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Abstract

We determine the asymptotic behaviour of the number of the Eulerian circuits in
undirected simple graphs with large second eigenvalue of the Laplacian matrix (the
algebraic connectivity). We also prove some new properties of the Laplacian matrix.

1. Introduction

Let D be a directed graph with vertex set V D and edge set ED. A walk of length m
on D is a sequence v0, v1, . . . , vm of vertices of D such that (vi−1, vi) ∈ ED for 1 ≤ i ≤ n.
This walk is a circuit if vm = v0 and (vi−1, vi) 6= (vj−1, vj) for 1 ≤ i < j ≤ m. The Eulerian
circuits in D are circuits of length |ED|. Two Eulerian circuits are called equivalent if one is
a cyclic permutation of the other. It is clear that the size of such an equivalence class equals
the common length of the walks in the class. Let Eul(D) denote the number of equivalence
classes of the Eulerian circuits in D.

If G is an undirected graph, we can define the concepts of walk, circuit, the Eulerian circuit
and Eul(G) in the same way. The only clarification needed is that a walk v0, v1, . . . , vm is a
circuit only if {vi−1, vi} 6= {vj−1, vj} for 1 ≤ i < j ≤ m; i.e., edges may be traversed in one
direction only. Also note that an eulerian circuit and its reverse are counted separately for
n > 1 in an undirected graph.

Consider the problem of counting the number of the Eulerian circuits in an undirected
graph. As the appearance of Euler’s name suggests, this problem is one of the oldest in graph
theory. In his 1736 paper on the famous Königsberg Bridges Problem, see [4], Euler proved
that Eul(G) = 0 if there is a vertex v ∈ V G with odd degree. English translation of this
paper can be found in [2].

Even in the case of G = Kn the problem of counting Eul(G) has a long history. The
value of Eul(K7) was calculated for the first time in [9] as the number of legal circular
arrangements of the 21 dominoes (doubles excluded) over the set {1, . . . , 7}. An asymptotic
formula for Eul(Kn) as n → ∞ with n odd is given in [8]. (For more detailed history for the
case of G = Kn see, for example, [8] and references therein.)

It was shown in [11] that for any graph G the number of the Eulerian circuits can
be written as the solution of a triangular set of linear equations. However, the number of
equations is extremely large for the dense graphs.

The problem of counting the number of the Eulerian circuits in an undirected graph is
complete for the class #P , see [3]. Thus this problem is difficult in terms of complexity
theory.
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In the present work we continue studies of [8]. We determine asymptotic behaviour of the
number of the Eulerian circuits in simple graphs with all vertices of even degree as n → ∞,
where n is the number of the vertices. The asymptotic formula for Eul(Kn) and our main
result are presented and discussed in Section 2. In Section 3 we prove some basic properties of
the Laplacian matrix, which may be of independent interest. In Section 4 we express Eul(G)
in terms of an n-dimensional integral using Cauchy’s formula. The value of the integral is
estimated in Sections 5 and 6, using some Lemmas proved in Section 8. We prove the main
result in Section 7.

2. Asymptotic estimates of the number of the Eulerian circuits

In what follows we suppose that undirected graph G has no loops and multiple edges, i.e.

G is a connected simple graph. (2.1)

We also assume that

all vertices of G have even degrees. (2.2)

Define the n× n matrix Q by

Qjk =







−1, (vj , vk) ∈ EG,
dj, j = k,
0, otherwise

, (2.3)

where n = |V G| and dj is the degree of the vertex vj ∈ V G. The matrix Q = Q(G) is
called the Laplacian matrix of the graph G. The eigenvalues λ0 ≤ λ1 ≤ . . . ≤ λn−1 of the
matrix Q are always non-negative real numbers and λ0 = 0. The eigenvalue λ1 is called the
algebraic connectivity of the graph G. (For more information about the spectral properties
of the Laplace matrix see, for example, [5] and [7].)

According to the Kirchhoff’s Matrix-Tree-Theorem, see [6], we have that

t(G) =
1

n
λ1λ2 · · ·λn−1, (2.4)

where t(G) denotes the number of spanning trees of the graph G.
Let p ≥ 1 be a real number and x ∈ R

n. We use notation

‖x‖p =
(

n
∑

j=1

|xj |p
)1/p

. (2.5)

For p = ∞ we have the maximum norm

‖x‖∞ = max
j

|xj |. (2.6)

The matrix norm corresponding to the p-norm for vectors is

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

. (2.7)
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We denote by ‖A‖HS the Hilbert–Schmidt norm of the matrix A.

‖A‖HS =

√

√

√

√

n
∑

j=1

n
∑

k=1

|Ajk|2 (2.8)

If f is bounded both above and below by g asymptotically, we use the notation

f(n) = Θk1,k2 (g(n)) , (2.9)

which implies as n → ∞, eventually

k1|g(n)| ≤ |f(n)| ≤ k2|g(n)|. (2.10)

When functions f and g depend not only on n, but also on other parameters ξ, we use
notation (2.9) meaning that condition (2.10) holds uniformly for all possible values of ξ.

The main result of the present work is the following theorem.

Theorem 2.1. Let matrix Q be the Laplacian matrix of graph G with n vertices. Let
conditions (2.1), (2.2) hold and the algebraic connectivity λ1 ≥ σn for some σ > 0. Then as
n → ∞

Eul(G) = Θk1,k2

(

2E−n−1
2 π−n−1

2

√

t(G)

n
∏

j=1

(

dj
2

− 1

)

!

)

, (2.11)

where E = |EG|, dj is the degree of the vertex vj, t(G) denotes the number of spanning trees
of the graph G and constants k1, k2 > 0 depend only on σ.

Remark 2.1. We can replace condition λ1 ≥ σn for some σ > 0 in Theorem 2.1 by the
condition that for some σ > 1/2 the degree of each vertex of G at least σn.

For the complete graph Kn one can show that λ1 = n and t(Kn) = nn−2. The following
theorem is the variation of Theorem 4 of [8].

Theorem 2.2. As n → ∞ with n odd

Eul(Kn) = 2
(n−1)2

2 π−n−1
2 n

n−2
2

((

n− 1

2
− 1

)

!

)n
(

1 +O(n−1/2+ǫ)
)

(2.12)

for any ǫ > 0.

In fact, Theorem 2.2 is stronger than Theorem 2.1 in the case of G = Kn. However, the
asymptotic estimate of Theorem 2.1 holds for considerably broader class of graphs.

3. Some basic properties of the Laplacian matrix

Consider the graph G such that conditions (2.1), (2.2) hold. The Laplacian matrix Q has the
eigenvector [1, 1, . . . , 1]T , corresponding to the eigenvalue λ0 = 0. We use notation Q̂ = Q+J ,
where J denotes the matrix with every entry 1. Note that Q and Q̂ have the same set of
eigenvectors and eigenvalues, except for the eigenvalue corresponding to the eigenvector
[1, 1, . . . , 1]T , which equals 0 for Q and n for Q̂.
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Since the spectral norm is bounded above by any matrix norm we get that

λn−1 = ||Q||2 ≤ ||Q̂||2 ≤ ||Q̂||1 = max
j

n
∑

k=1

|Q̂jk| = n. (3.1)

We denote by Gr the graph which arises from G by removing vertices v1, v2, . . . , vr and
all adjacent edges.

Lemma 3.1. Let conditions (2.1), (2.2) hold for graph G with n vertices. Then

λ1(G) ≤ n

n− 1
min
j

dj, (3.2)

λ1(G) ≥ 2min
j

dj − n + 2, (3.3)

λ1(Gr) ≥ λ1(G)− r, (3.4)

where λ1(G) is the algebraic connectivity of G and dj is the degree of the vertex vj ∈ V G.

The proof of Lemma 3.1 can be found in [5].

Lemma 3.2. Let the assumptions of Theorem 2.1 hold. Then there is a constant c∞ > 0
depending only on σ such that

||Q̂−1||1 = ||Q̂−1||∞ ≤ c∞
n
. (3.5)

Proof of Lemma 3.2. We consider x ∈ R
n such that ||x||∞ = 1. For simplicity, we assume

that |x1| = 1. We denote by Jσ the set of the indices j such that |xj | ≥ σ/8.
In the case of |Jσ| ≥ σn/4 we have that

||x||2 ≥
√

σ2

64
σn/4. (3.6)

Since the algebraic connectivity λ1 ≥ σn, we get that

√

n||Q̂x||2∞ ≥ ||Q̂x||2 ≥ λ1||x||2 ≥ σn||x||2 ≥ σn

√

σ3n

256
(3.7)

In the case of |Jσ| ≤ σn/4 we have that

||Q̂x||∞ ≥ (d1 + 1)|x1| −
n
∑

j=2

|xj | ≥

≥ d1 + 1−
∑

j∈Jσ

|xj | −
∑

j /∈Jσ

|xj | ≥

≥ d1 + 1− σn/4− nσ/8.

(3.8)

Using again λ1 ≥ σn and (3.2) we get that

d1 ≥ min
j

dj ≥
n− 1

n
σn ≥ σn/2. (3.9)
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Combining (3.7), (3.8) and (3.9) we obtain that

||Q̂x||∞ ≥ c−1
∞ n||x||∞, (3.10)

for some constant c∞ > 0 depending only on σ. �

The following lemmas will be applied to estimate the determinant of a matrix close to
the identity matrix I.

Lemma 3.3. Let X be an n× n matrix such that ‖X‖2 < 1. Then for fixed m ≥ 2

det(I +X) = exp

(

m−1
∑

r=1

(−1)r+1

r
tr(Xr) + Em(X)

)

, (3.11)

where tr is the trace function and

|Em(X)| ≤ n

m

‖X‖m2
1− ‖X‖2

. (3.12)

Lemma 3.3 was also formulated and proved in [8].

Lemma 3.4. Let the assumptions of Lemma 3.3 hold and all eigenvalues of X are non-
negative real numbers. Then

det(I −X) ≥ exp

(

− tr(X)

1− ‖X‖2

)

. (3.13)

Proof of Lemma 3.4. Using Lemma 3.3 we get that

det(I −X) = exp

(

∞
∑

r=1

(−1)r+1

r
(−1)rtr(Xr)

)

(3.14)

Since all eigenvalues of X are non-negative real numbers

0 ≤ tr(Xr) ≤ tr(X) ‖X‖r−1
2 . (3.15)

Hence

det(I −X) ≥ exp

(

−
∞
∑

r=1

tr(X)

r
‖X‖r−1

2

)

≥ exp

(

− tr(X)

1− ‖X‖2

)

. (3.16)

�

Lemma 3.5. Let the assumptions of Theorem 2.1 hold. Then there is a constant c1 > 0
depending only on σ such that

| detM11| ≤ c1
det Q̂

n
, (3.17)

where M11 denotes the (n − 1)× (n − 1) matrix that results from deleting the first row and
the first column of Q̂ = Q+ J .
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Proof of Lemma 3.5. Since the algebraic connectivity λ1 ≥ σn, using (3.2), we get the
following estimate for the degree dk of the vertex vk ∈ V G.

dk ≥ min
j

dj ≥
n− 1

n
σn ≥ σn/2. (3.18)

Consider the n× n matrix X such that

Xjk =

{

1
d1+1

, if (v1, vj) ∈ EG and (v1, vk) ∈ EG,

0, otherwise.
(3.19)

After performing one step of the Gaussian elimination for Q̂+X, we obtain that

det(Q̂+X) = (d1 + 1) detM11, (3.20)

Since the spectral norm is bounded above by any matrix norm, we get that

||X||2 ≤ ||X||1 = 1. (3.21)

Since λ1 ≥ σn, taking into account (3.1), we obtain that

||XQ̂−1||2 ≤ ||X||2||Q̂−1||2 ≤
1

λ1

≤ 1

σn
(3.22)

Combining Lemma 3.3 with (3.22), we get that as n → ∞

det
(

I +XQ̂−1
)

= exp
(

tr
(

XQ̂−1
)

+ E2

(

XQ̂−1
))

≤ exp

(

n
1

σn
+O(n−1)

)

. (3.23)

From (3.20) and (3.23) we have that as n → ∞

(d1 + 1) detM11 = det
(

I +XQ̂−1
)

det Q̂ ≤ det Q̂ exp
(

1/σ +O(n−1)
)

. (3.24)

Since Q̂ is positive definite, using (3.18) in (3.24), we obtain (3.17). �

Lemma 3.6. Let the assumptions of Theorem 2.1 hold. Let Gr be the graph which arises
from G by removing vertices v1, v2, . . . , vr and all adjacent edges. Then there is a constant
c2 > 0 depending only on σ such that for any ǫ ∈ (0, 1) and r ≤ nǫ

det Q̂(Gr) ≥
det Q̂(G)

(c2n)
r . (3.25)

Proof of Lemma 3.6. We give first a proof for the case of r = 1. For our purpose it is
convenient to use notations Q̂ = Q̂(G) and Q̂1 = Q̂(G1). Note that the matrix M11 that
results from deleting the first row and the first column of Q̂ coincides with the matrix Q̂1

with the exception of the diagonal elements. In a similar way as (3.20) we get that

det(Q̂+ Ω +X) = (d1 + 1) det Q̂1, (3.26)

where X is such that

Xjk =

{

1
d1+1

, if (v1, vj) ∈ EG and (v1, vk) ∈ EG,

0, otherwise.
(3.27)
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and Ω is such diagonal matrix that

Ωjj =

{

1, if (v1, vj) ∈ EG,
0, otherwise.

(3.28)

Taking into account (3.21), we have that

||Ω+X||2 ≤ ||Ω||2 + ||X||2 ≤ 2. (3.29)

In a similar way as (3.22) we get that

||(Ω +X)Q̂−1||2 ≤ ||Ω+X||2||Q̂−1||2 ≤ 2
1

λ1
≤ 2

σn
(3.30)

Combining Lemma 3.3 with (3.30), we get that as n → ∞

det
(

I + (Ω +X)Q̂−1
)

= exp
(

tr
(

(Ω +X)Q̂−1
)

+ E2

(

(Ω +X)Q̂−1
))

≥

≥ exp

(

−n
2

σn
+O(n−1)

)

.
(3.31)

From (3.26) and (3.31) we have that as n → ∞

(d1 + 1) det Q̂1 = det
(

I + (Ω +X)Q̂−1
)

det Q̂ ≥ det Q̂ exp
(

−2/σ +O(n−1)
)

. (3.32)

Since d1 + 1 ≤ n we get (3.25) for the case of r = 1.
Taking into account (3.4) and using r times (3.32) we get (3.25) for the general case. �

According to (2.4), we have that

t(G) =
1

n
λ1λ2 · · ·λn−1 =

det Q̂

n2
, (3.33)

where t(G) denotes the number of spanning trees of the graph G.

Lemma 3.7. Let the assumptions of Theorem 2.1 hold. Then for some c3 > 0 depending
only on σ the number of spanning trees of the graph G with maximum degree greater than d
is less then cn3 det Q̂/d! for all d ≥ 0.

Proof of Lemma 3.7. According to Lemma 5 of [8] the number of labelled trees on n vertices
with first vertex having degree greater than d is less than 2nn−2/d! for all d ≥ 0. We have
that

det Q̂ ≥ λn
1 ≥ (σn)n. (3.34)

To complete proof it remains to note that the number of spanning trees with maximum degree
greater than d in G does not exceed the number of such spanning trees in the complete graph
with n vertices. �

Consider a spanning tree T of the graph G. We denote by GT the graph which arises
from G by removing all edges of the tree T .
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Lemma 3.8. Let the assumptions of Theorem 2.1 hold. Let T be the spanning tree of G with
the maximum degree at most σn/4. Then the algebraic connectivity λ1(GT ) ≥ σn/2 and

det Q̂(GT ) ≥ c4 det Q̂(G) (3.35)

for some c4 > 0 depending only on σ.

Proof of Lemma 3.8. Note that

Q̂(GT ) = Q̂(G)−Q(T ). (3.36)

Since the spectral norm is bounded above by any matrix norm and the maximum degree of
vertex of T at most σn/4 we get that

||Q(T )||2 ≤ ||Q(T )||1 ≤ σn/2. (3.37)

Therefore, since the algebraic connectivity λ1(G) ≥ σn, we have that

λ1(GT ) ≥ λ1(G)− ||Q(T )||2 ≥ σn/2 (3.38)

and
det Q̂(GT ) = det Q̂(G) det(I −X), (3.39)

where X = Q(T )Q̂(G)−1. Note that Q̂(G) is the matrix of positive definite quadratic form
and Q(T ) is the matrix of quadratic form with non-negative eigenvalues. Considering the
basis in which both matrices are diagonal, we have that

tr(Q(T )Q̂(G)−1) ≤ tr(Q(T ))||Q̂(G)−1||2 (3.40)

and
all eigenvalues of Q(T )Q̂(G)−1 are non-negative. (3.41)

Using again the fact that the algebraic connectivity λ1(G) ≥ σn and (3.37) we get that

||X||2 ≤ ||Q(T )||2||Q̂(G)−1||2 ≤
σn

2

1

σn
=

1

2
. (3.42)

Since T is the spanning tree tr(Q(T )) = 2(n− 1). Using (3.40), we get that

tr(X) ≤ tr(Q(T ))||Q̂(G)−1||2 ≤ 2n
1

σn
=

2

σ
. (3.43)

To complete the proof it remains to combine Lemma 3.4 with (3.39), (3.42) and (3.43). �

4. The result expressed as an integral

The reasoning below is similar to the arguments of Section 2 of [8]
An Eulerian orientation of G is an orientation of its edges with the property that for

every vertex both the in-degree and the out-degree are equal. Any Eulerian circuit induces
an Eulerian orientation by orienting each edge in accordance with its direction of traversal.
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A directed tree with root v is a connected directed graph T such that v ∈ V T has out-
degree zero, and each other vertex has out-degree one. Thus, T is a tree which has each edge
oriented towards v.

Let D be a directed graph with n vertices, and let v ∈ V D. A directed spanning tree of
D with root v is a spanning subgraph of D which is a directed tree with root v.

The following famous theorem, sometimes called the BEST Theorem, is due to de Bruijn,
van Aardenne-Ehrenfest, Smith, and Tutte [1, 10].

Theorem 4.1. Let D be a directed graph with vertices v1, v2, . . . , vn. Suppose that there are
numbers d1, d2, . . . , dn such that, for every vertex vr, both the in-degree and the out-degree of
vr are equal to dr. Let tr = tr(D) be the number of directed spanning trees of D rooted at vr.
Then tr is independent of i, and

Eul(D) = tr

n
∏

j=1

(dj − 1)!. (4.1)

Consider the undirected graph G with n vertices such that conditions (2.1), (2.2) hold.
Note that for every spanning tree T of the graph G and any vertex vr ∈ V G there is only
one orientation of the edges of T such that we obtain a directed tree with root vr. We denote

by Tr the set of directed trees with root vr obtained in such a way. For T ∈
n
⋃

r=1

Tr denote by

EO(T ) the number of the Eulerian orientations of G that the corresponding graphs contain
T .

From Theorem 4.1 in the case of a graph D corresponding to the Eulerian orientation of
the graph G we find that

Eul(D) = tr(D)

n
∏

j=1

(

dj
2

− 1

)

!, (4.2)

where dj is the degree of the vertex vj ∈ V G. Let denote by EO the set of all graphs
corresponding to the Eulerian orientations of the graph G. Grouping the Eulerian circuits
according to the induced orientations, we obtain that

Eul(G) =
∑

D∈EO

Eul(D) =

n
∏

j=1

(

dj
2

− 1

)

!
∑

D∈EO

tr(D) (4.3)

for any fixed natural number r ≤ n.
Regrouping the terms of the final summation according to the directed subtrees rooted

at vr, we find that

Eul(G) =
n
∏

j=1

(

dj
2

− 1

)

!
∑

T∈Tr

EO(T ). (4.4)

For n ≥ 1 and R ≥ 0 we use notation Un(R) = {(x1, x2, . . . , xn) | |xi| < R for all i}. The
value of EO(T ) is the constant term in

∏

(vj ,vk)∈EG

(xj
−1xk + xk

−1xj)
∏

(vj ,vk)∈ET

x−1
k xj

(xj
−1xk + xk

−1xj)
, (4.5)
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which we can extract via Cauchy’s Theorem using the unit circle as a contour for each
variable. Making the substitution xj = eiθj for each j, we find that

Eul(G) =
n
∏

j=1

(dj
2

− 1
)

! 2|EG|−n+1π−nS, (4.6)

where

S =

∫

Un(π/2)

∏

(vj ,vk)∈EG

cos∆jk

∑

T∈Tr

∏

(vj ,vk)∈ET

(1 + i tan∆jk) dθ, (4.7)

having put ∆jk = θj − θk and using the fact that the integrand is unchanged by the
substitutions θj → θj + π if condition (2.2) holds.

We approach the integral by first estimating it in the region that would turn out to be
the asymptotically significant one. Then we bound the integral over the remaining regions
and show that it is vanishingly small in comparison with the significant part.

5. The dominant part of the integral

In what follows, we fix some small constant ǫ > 0. Define

V0 = {θ ∈ Un(π/2) : |θj − θ̄| ≤ n−1/2+ǫ where θ̄ =
θ1 + . . .+ θn

n
}, (5.1)

and let S0 denote the contribution to S of θ ∈ V0. Since the integrand is invariant under
uniform translation of all the θj ’s mod π, we can fix θ̄ = 0 and multiply it by the ratio of its
range π to the length n−1/2 of the vector 1

n
[1, 1, . . . , 1]T . Thus we have that

S0 = πn1/2

∫

L∩V0

∏

(vj ,vk)∈EG

cos∆jk

∑

T∈Tr

∏

(vj ,vk)∈ET

(1 + i tan∆jk) dL, (5.2)

where L denotes the orthogonal complement to the vector [1, 1, . . . , 1]T .

The sum over Tr in the integrand of (5.2) can be expressed as a determinant, according
to the following theorem of [12].

Theorem 5.1. Let wjk (1 ≤ j, k ≤ n, j 6= k) be arbitrary. Define the n× n matrix A by

Ajk =

{

−wjk, if j 6= k,
∑

r 6=j wjr, if k = j
, (5.3)

the sum being over 1 ≤ r ≤ n with r 6= j. For any r with 1 ≤ r ≤ n, let Mr denote the
principal minor of A formed by removing row r and column r. Then

detMr =
∑

T

∏

(vj ,vk)∈ET

wjk, (5.4)

where the sum is over all directed trees T with V T = {v1, v2, . . . , vn} and root vr.
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Lemma 5.1. Let the assumptions of Theorem 2.1 hold. Let Q̂ = Q + J , where J denotes
the matrix with every entry 1. Then for θ ∈ V0 as n → ∞

n
∑

r=1

∑

T∈Tr

∏

(vj ,vk)∈ET

(1 + i tan∆jk) =
eiθ

TQα+tr(ΛQ̂−1)2

n
det Q̂

(

1 +O(n−1/2+3ǫ)
)

, (5.5)

where α denotes the vector composed of the diagonal elements of the matrix Q̂−1, Λ denotes
the diagonal matrix whose diagonal elements are equal to the components of the vector Qθ.

Proof of Lemma 5.1. Define the n× n matrix B by

Bjk =











− tan∆jk, for (vj, vk) ∈ EG,
∑

l:(vj ,vl)∈EG

tan∆jl, for k = j,

0 otherwise .

(5.6)

Using Theorem 5.1 with the matrix A = Q + iB, we get that

n
∑

r=1

∑

T∈Tr

∏

(vj ,vk)∈ET

(1 + i tan∆jk) =

n
∑

r=1

Mr, (5.7)

where Mr denotes the principal minor of A formed by removing row r and column r. Since
the vector [1, 1, . . . , 1]T is the common eigenvector of the matrices Q and B, corresponding
to the eigenvalue 0, we find that

n
∑

r=1

Mr =
det(Q̂+ iB)

n
. (5.8)

Note that for θ ∈ V0

∆jk = (θj − θ̄)− (θk − θ̄) ≤ 2n−1/2+ǫ. (5.9)

Since the spectral norm is bounded above by any matrix norm we get that

||B||2 ≤ ||B||1 = max
j

n
∑

k=1

|Bjk| = O(n1/2+ǫ). (5.10)

Let Φ = BQ̂−1. Since the algebraic connectivity λ1 ≥ σn, we get that

||Φ||2 ≤ ||B||2||Q̂−1||2 ≤
1

λ1
||B||2 = O(n−1/2+ǫ). (5.11)

Using Lemma (3.3) with the matrix iΦ, we find that as n → ∞

det(I + iΦ) = exp

(

tr(iΦ) +
tr(Φ2)

2
+O(n−1/2+3ǫ)

)

. (5.12)

Let
B = Bskew +Bdiag, (5.13)

where Bskew is the skew-symmetric matrix and Bdiag is the diagonal matrix. Since Q̂ is the
symmetric matrix

tr(BskewQ̂
−1) = 0. (5.14)
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Using (5.9), note that as n → ∞

||Bdiag − Λ||2 = O(n−1/2+3ǫ), (5.15)

where Λ denotes the diagonal matrix whose diagonal elements are equal to the components
of the vector Qθ. Since the algebraic connectivity λ1 ≥ σn, we get that as n → ∞

∣

∣

∣
tr
(

(Bdiag − Λ)Q̂−1
)∣

∣

∣
≤ n||Bdiag − Λ||2||Q̂−1||2 = O(n−1/2+3ǫ). (5.16)

Using (5.14) and (5.16), we obtain that as n → ∞

tr(Φ) = tr(BdiagQ̂
−1) = tr(ΛQ̂−1) +O(n−1/2+3ǫ) = θTQα +O(n−1/2+3ǫ), (5.17)

where α denotes the vector composed of the diagonal elements of the matrix Q̂−1.
Using the property of the trace function tr(XY ) = tr(Y X), we have that

tr
(

Φ2
)

= tr
(

(BskewQ̂
−1)2

)

+ tr
(

(BdiagQ̂
−1)2

)

+ 2 tr
(

BskewQ̂
−1BdiagQ̂

−1
)

. (5.18)

Since Bskew is the skew-symmetric matrix and Q̂−1BdiagQ̂
−1 is the symmetric matrix

tr
(

BskewQ̂
−1BdiagQ̂

−1
)

= 0. (5.19)

One can show that
tr
(

X2
)

≤ ||X||2HS,

||XY ||HS ≤ ||X||HS||Y ||2.
(5.20)

Therefore we get that
∣

∣

∣
tr
(

(BskewQ̂
−1)2

)∣

∣

∣
≤ ||BskewQ̂

−1||2HS. (5.21)

Since the algebraic connectivity λ1 ≥ σn, using (5.9), we obtain that as n → ∞

||BskewQ̂
−1||HS ≤ ||Q̂−1||2||Bskew||HS ≤ 1

λ1

||Bskew||HS = O(n−1/2+ǫ). (5.22)

Using (5.9) and (5.15), we get that

∣

∣

∣
tr
(

(Bdiag − Λ)Q̂−1BdiagQ̂
−1
)∣

∣

∣
≤ n

1

λ2
1

||(Bdiag − Λ)||2||Bdiag||2 = O(n−1+4ǫ) (5.23)

and
∣

∣

∣
tr
(

(Bdiag − Λ)Q̂−1(Bdiag − Λ)Q̂−1
)∣

∣

∣
≤ n

1

λ2
1

||(Bdiag − Λ)||22 = O(n−2+6ǫ). (5.24)

Thus
tr
(

(BdiagQ̂
−1)2

)

= tr
(

(ΛQ̂−1)2
)

+O(n−1+4ǫ). (5.25)

Combining (5.18), (5.19), (5.21), (5.22) and (5.25), we obtain that

tr
(

Φ2
)

= tr
(

(ΛQ̂−1)2
)

+O(n−1+4ǫ). (5.26)
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Using (5.17) and (5.26) in (5.12), we get that

det(I + iΦ) = exp



iθTQα+
tr
(

(ΛQ̂−1)2
)

2
+O(n−1/2+3ǫ)



 . (5.27)

Combining (5.7), (5.8) and (5.27), we obtain (5.5). �

We denote by P (θ) the orthogonal projection onto the space L.

Lemma 5.2. Let the assumptions of Theorem 2.1 hold. Let Q̂ = Q+J , where J denotes the
matrix with every entry 1. For positive constants a, b, c, d1, d2 let sequence of vectors {αn}
and sequence of differentiable functions {Rn(θ)} be such that

||αn||∞ ≤ c/n, (5.28)

|Rn(θ)| ≤ d1
θT Q̂θ

n
, (5.29)

Rn(θ) = Rn(P (θ)) (5.30)

and for θ ∈ Un(
4
σ
n−1/2+ǫ)

∥

∥

∥

∥

∂Rn(θ)

∂θ

∥

∥

∥

∥

∞

≤ d2 n
−1/2+ǫ. (5.31)

For n ≥ 2 define

Jn =

∫

L∩V0

exp



iθTQα
n
− a

∑

(vj ,vk)∈EG

∆2
ij − b

∑

(vj ,vk)∈EG

∆4
jk +Rn(θ)



 dL. (5.32)

Then as n → ∞
Jn = Θk1,k2

(

π
n−1
2 a−

n−1
2 n1/2

/

√

det Q̂

)

, (5.33)

where constants k1, k2 > 0 depend only on a, b, c, d1, d2 and σ.

Lemma 5.2 is proved in Section 8.

Lemma 5.3. Let the assumptions of Theorem 2.1 hold. Then as n → ∞

S0 = Θk1,k2

(

2
n−1
2 π

n+1
2 n−1

√

det Q̂

)

, (5.34)

where constants k1, k2 > 0 depend only on σ.

Proof of Lemma 5.3. Using formula (5.2) with r = 1, 2 . . . , n and summing, we obtain that

nS0 =

n
∑

r=1

πn1/2

∫

L∩V0

∏

(vj ,vk)∈EG

cos∆jk

∑

T∈Tr

∏

(vj ,vk)∈ET

(1 + i tan∆jk) dL =

= πn1/2

∫

L∩V0

∏

(vj ,vk)∈EG

cos∆jk

n
∑

r=1

∑

T∈Tr

∏

(vj ,vk)∈ET

(1 + i tan∆jk) dL.

(5.35)
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By Taylor’s theorem we have that for θ ∈ V0

∏

(vj ,vk)∈EG

cos∆jk = exp



−1

2

∑

(vj ,vk)∈EG

∆2
ij −

1

12

∑

(vj ,vk)∈EG

∆4
ij +O(n−1+6ǫ)



 . (5.36)

Combining (5.35) with (5.36) and Lemma 5.1, we obtain that as n → ∞

S0 ∼ π
det Q̂

n3/2

∫

L∩V0

exp



iθTQα− 1

2

∑

(vj ,vk)∈EG

∆2
ij −

1

12

∑

(vj ,vk)∈EG

∆4
jk +R(θ)



 dL, (5.37)

where α denotes the vector composed of the diagonal elements of the matrix Q̂−1 and

R(θ) = tr(ΛQ̂−1)2, (5.38)

where Λ is the diagonal matrix whose diagonal elements are equal to the components of the
vector Qθ. Since vector [1, 1 . . . , 1]T is the eigenvector of Q, corresponding to eigenvalue 0,
we have that

Qθ = QP (θ). (5.39)

Thus

R(θ) = R(P (θ)). (5.40)

Note that Lemma 3.5 implies as n → ∞

||α||∞ ≤ c1/n, (5.41)

where c1 = c1(σ) > 0. Since the algebraic connectivity λ1 ≥ σn, using (5.20), we get that

|R(θ)| ≤ ||ΛQ̂−1||2HS ≤ ||Λ||2HS||Q̂−1||22 =
= ||Qθ||22 ||Q̂−1||22 ≤ ||Q||22 ||Q̂−1||22 ||θ||22 ≤

≤ λ2
n−1

1

λ2
1

||θ||22 ≤ n2 1

λ2
1

θT Q̂θ

λ1
≤ 1

σ3

θT Q̂θ

n
.

(5.42)

Note that for θ ∈ Un(
4
σ
n−1/2+ǫ) and for some 1 ≤ k ≤ n

||Λ||2 ≤
n
∑

j=1

|∆jk| = O
(

n1/2+ǫ
)

. (5.43)

For 1 ≤ k ≤ n we denote by (Q̂−1)k the k-th column of the matrix Q̂−1. Using again λ1 ≥ σn,
we get that

1 = ||Q̂(Q̂−1)k||2 ≥ λ1||(Q̂−1)k||2 ≥ σn||(Q̂−1)k||2. (5.44)

Note that

∂R

∂θk
= 2tr(

∂Λ

∂θk
Q̂−1ΛQ̂−1) = 2dk(Q̂

−1ΛQ̂−1)kk + 2tr(Λ̃Q̂−1ΛQ̂−1), (5.45)
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where (Q̂−1ΛQ̂−1)kk denotes (k, k)-th element of the matrix Q̂−1ΛQ̂−1 and the matrix Λ̃ is
such that for any 1 ≤ j ≤ n the diagonal element |Λjj| ≤ 1 . Since the algebraic connectivity
λ1 ≥ σn, using (5.43) (5.44), we get that as n → ∞

|tr(Λ̃Q̂−1ΛQ̂−1)| ≤ n ||Λ̃Q̂−1ΛQ̂−1||2 ≤ n ||Λ̃||2 ||Λ||2
1

λ2
1

= O(n−1/2+ǫ) (5.46)

and
2dk(Q̂

−1ΛQ̂−1)kk = 2dkΛkk||(Q̂−1)k||22 = O(n−1/2+ǫ). (5.47)

Thus for some d > 0, depending only on σ
∥

∥

∥

∥

∂Rn(θ)

∂θ

∥

∥

∥

∥

∞

≤ d n−1/2+ǫ. (5.48)

Combining (5.37), (5.40), (5.41), (5.42), (5.48) and using Lemma 5.2 we obtain (5.34). �

6. The insignificant parts of the integral

In this section we prove that S0 contributes almost all of S, even though it involves only a
tiny part of the region of integration, compare with Section 4 of [8]. We continue to use the
same value of ǫ as in the previous section.

Let assumptions of Theorem 2.1 hold. Define E ′T = {(vj , vk), (vk, vj) | (vj, vk) ∈ ET}.
We express the integrand of (4.7) as

F (θ) =
∑

T∈Tr

∏

jk∈EG

fjk(T, θ), (6.1)

where

fjk(T, θ) =







cos∆jk(1 + i tan∆jk), (vj , vk) ∈ ET,
cos∆jk(1− i tan∆jk), (vk, vj) ∈ ET,
cos∆jk, otherwise.

(6.2)

Note that |fjk(T, θ)| ≤ 1 for all values of the parameters. One can show that

| cos(x)| ≤ exp(−1

2
x2) for |x| ≤ 9

16
π. (6.3)

Divide the interval [−1
2
π, 1

2
π] mod π into 32 equal intervals H0, . . . , H31 such that H0 =

[− 1
64
π, 1

64
π]. For each j, define the region Wj ⊆ Un(π/2) as the set of points having at least

1
32
n coordinates in Hj. Clearly, the Wj’s cover Un(π/2) and also each Wj can be mapped to

W0 by a uniform translation of the θj mod π. This mapping preserves the integrand of (4.7)
and also maps V0 to itself, so we have that

∫

Un(π/2)−V0

|F (θ)|dθ ≤ 32Z, (6.4)

where

Z =

∫

W0−V0

|F (θ)|dθ. (6.5)
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We proceed by defining integrals S1, . . . , S4 in such a way that Z is obviously bounded
by their sum. We then show that Sj = o(S0) for j = 1, 2, 3, 4 separately. Write

F (θ) = Fa(θ) + Fb(θ), (6.6)

where Fa(θ) and Fb(θ) are defined by restricting the sum to trees with maximum degree
greater than σn/4 and no more than σn/4, respectively. Also define regions V1 and V2 as
follows.

V1 = {θ ∈ W0 | |θj | ≥
1

32
π for fewer than nǫ values of j},

V2 = {θ ∈ V1 | |θj | ≥
1

16
π for at least one value of j}.

(6.7)

Then our four integrals can be defined as

S1 =

∫

W0−V1

|F (θ)|dθ,

S2 =

∫

V1

|Fa(θ)|dθ,

S3 =

∫

V2

|Fb(θ)|dθ,

S4 =

∫

V1−V2−V0

|Fb(θ)|dθ.

(6.8)

We begin with S1. If |θj | ≤ 1
64
π and |θk| ≥ 1

32
π or vice versa, but (vj , vk) /∈ E ′T , we have

that |fjk(T, θ)| ≤ cos( 1
64
π). Since this includes more than 1

32
n1+ǫ − n pairs (j, k), using (3.1)

and (3.33), we get that as n → ∞

S1 ≤ t(G)(2π)n
(

cos
π

64

)n1+ǫ/32−n

= O
(

exp(−cn1+ǫ)
)

2
n−1
2 π

n+1
2 n−1

√

det Q̂ (6.9)

for some constant c > 0 depending only on σ.
To bound S2, we first note from Lemma 3.7 that the number of trees with maximum de-

gree greater than σn/4 is less than cn3 det Q̂/(σn/4)!. Using (6.3), we see that

|fjk(T, θ)| ≤ exp(−1

2
∆2

jk) (6.10)

except for at most n2ǫ pairs (j, k) with |∆jk| ≥ 1
16
π and fewer than n pairs in E ′T . In those

excluded cases the value exp(−1
2
∆2

jk) may be high by a factor exp(1
2
π2). Hence, we have that

S2 ≤
cn3 det Q̂

(σn/4)!
exp

(

1

2
π2(n+ n2ǫ)

)
∫

Un(π/2)

exp



−1

2

∑

(vj ,vk)∈EG

∆2
ij



 dθ. (6.11)

Lemma 6.1. Let the assumptions of Theorem 2.1 hold. Then

∫

Un(π/2)

exp



−1

2

∑

(vj ,vk)∈EG

∆2
ij



 dθ ≤ 2
n−1
2 π

n+1
2 n

√

det Q̂

. (6.12)
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Lemma 6.1 is proved in Section 8. Combining (6.11) and (6.12), we obtain that as n → ∞

S2 = O(n−cn) 2
n−1
2 π

n+1
2 n−1

√

det Q̂ (6.13)

for some constant c > 0 depending only on σ.
We denote by GT the graph which arises from G by removing all edges of the tree T .

Let GT,θ be the graph resulting from from GT by removing vertices, corresponding to those
values of j for which |θj | ≥ 1

16
π.

For 1 ≤ r ≤ nǫ let S3(r) denote the contribution to S3 of those θ ∈ V2 such that |θj | ≥ 1
16
π

for exactly r values of j. If |θj| ≤ 1
32
π and |θk| ≥ 1

16
π or vice versa, we have that

|fjk(T, θ)| ≤ cos

(

1

32
π

)

(6.14)

unless (vj, vk) ∈ E ′T . This includes at least r(σn/2 − σn/4 − nǫ) pairs (j, k), because the
degree of any vertex of the graph G is at least σn/2, see (3.2). For pairs (j, k) such that
|θj |, |θk| ≤ 1

16
π, but (vj, vk) /∈ E ′T , we use (6.10). We put θ′ = (θ1, . . . , θn−r). Then, allowing

nr for the choice of those values of j for which |θj| ≥ 1
16
π, we get that

S3(r) ≤ πrnr
(

cos
π

32

)r(σn/4−nǫ)∑

T

∫

Un−r(π/2)

exp



−1

2

∑

(vj ,vk)∈EGT,θ

∆2
ij



 dθ′, (6.15)

where the first sum is over trees with maximum degree σn/4. Using Lemma 3.8 and then
Lemma 3.6 for the graph GT , we obtain that

λ1(GT,θ) ≥ σn/2− nǫ (6.16)

and

det Q̂(GT,θ) ≥
det Q̂

(c5n)
r , (6.17)

where c5 = c5(σ) > 0 and Q̂ = Q̂(G). According to Lemma 6.1, we have that

∫

Un−r(π/2)

exp



−1

2

∑

(vj ,vk)∈EGT,θ

∆2
ij



 dθ′ ≤ 2
n−r−1

2 π
n−r+1

2 n
√

det Q̂(GT,θ)
. (6.18)

Combining (6.15) with (6.17) and (6.18), we obtain that

S3(r) ≤ 2
n−r−1

2 π
n+r+1

2 nr+1
(

cos
π

32

)r(σn/4−nǫ) t(G)(c5n)
r/2

√

det Q̂

(6.19)

and, using (3.33), we can calculate that

S3 =

nǫ
∑

r=1

S3(r) = O(c−n) 2
n−1
2 π

n+1
2 n−1

√

det Q̂ (6.20)

for some constant c > 1 depending only on σ.
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Since ∆jk ≤ 1
8
π for θ ∈ V1 − V2 − V0 and the integrand is invariant under uniform

translation of all the θj ’s mod π, we can fix θ̄ = 0 and multiply it by the ratio of its range π
to the length n−1/2 of the vector 1

n
[1, 1, . . . , 1]T . Thus we get that

S4 ≤ πn1/2

∫

L∩Un(π/8)−V0

|Fb(θ)|dL, (6.21)

where L denotes the orthogonal complement to the vector [1, 1, . . . , 1]T . In a similar way as
(6.15) we find that

S4 ≤ πn1/2
∑

T

∫

L∩Un(π/8)−V0

exp



−1

2

∑

(vj ,vk)∈EGT

∆2
ij



 dL, (6.22)

where the first sum is over trees with maximum degree σn/4.

Lemma 6.2. Let the assumptions of Theorem 2.1 hold. Then as n → ∞

∫

L−Un(n−1/2+ǫ)

exp



−1

2

∑

(vj ,vk)∈EG

∆2
ij



 dL = O
(

exp(−cn2ǫ)
) 2

n−1
2 π

n−1
2 n1/2

√

det Q̂

(6.23)

for some c > 0 depending only on σ.

Lemma 6.2 is proved in Section 8. Using Lemma 3.8 and combining (6.23), (6.22) and (3.33),
we obtain that as n → ∞

S4 = O
(

exp(−cn2ǫ)
)

t(G)
2

n−1
2 π

n+1
2 n

√

det Q̂

= O
(

exp(−cn2ǫ)
)

2
n−1
2 π

n+1
2 n−1

√

det Q̂ (6.24)

for some c > 0 depending only on σ. Combining (6.9), (6.13), (6.20), (6.24) and Lemma 5.3,
we obtain the desired result.

Lemma 6.3. Let the assumptions of Theorem 2.1 hold. Then as n → ∞

S =
(

1 +O
(

exp(−cn2ǫ)
))

S0 (6.25)

for some c > 0 depending only on σ.

7. Proof of Theorem 2.1

According to (4.6) and (4.7)

Eul(G) =

n
∏

j=1

(dj
2

− 1
)

! 2|EG|−n+1π−nS, (7.1)

where

S =

∫

Un(π/2)

∏

(vj ,vk)∈EG

cos∆jk

∑

T∈Tr

∏

(vj ,vk)∈ET

(1 + i tan∆jk) dθ. (7.2)
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Combining Lemma 5.3 and Lemma 6.3 we get that as n → ∞

S = Θk1,k2

(

2
n−1
2 π

n+1
2 n−1

√

det Q̂

)

, (7.3)

where constants k1, k2 > 0 depend only on σ. Taking into account (3.33) we obtain (2.11). �

If for some σ > 1/2 the degree of each vertex of the graph G at least σn, we can use (3.3)
and get that

λ1(G) ≥ 2min
j

dj − n+ 2 > (2σ − 1)n. (7.4)

8. Proofs of Lemma 5.2, Lemma 6.1 and Lemma 6.2

Let assumptions of Theorem 2.1 hold. We define

φ = φ(θ) = (φ1(θ), . . . φn(θ)) = Q̂θ. (8.1)

We continue to use notation P (θ) for the orthogonal projection onto the space L, where L
is the orthogonal complement to the vector [1, 1, . . . , 1]T . For any a > 0 we have that

∫

Rn

e−aθT Q̂θdθ = πn/2a−n/2
/

√

det Q̂ (8.2)

and
∫

L

e−aθT Q̂θdL =

∫

L

e−aθTQθdL = π
n−1
2 a−

n−1
2 n1/2

/

√

det Q̂. (8.3)

Proof of Lemma 6.1. Note that
∑

(vj ,vk)∈EG

∆2
ij = θTQθ. (8.4)

Since diagonal of Un(π/2) is equal to πn1/2 and Qθ = QP (θ) we have that

∫

Un(π/2)

exp



−1

2

∑

(vj ,vk)∈EG

∆2
ij



 dθ ≤ πn1/2

∫

L

e−
1
2
θTQθdL. (8.5)

Using (8.3), we obtain (6.12). �

Note that for some g1(θ) = g1(θ2, . . . , θn)

θT Q̂θ =
φ1(θ)

2

d1 + 1
+ g1(θ). (8.6)

Using (3.9), we get that as n → ∞
∫

Rn

e−aθT Q̂θdθ =

+∞
∫

−∞

· · ·
+∞
∫

−∞

e−a g1(θ2,...,θn)





+∞
∫

−∞

e
−a

φ1(θ)
2

d1+1 dθ1



 dθ2 . . . dθn

=
(

1 +O
(

exp(−c̃n2ǫ)
))

∫

|φ1(θ)|≤
1
2
c−1
∞ n1/2+ǫ

e−aθT Q̂θdθ

(8.7)
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for some c̃ > 0 depending only on σ and a, where c∞ is the constant of Lemma 3.2. Combining
similar expressions for φ1, φ2, . . . φn, we obtain that as n → ∞

∫

||φ(θ)||∞≤ 1
2
c−1
∞ n1/2+ǫ

e−aθT Q̂θdθ =
(

1 +O
(

exp(−cn2ǫ)
))

∫

Rn

e−a θT Q̂θdθ (8.8)

for some c > 0 depending only on σ and a. Using Lemma 3.2, we get that as n → ∞
∫

Un(
1
2
n−1/2+ǫ)

e−aθT Q̂θdθ =
(

1 +O
(

exp(−cn2ǫ)
))

∫

Rn

e−a θT Q̂θdθ. (8.9)

Proof of Lemma 6.2. Note that

||P (θ)||∞ = ||θ − θ̄[1, 1, . . . , 1]T ||∞ ≤ 2||θ||∞, (8.10)

where

θ̄ =
θ1 + θ2 + . . . θn

n
. (8.11)

Thus

Un(
1

2
n−1/2+ǫ) ⊂

{

θ | P (θ) ∈ Un(n
−1/2+ǫ)

}

(8.12)

Since Qθ = QP (θ), using (8.4) and (8.12), we get that

∫

L∩Un(n−1/2+ǫ)

exp



−1

2

∑

(vj ,vk)∈EG

∆2
ij



 dL =

∫

L∩Un(n−1/2+ǫ)

e−
1
2
θTQθdL

=

∫

P (θ)∈Un(n−1/2+ǫ)

e−
1
2
θT Q̂θdθ

/

+∞
∫

−∞

e−
1
2
nx2

dx ≥ n1/2

√
2π

∫

Un(
1
2
n−1/2+ǫ)

e−
1
2
θT Q̂θdθ.

(8.13)

Combining (8.2), (8.9) and (8.13) we obtain (6.23). �

To prove Lemma 5.2 we separate the integrand in (5.32) into three factors.

• exp
(

iθTQα
n

)

— the oscillatory factor,

• exp



a
∑

(vj ,vk)∈EG

∆2
ij



 — the regular factor,

• exp



b
∑

(vj ,vk)∈EG

∆4
jk +Rn(θ)



 — the residual factor.

The proof consists of the following steps.

1. In Lemma 8.3 we estimate an integral analogous to (5.32) but without an oscillatory
factor.
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2. Using Lemma 8.5, we get rid of the oscillatory factor in (5.32).

3. Combining Lemma 8.5 and Lemma 8.3, we complete the proof of Lemma 5.2.

At first, we prove two technical statements.

Lemma 8.1. For any a > 0 and sequence of functions rn(x) such that as n → ∞

sup
|x|≤n−1/2+ǫ

|rn(x)| = o(1). (8.14)

Then as n → ∞
n−1/2+ǫ
∫

−n−1/2+ǫ

nx2e−anx2+rn(x)dx =

(

1

a
+ o(1)

)

n−1/2+ǫ
∫

−n−1/2+ǫ

e−anx2+rn(x)dx. (8.15)

and
n−1/2+ǫ
∫

−n−1/2+ǫ

n2x4e−anx2+rn(x)dx =

(

3

4a2
+ o(1)

)

n−1/2+ǫ
∫

−n−1/2+ǫ

e−anx2+rn(x)dx. (8.16)

Proof of Lemma 8.1. Note that

nǫ
∫

−nǫ

t2e−at2dt =
(

1 +O
(

exp(−cn2ǫ)
))

+∞
∫

−∞

t2e−at2dt =

(

1

a
+ o(1)

)

nǫ
∫

−nǫ

e−at2dt (8.17)

and

nǫ
∫

−nǫ

t4e−at2dt =
(

1 +O
(

exp(−cn2ǫ)
))

+∞
∫

−∞

t4e−at2dt =

(

3

4a2
+ o(1)

)

nǫ
∫

−nǫ

e−at2dt. (8.18)

Using (8.14), we get that as n → ∞

sup
|x|≤n−1/2+ǫ

|ern(x) − 1| = o(1). (8.19)

Making the substitution t =
√
nx and combining (8.17) and (8.18) with (8.19), we obtain

(8.15) and (8.16), respectively. �

Lemma 8.2. Under the assumptions of Lemma 8.1, let rn(x) be differentiable and as n → ∞

sup
|x|≤n−1/2+ǫ

|r′n(x)| = O(n−1/2+3ǫ). (8.20)

Then as n → ∞
n−1/2+ǫ
∫

−n−1/2+ǫ

xe−anx2+rn(x)dx = O
(

n−3/2+4ǫ
)

n−1/2+ǫ
∫

−n−1/2+ǫ

e−anx2+rn(x)dx. (8.21)
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Proof of Lemma 8.2. Note that

nǫ
∫

0

te−at2dt =
(

1 +O
(

exp(−cn2ǫ)
))

+∞
∫

0

te−at2dt =
1

2a
+O

(

exp(−cn2ǫ)
)

. (8.22)

According to the Mean Value Theorem, we have that for some |x̃| ≤ |x|
|ern(x) − ern(−x)| = |ern(x̃)r′n(x̃)2x|. (8.23)

Using (8.20), we get that as n → ∞
sup

|x|≤n−1/2+ǫ

|ern(x) − ern(−x)| = O
(

n−1+4ǫ
)

. (8.24)

We have that

n−1/2+ǫ
∫

−n−1/2+ǫ

xe−anx2+rn(x)dx =

n−1/2+ǫ
∫

0

xe−anx2 (

ern(x) − ern(−x)
)

dx. (8.25)

Making the substitution t =
√
nx and combining (8.22) with (8.24), we obtain (8.21). �

We use notation

µm =
n
∑

j=1

|φj|m. (8.26)

According to the Generalized Mean Inequality, we have that

µ1/n ≤ (µ4/n)
1/4 . (8.27)

Since
φk = (dk + 1)θk +

∑

(vk ,vj)∈EG

θj , (8.28)

and (see (3.18))
dk ≥ σn/2 (8.29)

we obtain that

|θk| ≤
2

σn

(

|φk|+
∑

j 6=k

|θj |
)

(8.30)

Using Lemma 3.2, we find that
∑

j 6=k

|θj | ≤ ||θ||1 ≤
c∞
n
||φ||1 =

c∞
n
µ1 (8.31)

Combining (8.27), (8.30) and (8.31), we get that

θ4k ≤ 16

σ4n4

(

|φk|+
c∞
n
µ1

)4

≤ 16

σ4n4

(

|φk|+ c∞ (µ4/n)
1/4
)4

. (8.32)

Using the inequality (x+ y)4 ≤ 8(x4 + y4), we obtain that

θ4k ≤ cφ
φ4
k

n4
+ cµ

µ4

n5
, (8.33)

where constants cφ, cµ > 0 depend only on σ.
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Lemma 8.3. Let assumptions of Theorem 2.1 hold. Let {an} be sequence of positive numbers
having limit a > 0. Then for any b > 0 as n → ∞

∫

Un(n−1/2+ǫ)

exp



−anθ
T Q̂θ − b

∑

(vj ,vk)∈EG

∆4
jk



 dθ = Θk1,k2

(
∫

Rn

e−anθT Q̂θdθ

)

, (8.34)

where constants k1, k2 > 0 depend only on a, b and σ.

Proof of Lemma 8.3. Using the inequality (x+ y)4 ≤ 8(x4 + y4), we find that

∑

(vj ,vk)∈EG

∆4
jk ≤ 8n

n
∑

j=1

θ4j . (8.35)

We define R1(θ) = 8n
n
∑

j=1

θ4j . Thus we have that

∫

Un(n−1/2+ǫ)

exp



−anθ
T Q̂θ − b

∑

(vj ,vk)∈EG

∆4
jk



 dθ ≥
∫

Rn

e−anθT Q̂θ−R1(θ)dθ. (8.36)

Using (8.9), we find that as n → ∞
∫

Un(n−1/2+ǫ)

φ4
1e

−anθT Q̂θ−R1(θ)dθ =

∫

Un(
4
σ
n−1/2+ǫ)

φ4
1e

−anθT Q̂θ−R1(θ)dθ+

+O
(

exp(−cn2ǫ)
)

∫

Rn

e−anθT Q̂θdθ

(8.37)

for some c > 0 depending only on a and σ. It follows that

n−1/2+ǫ
∫

−n−1/2+ǫ

· · ·
n−1/2+ǫ
∫

−n−1/2+ǫ







4
σ
n−1/2+ǫ
∫

− 4
σ
n−1/2+ǫ

φ4
1e

−anθT Q̂θ−R1(θ)dθ1






dθ2 . . . dθn =

=

∫

Un(n−1/2+ǫ)

φ4
1e

−anθT Q̂θ−R1(θ)dθ +O
(

exp(−cn2ǫ)
)

∫

Rn

e−anθT Q̂θdθ

(8.38)

Using (8.6), we find that

n−1/2+ǫ
∫

−n−1/2+ǫ

· · ·
n−1/2+ǫ
∫

−n−1/2+ǫ







4
σ
n−1/2+ǫ
∫

− 4
σ
n−1/2+ǫ

φ4
1e

−anθT Q̂θ−R1(θ)dθ1






dθ2 . . . dθn =

=

n−1/2+ǫ
∫

−n−1/2+ǫ

· · ·
n−1/2+ǫ
∫

−n−1/2+ǫ

e−ang1(θ2,...,θn)−R2(θ)







4
σ
n−1/2+ǫ
∫

− 4
σ
n−1/2+ǫ

φ4
1e

−an
φ21

d1+1
−8bnθ41dθ1






dθ2 . . . dθn,

(8.39)
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where R2(θ) = 8n
n
∑

j=2

θ4j . Using (8.30), we get that as n → ∞

4
σ
n−1/2+ǫ
∫

− 4
σ
n−1/2+ǫ

φ4
1e

−an
φ21

d1+1
−8bnθ41dθ1 =

(

1 +O
(

exp(−cn2ǫ)
))

∫

|φ1|≤n1/2+ǫ

φ4
1e

−an
φ21

d1+1
−8bnθ41dθ1 (8.40)

Combining (8.38), (8.39), (8.40) and Lemma 8.1 with x = φ1/n, we obtain that as n → ∞
∫

Un(n−1/2+ǫ)

φ4
1e

−anθT Q̂θ−R1(θ)dθ ≤ c′n3

∫

Un(n−1/2+ǫ)

e−anθT Q̂θ−R1(θ)dθ+

+O
(

exp(−cn2ǫ)
)

∫

Rn

e−anθT Q̂θdθ

(8.41)

for some constants c, c′ > 0 depending only on a and σ.

Combining similar to (8.41) inequalities for φ1, φ2, . . . , φn and using (8.33), we find that
as n → ∞

∫

Un(n−1/2+ǫ)

θ41e
−anθT Q̂θ−R1(θ)dθ ≤ (cφ + cµ)c

′

n2

∫

Un(n−1/2+ǫ)

e−anθT Q̂θ−R1(θ)dθ+

+O
(

exp(−cn2ǫ)
)

∫

Rn

e−anθT Q̂θdθ

(8.42)

for some c > 0 depending only on a and σ. Note that as n → ∞

n−1/2+ǫ
∫

−n−1/2+ǫ

· · ·
n−1/2+ǫ
∫

−n−1/2+ǫ

e−ang1(θ2,...,θn)−R2(θ)







n−1/2+ǫ
∫

−n−1/2+ǫ

e
−an

φ21
d1+1

−8bnθ41dθ1






dθ2 . . . dθn =

= · · ·







n−1/2+ǫ
∫

−n−1/2+ǫ

e
−an

φ21
d1+1

(

1− 8bnθ41 + O
(

n−2+8ǫ
))

dθ1






dθ2 . . . dθn

(8.43)

Combining (8.42) and (8.43), we get that as n → ∞
∫

Un(n−1/2+ǫ)

e−anθT Q̂θ−R1(θ)dθ ≥
(

1 +
c̃

n

)
∫

Un(n−1/2+ǫ)

e−anθT Q̂θ−R2(θ)dθ+

+O
(

exp(−cn2ǫ)
)

∫

Rn

e−anθT Q̂θdθ,

(8.44)

where c̃ depends only on a, b and σ.
We continue similarly to (8.44)

∫

Un(n−1/2+ǫ)

e−anθT Q̂θ−Rk(θ)dθ ≥
(

1 +
c̃

n

)
∫

Un(n−1/2+ǫ)

e−anθT Q̂θ−Rk+1(θ)dθ+

+O
(

exp(−cn2ǫ)
)

∫

Rn

e−anθT Q̂θdθ,

(8.45)
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where

Rk(θ) = 8n

n
∑

j=k

θ4j . (8.46)

Combining all inequalities of (8.45) for R1, R2, . . . , Rn, we get that

∫

Un(n−1/2+ǫ)

e−anθT Q̂θ−R1(θ)dθ ≥
(

1 +
c̃

n

)n ∫

Un(n−1/2+ǫ)

e−anθT Q̂θdθ+

+O
(

exp(−cn2ǫ)
)

∫

Rn

e−anθT Q̂θdθ

(8.47)

for some c > 0 depending only on a and σ. Note also that

∫

Un(n−1/2+ǫ)

e−anθT Q̂θ−R1(θ)dθ ≤
∫

Un(n−1/2+ǫ)

e−anθT Q̂θdθ (8.48)

Combining (8.9), (8.47) and (8.48), we obtain (8.34). �

Lemma 8.4. Let the assumptions of Theorem 2.1 hold. For positive constants a, b, d1, d2 let
sequence of differentiable functions {Rn(θ)} be such that

Re (Rn(θ)) ≤ d1
θT Q̂θ

n
, (8.49)

and for θ ∈ Un(
4
σ
n−1/2+ǫ)

∣

∣

∣

∣

∂Rn(θ)

∂θk

∣

∣

∣

∣

≤ d2 n
−1/2+3ǫ. (8.50)

Then as n → ∞

∫

Un(n−1/2+ǫ)

φke
i b
n
φk−aθT Q̂θ+Rn(θ)dθ = Θk1,k2







∫

Un(n−3/2+ǫ)

ei
b
n
φk−aθT Q̂θ+Rn(θ)dθ






+

+O(n−1/2+4ǫ)

∫

Rn

e−aθT Q̂θdθ

(8.51)

and

∫

Un(n−1/2+ǫ)

φ2
ke

i b
n
φk−aθT Q̂θ+Rn(θ)dθ = Θk1,k2






n

∫

Un(n−3/2+ǫ)

ei
b
n
φk−a θT Q̂θ+Rn(θ)dθ






+

+O
(

exp(−c̃n2ǫ)
)

∫

Rn

e−aθT Q̂θdθ,

(8.52)

where constants k1, k2, c̃ > 0 depend only on a, b, d1, d2 and σ .
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Proof of Lemma 8.4. For our purpose it is convenient to assume that k = 1. Note that

∫

Un(n−1/2+ǫ)

|ei bnφ1−aθT Q̂θ+Rn(θ)|dθ ≤
∫

Un(n−1/2+ǫ)

e−a θT Q̂θ+d1
θ
T Q̂θ

n dθ. (8.53)

Using (8.2), we get that as n → ∞
∫

Un(n−1/2+ǫ)

|ei bnφ1−a θT Q̂θ+Rn(θ)|dθ = O (1)

∫

Un(n−1/2+ǫ)

e−aθT Q̂θdθ. (8.54)

Similar to (8.37), for m = 1, 2 we find that as n → ∞
∫

Un(
4
σ
n−1/2+ǫ)−Un(n−1/2+ǫ)

φm
1 |ei

b
n
φ1−aθT Q̂θ+Rn(θ)|dθ =

= O
(

exp(−cn2ǫ)
)

∫

Rn

e−aθT Q̂θdθ

(8.55)

for some c > 0 depending only on a, d1 and σ. It follows that

n−1/2+ǫ
∫

−n−1/2+ǫ

· · ·
n−1/2+ǫ
∫

−n−1/2+ǫ







4
σ
n−1/2+ǫ
∫

− 4
σ
n−1/2+ǫ

φm
1 e

i b
n
φ1−aθT Q̂θ+Rn(θ)dθ1






dθ2 . . . dθn =

=

∫

Un(n−1/2+ǫ)

φm
1 e

i b
n
φ1−aθT Q̂θ+Rn(θ)dθ +O

(

exp(−cn2ǫ)
)

∫

Rn

e−aθT Q̂θdθ

(8.56)

We define

R′
n(θ) = Rn(0, θ2, . . . , θn) (8.57)

and

r1(θ) = Rn(θ)− R′
n(θ). (8.58)

According to Mean Value Theorem, for θ ∈ Un(
4
σ
n−1/2+ǫ) we have that

|r1(θ)| = |Rn(θ)− R′
n(θ)| =

∣

∣

∣

∣

∣

θ1
∂Rn(θ̃)

∂θk

∣

∣

∣

∣

∣

= O(n−1+4ǫ). (8.59)

Using (8.6), we find that

n−1/2+ǫ
∫

−n−1/2+ǫ

· · ·
n−1/2+ǫ
∫

−n−1/2+ǫ







4
σ
n−1/2+ǫ
∫

− 4
σ
n−1/2+ǫ

φm
1 e

i b
n
φ1−aθT Q̂θ+Rn(θ)dθ1






dθ2 . . . dθn =

= · · ·
n−1/2+ǫ
∫

−n−1/2+ǫ

e−ag1(θ2,...,θn)+R′

n(θ)







4
σ
n−1/2+ǫ
∫

− 4
σ
n−1/2+ǫ

φm
1 e

i b
n
φ1−a

φ21
d1+1

+r1(θ)dθ1






dθ2 . . . dθn,

(8.60)
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Using (8.30), we get that as n → ∞
4
σ
n−1/2+ǫ
∫

− 4
σ
n−1/2+ǫ

φm
1 e

i b
n
φ1−a

φ21
d1+1

+r1(θ)dθ1 =

=
(

1 +O
(

exp(−cn2ǫ)
))

∫

|φ1|≤n1/2+ǫ

φm
1 e

i b
n
φ1−a

φ21
d1+1

+r1(θ)dθ1

(8.61)

Combining (8.56), (8.60), (8.61) with m = 2 and (8.15) with x = φ1/n, we obtain (8.52).
Note that

∫

|φ1|≤n1/2+ǫ

φ1e
i b
n
φ1−a

φ21
d1+1

+r1(θ)dθ1 =

=

∫

|φ1|≤n1/2+ǫ

φ1

(

1 + i
b

n
φ1 +O

(

n−1+2ǫ
)

)

e
−a

φ21
d1+1

+r1(θ)dθ1

(8.62)

Since ∂r1/∂θ1 = ∂Rn/∂θ1, using (8.21) with x = φ1/n, we get that
∫

|φ1|≤n1/2+ǫ

φ1e
−a

φ21
d1+1

+r1(θ)dθ1 = O
(

n−1/2+4ǫ
)

∫

|φ1|≤n1/2+ǫ

e
−a

φ21
d1+1

+r1(θ)dθ1 (8.63)

Combining (8.56), (8.60), (8.61) with m = 1 and (8.52), (8.54) with b = 0 and (8.63), we
obtain (8.51). �

Lemma 8.5. Let the assumptions of Theorem 2.1 hold. For positive constants a, b, d1, d2 let
sequence of vectors {βn} and sequence of real differentiable functions {Rn(θ)} be such that

||βn||∞ ≤ b, (8.64)

Rn(θ) ≤ d1
θT Q̂θ

n
, (8.65)

and for θ ∈ Un(
4
σ
n−1/2+ǫ)

∥

∥

∥

∥

∂Rn(θ)

∂θ

∥

∥

∥

∥

∞

≤ d2 n
−1/2+3ǫ. (8.66)

Then as n → ∞
∫

Un(n−1/2+ǫ)

eiβ
T
nθ−aθT Q̂θ+R̃n(θ)dθ = Θk̃1,k̃2







∫

Un(n−1/2+ǫ)

e−aθT Q̂θ+R̃n(θ)dθ






+

+O(n−1/2+4ǫ)

∫

Rn

e−aθT Q̂θdθ,

(8.67)

where R̃n = Rn − 1
2

n
∑

j=1

β2
j θ

2
j and constants k̃1, k̃2 depend only on a, b, d1, d2 and σ .
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Proof of Lemma 8.5. Using (8.54), we get that as n → ∞
∫

Un(n−1/2+ǫ)

eiβ
T
nθ−aθT Q̂θ+Rn(θ)dθ =

=

(

1 + iβ1θ1 −
β2
1θ

2
1

2
+O(n−3/2+3ǫ)

)
∫

Un(n−1/2+ǫ)

ei (β
T
nθ−β1θ1)−aθT Q̂θ+Rn(θ)dθ =

=

∫

Un(n−1/2+ǫ)

ei (β
T
nθ−β1θ1)−aθT Q̂θ+Rn(θ)−

1
2
β2
1θ

2
1dθ +O(n−3/2+3ǫ)

∫

Un(n−1/2+ǫ)

e−aθT Q̂θdθ+

+ iβ1θ1

∫

Un(n−1/2+ǫ)

ei (β
T
nθ−β1θ1)−aθT Q̂θ+Rn(θ)dθ.

(8.68)

Taking into account (8.28) and using Lemma 8.4, we find that as n → ∞
∫

Un(n−1/2+ǫ)

φke
i (βT

nθ−β1θ1)−a θT Q̂θ+Rn(θ)dθ =

= Θk1,k2







∫

Un(n−3/2+ǫ)

ei(β
T
nθ−β1θ1)−a θT Q̂θ+Rn(θ)dθ






+

+O(n−1/2+4ǫ)

∫

Rn

e−a θT Q̂θdθ =

= Θk1,k2







∫

Un(n−3/2+ǫ)

ei(β
T
nθ−β1θ1)−a θT Q̂θ+Rn(θ)−

1
2
β2
1θ

2
1dθ






+

+O(n−1/2+4ǫ)

∫

Rn

e−a θT Q̂θdθ,

(8.69)

where constants k1, k2 depend only on a, b, d1, d2 and σ.
According to Lemma 3.2, we have that

||Q̂−1||1 = ||Q̂−1||∞ ≤ c∞
n
. (8.70)

Thus as n → ∞
∣

∣

∣

∣

∣

∣

∣

∫

Un(n−1/2+ǫ)

θke
i (βT

nθ−β1θ1)−a θT Q̂θ+Rn(θ)dθ

∣

∣

∣

∣

∣

∣

∣

≤

≤ c̃

n

∣

∣

∣

∣

∣

∣

∣

∫

Un(n−3/2+ǫ)

ei(β
T
nθ−β1θ1)−a θT Q̂θ+Rn(θ)−

1
2
β2
1θ

2
1dθ

∣

∣

∣

∣

∣

∣

∣

+O(n−3/2+4ǫ)

∫

Rn

e−aθT Q̂θdθ,

(8.71)

where c̃ > 0 depends only on a, b, d1, d2 and σ.
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Combining (8.68) and (8.71), we get that as n → ∞
∫

Un(n−1/2+ǫ)

eiβ
T
nθ−a θT Q̂θ+Rn(θ)dθ =

=

(

1 +
c(1)

n

)
∫

Un(n−3/2+ǫ)

ei(β
T
nθ−β1θ1)−a θT Q̂θ+Rn(θ)−

1
2
β2
1θ

2
1dθ+

+O(n−3/2+4ǫ)

∫

Rn

e−aθT Q̂θdθ,

(8.72)

where |c(1)| ≤ c̃β1 ≤ c̃b.
We define

R(k)
n = Rn −

1

2

k
∑

j=1

β2
j θ

2
j . (8.73)

We continue similarly to (8.72)

∫

Un(n−1/2+ǫ)

e
i

(

βT
nθ−

k
∑

j=1
βjθj

)

−aθT Q̂θ+R
(k)
n (θ)

dθ =

=

(

1 +
c(k+1)

n

)
∫

Un(n−3/2+ǫ)

e
i

(

βT
nθ−

k+1
∑

j=1
βjθj

)

−aθT Q̂θ+R
(k+1)
n (θ)

dθ+

+O(n−3/2+4ǫ)

∫

Rn

e−a θT Q̂θdθ,

(8.74)

where |c(k+1)| ≤ c̃βk ≤ c̃b.
Combining all inequalities of (8.74) for k = 0, 1, . . . , n− 1, we get that as n → ∞

∫

Un(n−1/2+ǫ)

eiβ
T
nθ−aθT Q̂θ+Rn(θ)dθ =

=

(

1 +
c(1)

n

)

· · ·
(

1 +
c(n)

n

)
∫

Un(n−3/2+ǫ)

e−aθT Q̂θ+R̃n(θ)dθ+

+O(n−1/2+4ǫ)

∫

Rn

e−a θT Q̂θdθ.

(8.75)

Since |c(k)| ≤ bc̃ for k = 0, 1, . . . , n− 1, using (8.75), we obtain (8.67).
�

Proof of Lemma 5.2. Note that for θ ∈ Un(
4
σ
n−1/2+ǫ) as n → ∞

∥

∥

∥

∥

∥

∥

∂

∂θ

∑

(vj ,vk)∈EG

∆4
jk

∥

∥

∥

∥

∥

∥

∞

= O(n−1/2+3ǫ). (8.76)
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We define βn = Qα
n
. Using Lemma 8.5, we find that as n → ∞

∫

Un(n−1/2+ǫ)

exp



iθTQα
n
− aθT Q̂θ − b

∑

(vj ,vk)∈EG

∆4
jk +Rn(θ)



 dθ =

= Θk̃1,k̃2







∫

Un(n−1/2+ǫ)

exp



−aθT Q̂θ − b
∑

(vj ,vk)∈EG

∆4
jk + R̃n(θ)



 dθ






+

+O(n−1/2+4ǫ)

∫

Rn

e−a θT Q̂θ,

(8.77)

where R̃n = Rn− 1
2

n
∑

j=1

β2
j θ

2
j and constants k̃1, k̃2 depend only on a, b, d1, d2 and σ. Note that

for some d3 > 0, depending only on c and σ,

1

2

n
∑

j=1

β2
j θ

2
j ≤ d3

θT Q̂θ

n
. (8.78)

Combining (8.2), (8.77) and Lemma 8.3, we find that as n → ∞

∫

Un(n−1/2+ǫ)

exp



iθTQα
n
− aθT Q̂θ − b

∑

(vj ,vk)∈EG

∆4
jk +Rn(θ)



 dθ =

= Θk′1,k
′

2

(

2
n−1
2 π

n−1
2

/

√

det Q̂

)

,

(8.79)

where constants k′
1, k

′
2 depend only on a, b, d1, d2 and σ. Note that

+∞
∫

−∞

e−anx2

dx

∫

L∩V0

exp



iθTQα
n
− a

∑

(vj ,vk)∈EG

∆2
ij − b

∑

(vj ,vk)∈EG

∆4
jk +Rn(θ)



 dL =

=

∫

P (θ)∈L∩V0

exp



iθTQα
n
− aθT Q̂θ − b

∑

(vj ,vk)∈EG

∆4
jk +Rn(θ)



 dθ.

(8.80)

We have that

∣

∣

∣

∣

∣

∣

exp



iθTQα
n
− aθT Q̂θ − b

∑

(vj ,vk)∈EG

∆4
jk +Rn(θ)





∣

∣

∣

∣

∣

∣

≤ e−aθT Q̂θ+
d1
n
θT Q̂θ. (8.81)

Thus, combining (8.9), (8.12), (8.79) and (8.80), we obtain (5.33) �
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Final remarks

In fact, using Lemma 5.1 and Lemma 6.3, the estimation of the number of the Eulerian
circuits is reduced (see proof of Lemma 5.3) to estimating the integral

∫

V0

exp



iθTQα− 1

2

∑

(vj ,vk)∈EG

∆2
ij −

1

12

∑

(vj ,vk)∈EG

∆4
jk + tr(ΛQ̂−1)2



 dθ, (8.82)

where α denotes the vector composed of the diagonal elements of Q̂−1, Λ denotes the diagonal
matrix whose diagonal elements are equal to components of the vector Qθ. Apparently, it
is possible to estimate integral (8.82) more accurately for particular classes of graphs and
obtain asymptotic formulas for Eul(G), similar to (2.12).

Finally, we want to note that the following expression

2|EG|−n−1
2 π−n−1

2

√

t(G)

n
∏

j=1

(

dj
2

− 1

)

! (8.83)

gives a surprisingly good estimate for the number of the Eulerian circuits in graphs. Namely,
we calculated the exact numbers of the Eulerian circuits for small random graphs and in all
cases the values given by (8.83) differ from the exact ones within not more than 30% error.
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