these

models are considered to be written as a function of the joint

coordinates due to the existence of only the actuator encoders

as sensors for the measurement [3]. This makes derivation

of simple models difficult without making assumptions [4]

and overlooking some modeling errors in the mechanism.

What if we had additional sensors? The first attempt at

this solution is made in [5] by introducing extra sensors, or

so-called metrological redundancy, to simplify the kinematic

models for easier control. So, having the inspiration of

metrological redundancy, the immediate questions, which

have to be answered to turn the tables on our side in

the scenario, are “What actually should be sensed on the

mechanism?” and “How can the modeling be adapted for

the sensed data?” to have lighter models that will yield better

control.

In this work, observation of the orientations of the slim

and cylindrical shaped legs of the Quattro parallel robot is

proposed as a solution. Indeed, it seems to be a good choice,
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since they play a crucial role in kinematics of a parallel robot

[6]. Moreover, this observation will let us take advantage of

a vector-based formulation rather than a formulation based

on coordinates in dynamics as well.

In this paper, the previous work done in [7], for the kine-

matic modeling of the parallel robot ( Section III ), is pushed

one step further towards a dynamic modeling by introducing

a vector-based formulation by means of leg orientations

( Section IV ). The introduced vector-based dynamic model:

(i) has a more compact, readable and understandable written

expression, (ii) in particular, suppresses the use of direct and

inverse of the sine and cosine functions, (iii) is easier to

implement, and (iv) has a more geometric flavour and hence

lessened calculus. The leg orientations of the robot can be

sensed with either a gyroscope, some special joint-sensors at

extremities of the legs or by vision. Here, vision is chosen,

since it is contactless, is easy to integrate and reduces the

system calibration process by allowing all the measurements

to be performed in a single reference frame. In Section V,

it is shown that vision is potentially rich enough to furnish

the required variable sets of kinematics and dynamics for

control. Finally, in Section VI, the proposed vector-based

dynamic model, which makes use of vision directly in the

internal control-loop to compensate for the dynamics, is

validated on a simulator of the Quattro parallel robot. In

order to make the terminology clear and ease understanding

of the paper, we devote the next section to the geometry of

the Quattro robot and the notation used throughout the paper.

II. GEOMETRY OF THE MECHANISM

The Quattro is composed of four identical kinematic

chains (legs), that carry the articulated travelling plate (na-

celle). Each of the 4 kinematic chains is actuated from

the base by a revolving motor, located at Pi, and has two

consecutive bodies (an arm and a forearm) linked with each

other at Ai. Each forearm consists of two slim and cylindrical

shaped rods fitted with ball-joints ((Ai1,Ai2) and (Bi1,Bi2)),

forming a parallelogram (see Fig. 1). At the top, the arms are

connected to the motors, while at the bottom, the forearms

are connected to the nacelle. The latter is designed with four

parts [8]: the two lateral bars ([C1C2] and [C3C4]) and the

two central bars linking lateral ones with revolute joints (Fig.

2). The nacelle also has an amplification system to transform

the relative rotation θ into a proportional rotation (β = κθ )

in the end-effector E. While modeling the kinematics and

dynamics, we assign C4 as the new end-effector position

instead of its actual one for simplicity’s sake and introduce

the following notations:
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Fig. 1. Leg parameters.
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Fig. 2. Nacelle parameters.

• i = 1,2,3,4 denotes the legs and j = 1,2 denotes the

edges of the forearm rods.

• Vectors are denoted with boldface characters and, in

addition, unit vectors are underlined.

• ̥b = (O,xb,yb
,zb), ̥e = (C4,xe,ye

,ze),
̥c = (Oc,xc,yc

,zc), ̥pi = (Pi,xpi,ypi
,zpi) and

̥ai = (Ai,xai,yai
,zai) denote respectively the base,

end-effector, camera and i th arm and i th forearm

reference frames.

• All the parameters are expressed in ̥c.

• qi0 is the articulated position of the i th arm.

• In ̥b the axes of the arm are designed as:

bxpi =
[

cos(qi0)cos(αi) cos(qi0)sin(αi) −sin(qi0)
]T

bzpi =
[
−sin(αi) cos(αi) 0

]T

by
pi

= bzpi ×
b xpi

where α i = α +(i−1)π
2
.

• cVe = [ẋ, ẏ, ż ]T and ωz are, in turn, the translational

velocity and the angular velocity around the fixed axis
cze of the end-effector C4. Thus, the Cartesian pose

velocity of the end-effector can be represented by:

cζ̇ =
[

ẋ ẏ ż ωz

]T

•
−−−−→cAi jBi j =

−−−−→cAi1Bi1 =
−−−−→cAi2Bi2 = L cxai.

•
−−−→cPiAi = l cxpi.

•
−−−−→cAi1Ai2 =

−−−−→cBi1Bi2 = H czpi.

III. VECTOR-BASED KINEMATICS

Here, some contexts necessary for the following sections

are briefly recalled. For detailed explanations the reader is

referred to [7].

A. Representation and Projection of a Leg

The rods [Ai1Bi1] and [Ai2Bi2] of the forearms are rep-

resented with binormalized Plücker coordinates (x,n,n) [9].

Here x , n and n denote the direction of the rod, the unit

vector orthogonal to the plane defined by the rod and the

center of projection, and the orthogonal distance of rod to

the center of projection, respectively. One advantage of this

representation is that n , meanwhile, corresponds to the image

projection of the rod.

Assuming that the attachment point Bi1 is lying on the

revolution axis of the leg (see Fig. 3), the geometry of the

robot calls forth the following constraints:

cn
j
i

T cxai = 0 , cBi1
T cn

j
i = −R , cxai =

cn1
i ×

cn2
i

‖cn1
i ×

cn2
i ‖

(1)

where cxai , cn
j
i and R are the direction, the edge and the

radius of the cylindrical leg, respectively.

Fig. 3. Visual edges of a cylinder.

B. Inverse Differential Kinematic Models of The Robot

The implicit kinematic modeling through the observation

of the first legs [Ai1Bi1] is noted as:

q̇i0 = cD inv
ei

cζ̇ , cẋai = cMi
cζ̇ (2)

whose expressions are algebraic and can be found in [7].

IV. VECTOR-BASED DYNAMICS

Here, it is demonstrated, step by step, how to obtain a

simplified inverse dynamic model for the robot through the

fusion of Khalil’s [10] and Kane’s methods [11]. The reasons

for choosing these methods are their modularity and ability to

be harmonized in a vector-based notation. The compactness

of the model comes from the direct imposition of the leg

orientations, granted by vision, into the equations of motion.

A. Inverse Dynamic Model of The Robot

Khalil’s formulation [10] is followed to calculate the

inverse dynamic model of the Quattro parallel robot:

Γ = cDT
e

[

Fp +
4

∑
i=1

(
cJT

Bi

cJ inv
i

T
Hi

)
]

(3)

where cDe is the inverse of the inverse differential kinematic

model cD inv
e . The 4 d.o.f. platform dynamics (Fp ∈ ℜ4×1)

is computed via Newton-Euler formulation as in [10]. In the

platform dynamics, the payload is not considered, but when

the dynamic characteristics of such a payload are known,

they can be accounted for by adding the appropriate terms
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in the model. The relation between the Cartesian velocities

of the terminal point of the i th leg and the end-effector pose

is,
cJ

Bi
=

[
I3 −εi h cxe

]
(4)

where ε1 = ε2 = 1, ε3 = ε4 = 0. cJ inv
i ∈ ℜ3×3 and Hi ∈ ℜ3×1

are the inverse differential kinematic and inverse dynamic

models for the leg i, respectively. The following two subsec-

tions are devoted to their derivations.

B. Inverse Differential Kinematic Model of a Leg

Since the legs hold the R−(S−S)2 = R−U −U structure

equality [12], each of the legs of the robot is treated as 3

d.o.f. by omitting the joints that connect the leg to the moving

platform. Respectively, 1 d.o.f. for the actuated revolute joint

R and 2 d.o.f. for the passive universal joint U are required.

After that, the instantaneous pose of the leg is specified with

the generalized coordinates {qi0 , qi1 , qi2} (Fig. 4), where qi0

and {qi1 , qi2} designate the radian measures of the angles of

the arm and forearm orientations, respectively. To obtain the

differential kinematic model of the leg, the terminal point

position cBi1 is written as below:

cBi1 =c Pi + l cxpi +
−−−−→cAiAi1 +L cxai (5)

Fig. 4. Open tree structure (R−U−) of the leg. (zpi⊥zai)

Then, expressing the angular velocities of the kinematic

chain with respect to fixed base frame yields:

cω pi = q̇i0
czpi ,

cωai = (q̇i0 + q̇i1)
czpi + q̇i2

czai (6)

where cω pi and cωai represent the angular velocities of the

arm and forearm. Differentiating (5) yields:

d

dt
(cBi1) = l cẋpi +L cẋai (7)

where

cẋpi = cω pi ×
cxpi ,

cẋai = cωai ×
cxai (8)

Equation (7), using (8), can be rewritten as below:

cḂi1 =
[

cvi si
czai si

cy
ai

]

︸ ︷︷ ︸
cJi





q̇i0

q̇i1

q̇i2



 (9)

where

si = L ‖czpi ×
cxai‖ , cvi = l cy

pi
+ si

czai (10)

and cJi ∈ℜ3×3 is the forward differential kinematic model of

the i th leg. Working on the matrix cJi , the analytic form of

the inverse differential kinematic model of the leg is derived

as follows:

cJ inv
i =

1

si






si
cvi· cxai

0 0
−cvi·

czai
cvi· cxai

0 1
−cvi·

cy
ai

cvi· cxai
1 0






[
cxai

cy
ai

czai

]T
(11)

C. Inverse Dynamic Model of a Leg

Here, Kane’s method [11] is employed to obtain the

inverse dynamic model Hi , which will be later plugged into

(3) to complete the full inverse dynamic model. It is also the

part where the leg orientations come into the picture in the

dynamic model. In the sequel, a brief description of Kane’s

method is given and each step on the way to the computation

of Hi is exhibited.

Let {F∗
r ,Fr}|

n
r=1 be respectively the generalized inertia

forces and generalized active forces for a system with n

degrees of freedom, and defined as:

F∗
r =

p

∑
k=1

(
∂vkc

∂ur

·Fink
+

∂ωk

∂ur

·Tink

)

, r = 1, . . . ,n (12)

Fr =
p

∑
k=1

(
∂vkc

∂ur

·Fk +
∂ωk

∂ur

·Tk

)

, r = 1, . . . ,n (13)

where p is the number of rigid bodies, ur|
n
r=1 are the

generalized speeds, {
∂vkc

∂ ur
, ∂ωk

∂ur
} are partial linear and an-

gular velocities, {Fink
,Tink

}, and {Fk,Tk} are the inertia

force / torque generated by the accelerated masses and in-

ertias, and resultant force / torque which is equivalent to a

set of contact and distance forces acting on the kth body,

respectively. To have the equations of motion, namely Kane’s

dynamical equations, one just needs to add the generalized

inertia and active forces and equate them to zero,

F∗
r +Fr = 0 , r = 1, . . . ,n (14)

1) Defining the partial velocities: By introducing the

following generalized speeds:

ui1 , q̇i0 , ui2 , q̇i0 + q̇i1 , ui3 , q̇i2 (15)

the angular velocities of the frames, associated to each joint

in the leg with respect to the fixed base frame, are expressed

as:

cω i0 = ui1
czpi ,

cω i1 = ui2
czpi ,

cω i2 = ui2
czpi +ui3

czai

(16)

and the velocities of the mass centers of the arm and forearm

in terms of generalized speeds are computed as below:

cvpic = ui1
l
2

cy
pi

cvaic = ui1 l cy
pi

+ui2
L
2
(czpi ×

cxai)+ui3
L
2

cy
ai

(17)

Finally using (16) and (17), the partial linear and angular

velocities are tabulated as in Table I with respect to the

generalized speeds.
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TABLE I

PARTIAL LINEAR AND ANGULAR VELOCITIES

ui1 ui2 ui3

cvpic
l
2

cy
pi

0 0

cvaic l cy
pi

L
2
(czpi ×

cxai)
L
2

cy
ai

cωi0
czpi 0 0

cωi1 0 czpi 0
cωi2 0 czpi

czai

2) Generalized inertia forces: The generalized inertia

forces of the leg can be obtained in the light of (12) using

the inertia forces (Fink
) and torques (Tink

) of the arm and

forearm. To compute the inertia forces and torques from the

Newton-Euler equations, the acceleration of mass centers are

derived as follows,

capic =
l

2
cẍpi ,

caaic = l cẍpi +
L

2
cẍai (18)

Respectively, since czpi is orthogonal to czai, the angular

velocities and accelerations of the arm and forearm are

resolved as:

cω pi = cxpi ×
cẋpi ,

cα pi = cxpi ×
cẍpi (19)

cωai = cxai ×
cẋai ,

cαai = cxai ×
cẍai (20)

3) Generalized active forces: The generalized active

forces of the leg can be calculated using (13) through the

torques Ti0, Ti1 and Ti2 exerted on the joints, and the

gravitational forces Gpi and Gai acting on the arm and

forearm:

Ti0 = (Γi0 − Imi
q̈i0 −Γi f

−Γi1)
czpi Gpi = −mpi g czb

Ti1 = Γi1
czpi −Γi2

czai Gai = −mai g czb

Ti2 = Γi2
czai

(21)

where Imi
is the motor inertia and Γi f

= fvi
q̇i0 + fci

sign(q̇i0)
is the friction term offering resistance on the actuated joint,

with fvi
viscous and fci

Coulomb friction coefficients. The

mpi, mai and g are the mass of the arm, mass of the forearm

and constant of gravity, respectively. In motion control, the

friction forces on the passive joints are usually negligible,

since they are more frail than those of the active joints. Here

they are ignored, but they could easily be computed via (9)

and added into (21).

4) Inverse dynamic model: Finally, the inverse dynamic

model of each leg of the Quattro robot can be computed

by reassembling all the above equations into (14), which is

only a matter of algebraic manipulation. In the next Section,

it shall be shown that the inverse dynamic model of each leg

can be expressed as a function of its forearm direction:

γi = Hi(
cẍai,

cẋai,
cxai) (22)

where γi = [Γi0,Γi1,Γi2]
T is the required torque vector for

the motion of the leg. Here, ideally, {Γi1,Γi2} should be

identically 0, since they correspond to passive universal joint.

V. VISION IN KINEMATICS AND DYNAMICS

In this section, the minimum variable sets necessary to

derive kinematic and dynamic models of the robot are

explored and shown to be fully computable only from visual

information.

A. Required Variable Set for Kinematics

The inverse differential kinematic models cD inv
e , cMi and

cJ inv
i depend on the following variables:

• y
pi

the perpendicular vectors to the arms.

• xe x-axis of the end-effector frame.

• xai the directions of the forearms.

So, we need to compute cy
pi

= czpi ×
cxpi. Here czpi is

constant and cxpi can be expressed as follows:

cxpi =
1

l

(
cBi1 −

cPi −
−−−−→cAiAi1 −L cxai

)

(23)

where l, L, cPi and
−−−−→cAiAi1 are constant parameters while the

directions of the forearms cxai can be measured by vision.

Then, the only remaining parameter to be provided is cBi1.

To build the last variable cxe = cy
e
× cze where cy

e
=

−−−−→cC4C1
h

and cze = czb, one only needs to know cC4 and cC1. Each

of cCi can also be expressed again in terms of the cBi1 and

some known constant vectors and parameters:

cC4 = cB41 +
H

2
czp4 −dx

cxb +hy
cy

b
(24)

cC1 = cB11 +
H

2
czp1 −dx

cxb −hy
cy

b
(25)

Consequently, provided that the variables cBi1, the attach-

ment points of the legs onto the nacelle, are known, one can

define all the required variable set for the kinematics. The

computation of cBi1 are explained in the next subsection.

B. Estimation of Attachment Points

Recalling the assumption that the attachment point cBi1

of the rod on the travelling plate is lying on the revolution

axis of the leg with radius R, the 2nd constraint in (1) can

be exploited by applying to both edges of the rods in legs 1

and 2, and yields:

cn1
1

T cB11 = −R
cn2

1

T cB11 = −R

cn1
2

T cB21 = −R
cn2

2

T cB21 = −R
(26)

Taking into account the travelling plate parameters, one

can have the following relation:

cB11 = cB21 +
H

2
czp2 +(d +2dx)

cxb −
H

2
czp1 (27)

Replacing cB11 in (26) with (27), the following linear

system can be obtained from the image information:








cn1
1

T

cn2
1

T

cn1
2

T

cn2
2

T








cB21 =









−R− cn1
1

T
( H

2
czp2 +(d +2dx)

cxb −
H
2

czp1)

−R− cn2
1

T
( H

2
czp2 +(d +2dx)

cxb −
H
2

czp1)

−R
−R









(28)

The least-square solution, cB21 , of this 4×3 linear system

is unique provided that 3 of the interpretation planes are

linearly independent. Using (27), we can also arrive at cB11.

After that, a second linear system can be rebuilt to

compute cB31 and cB41 by repeating the same procedure on

legs 3 and 4. We would like to point out that this estimation

is performed in a single image. Note that this result was

already verified in [13] on a real I4R robot, and is adapted

here for the end-effector of the Quattro robot.
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C. Required Variable Set for Dynamics

In addition to the required variable set of kinematics that

was built in the above subsections, the inverse dynamic

model of the robot depends on the following variables:

• y
ai

, zai the y and z axes of the forearm frames.

• ẍpi , ẍai , ẋpi , ẋai accelerations and velocities of the

unit vectors of the arm and forearm directions.

• q̈i0 , q̇i0 angular accelerations and velocities of the arms.

We compute the z and y axes of the forearm frames in the

camera frame, using the forearm directions, as below:
czai = (czpi ×

cxai)/‖
czpi ×

cxai‖ , cy
ai

= czai ×
c xai (29)

The { cẍpi,
cẋpi} can be computed by differentiating (23)

with respect to time, which yields:

cẋpi =
1

l

(
cḂi1 −L cẋai

)
, cẍpi =

1

l

(
cB̈i1 −L cẍai

)
(30)

where {cB̈i1,
cḂi1} are obtained, using (4), as follows:

cḂi1 = cJ
Bi

cζ̇ , cB̈i1 = cJ̇
Bi

cζ̇ + cJ
Bi

cζ̈ (31)

with cJ̇
Bi

=
[

03×3 −εi hωz
cy

e

]
. The velocities {q̇i0 , ẋai}

can be handed in using the differential kinematic relations in

(2), while the accelerations { q̈i0 , ẍai} have to be computed in

two different ways whether the error is defined as a difference

in the Cartesian space (CS) or in the leg orientation space

(LS). In the case of a Cartesian error, the cζ̈ will come from

the control law and accelerations will be computed through:

q̈i0 = cḊ inv
ei

cζ̇ + cD inv
ei

cζ̈ , cẍai = cṀi
cζ̇ + cMi

cζ̈ (32)

On the other hand, in the case of leg orientations error, the
cẍai will be coming from the control signal and this time the

remaining acceleration q̈i0 will be obtained as follows:

cζ̈ = cM†(cẌa −
cṀ cζ̇ ) , q̈i0 = cḊ inv

ei

cζ̇ + cD inv
ei

cζ̈ (33)

where, in turn, cM ∈ ℜ12×4 and cXa ∈ ℜ12×1 are the stacked

matrices of cMi and cxai. To compute (31) - (33), we need

to know the pose velocity. The cζ̇ can be either obtained by

numerical differentiation of the pose or can be computed by

differentiating the constraints in (26), assuming that vision

can also quantify the edge velocities cṅ
j
i , and solving the

linear systems for cḂ11 and cḂ41. To calculate cḂ11, the new

linear system is written as follows:







cn1
1

T

cn2
1

T

cn1
2

T

cn2
2

T








cḂ11 =








−cṅ1
1

T cB11

−cṅ2
1

T cB11

−cṅ1
2

T cB21

−cṅ2
2

T cB21








(34)

while cḂ41 can be computed similarly. Then, the pose veloc-

ity can be expressed as below:

cζ̇ =
[

cḂ41
T

( cy
e
× cẏ

e
) · cze

]T
(35)

where cḂ41 = cĊ4 and cẏ
e
= (cḂ11 −

cḂ41)/h.

Thereby, at this point we substantiate that exploiting only

the vision, it is possible to figure out the whole variable

sets of kinematics and dynamics. Note that this confluence

is made easy, thanks to the vector-based formulation of both

the dynamics and the differential geometry in the image.

VI. RESULTS

The proposed inverse dynamic model (costs about 1100

(×) and 700 (+) operations) was verified with the simplified

model used in [4], which has already proved to be as correct

as the complete dynamic model of the Quattro obtained on

Adams software and which needs approximately 300 (×) and

240 (+). In comparing models, the maximum error rate of

torques is found to be 4.84%, which means the modeling is

accurate enough to be used in control. The direct dynamic

model, used in the simulator, is also derived from [4], which

brings on a certain level of disturbance directly to the control

signal, since it is not the direct inverse of the proposed model.

The trajectory tracking simulations are conducted with a clas-

sical CTC at 500Hz expressed either in the CS or LS (Figs.

5 and 6). An Adept motion with 25 mm altitude and 300 mm

length is chosen for performance evaluations in a pick-and-

place task. The maximum motion velocity and acceleration

are set as 1.34 m/s and 1G, respectively. The simulations

are executed with different noise levels, and results are

compared. We injected either 10 µm and 1% or 100 µm and

10% uncertainty on the geometric and dynamic parameters,

respectively. The sensor feedback measurements are also

corrupted. In Cartesian space CTC, the feedback pose is per-

turbed with {10 µm, 0.5◦}, {50 µm, 1◦} and {100 µm, 2◦},

and in leg orientation space CTC, the feedback signals (leg

orientation unit vectors) are independently deflected with

0.01◦, 0.05◦ and 0.1◦ (degree), respectively. In fact, the

injected noises in two spaces are not tenably comparable,

since they are added at the final stage of the feedback signals,

but defensively to give an intuition, the deflection of 0.1◦ in

a leg orientation drifts the moving platform approximately

1.4mm away. The accuracy and precision of the performed

motion are assessed in terms of mean and standard deviation

of the tracking errors in CS. Figs. 7 and 8 depict the

superimposed trajectories and tracking errors in both spaces

without any noise. The accuracy and precision values are

2769 µm and 2183 µm for CS-CTC, and 137 µm and 102

µm for LS-CTC. Comparing the space (top) and the time

(bottom) trajectories in Fig. 7, one can observe that the errors

in x and z are due to some delay in the tracking but do

not appear as a deviation in space. In Tables II and III, the

accuracy (bold) and precision values are tabulated for the

same motion repeated under various noise levels. From the

results, it seems that sensing the leg orientations is more

Fig. 5. Block diagram for Cartesian space CTC (CS-CTC).

Fig. 6. Block diagram for leg orientation space CTC (LS-CTC).
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Fig. 7. Superimposed trajectories (top) and tracking errors in CS for CS-
CTC. (tracking accuracy 2769 µm, precision 2183 µm)

TABLE II

CARTESIAN SPACE TRACKING ERRORS (µm), FOR CS-CTC.

Sensor (µm, deg)

Noise 10, 0.5◦ 50, 1◦ 100, 2◦

Geo. (µm) 10 3234 3648 4389

Dyn. (%) 1 1828 1647 1717

Geo. (µm) 100 3791 3860 4916
Dyn. (%) 10 2172 1982 1697

TABLE III

CARTESIAN SPACE TRACKING ERRORS (µm), FOR LS-CTC.

Sensor (deg)

Noise 0.01◦ 0.05◦ 0.1◦

Geo. (µm) 10 216 774 1500
Dyn. (%) 1 77 172 287

Geo. (µm) 100 235 805 1539
Dyn. (%) 10 125 133 242

robust to errors since it is closer to the essential variables in

modeling. Hence, it puts the observation of the end-effector

out of being ultimate goal. In addition, the camera is thought

to be placed onto the robot base, looking downwards to the

legs and the end-effector. This field of view is less cluttered

than the space “outside the legs”. Indeed, it may be filled

with the compressed air tubes, cables and the like, but those

should not cover up all the scene and yield negligible partial

occlusions, since the observed rods are long enough and each

forearm has a second redundant rod.

VII. CONCLUSIONS AND REMARKS

A novel vector-based approach for dynamic modeling

and control of a Quattro robot, based on leg orientations,

is introduced and the first promising results of this new

methodology are presented, which encourage us to put it

in practice on a real Quattro robot. Besides, all the required

feedback information is deliberately provided by vision and

the full control of the parallel robot is fulfilled only through

the forearms’ edges and their velocities in the image. In

fact, the edge velocities of a forearm assumed that can

be quantified from an image by vision, whereas they are

numerically differentiated in simulations. So, we put forward

for ourselves another objective to calculate them theoretically

as well. But at first, we should dispose of the problem
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Fig. 8. Superimposed trajectories (top) and tracking errors in CS and LS
( x̃T

ai x̃ai) for LS-CTC. (tracking accuracy 137 µm, precision 102 µm)

of detecting the leg edges in real images at high-speed.

Consequently, once these snags along the way are dispelled,

this work will induce a new way of controlling parallel

mechanisms, since many of them contain slender structures.
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