
HAL Id: hal-00586295
https://hal.science/hal-00586295v1

Preprint submitted on 15 Apr 2011 (v1), last revised 7 Oct 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random walks reaching against all odds the other side
of the quarter plane

Johan van Leeuwaarden, Kilian Raschel

To cite this version:
Johan van Leeuwaarden, Kilian Raschel. Random walks reaching against all odds the other side of
the quarter plane. 2011. �hal-00586295v1�

https://hal.science/hal-00586295v1
https://hal.archives-ouvertes.fr


RANDOM WALKS REACHING AGAINST ALL ODDS THE OTHERSIDE OF THE QUARTER PLANEJOHAN S.H. VAN LEEUWAARDEN AND KILIAN RASCHELAbstrat. For a homogeneous random walk in the quarter plane with nearest-neighbortransitions, starting from some state (i0, j0), we study the event that the walk reahesthe vertial axis, before reahing the horizontal axis. We derive an exat expression forthe probability of this event, and derive an asymptoti expression for the ase when
i0 beomes large, a situation in whih the event beomes highly unlikely. The exatexpression follows from the solution of a boundary value problem and is in terms of anintegral that involves a onformal gluing funtion. The asymptoti expression followsfrom the asymptoti evaluation of this integral. Our results �nd appliations in a modelfor nuleosome shifting, the voter model and the asymmetri exlusion proess.1. IntrodutionConsider homogeneous random walks in the quarter plane with nearest-neighbortransitions. For suh random walks, starting from some state (i0, j0), we study the eventof reahing the vertial axis, before reahing the horizontal axis. We derive an exatexpression for the probability of this event, and derive an asymptoti expression for thease when i0 beomes large, a situation in whih the event beomes highly unlikely. Weuse the lassial method of solving for the generating funtion via funtional equations andboundary value problems.Our primary motivation is the work of Opheusden and Redig [17℄ on the following one-dimensional partile system. Consider three partiles in Z and let ηℓ(n) denote the positionof partile ℓ after n steps, with initial positions η1(0) < η2(0) < η3(0). The partiles eahget a weight and are then equipped with the following dynamis. At eah time step, oneof the partiles is seleted with probabilities proportional to their weights. The hosenpartile is then moved to either the left or the right, with equal probability. Denote by

X(n) = η2(n)−η1(n) and Y (n) = η3(n)−η2(n) the pair-wise distanes. The disrete-timeMarkov hain (X(n), Y (n))n∈Z+
, with Z+ = {0, 1, . . .}, then learly is a random walk inthe quarter plane Z

2
+. In partiular, with partile two having weight ν and partiles oneand three weights λ, one obtains the walk in Figure 1(a). For this walk Opheusden andRedig [17℄ studied the event of the Markov hain, starting from (X(0), Y (0)) = (14, 1),reahing the vertial axis, before the horizontal axis. This event plays an important role instudying a nuleosome shifting with respet to the DNA sequene. In [17℄ an asymptotiexpression was derived; see (2.3).Date: April 15, 2011.J.S.H. van Leeuwaarden: Department of Mathematis and Computer Siene, Eindhoven University ofTehnology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. Email: j.s.h.v.leeuwaarden�tue.nl.K. Rashel: Fakultät für Mathematik, Universität Bielefeld, Postfah 100131, 33501 Bielefeld, Germany.Email: krashel�math.uni-bielefeld.de. 1
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(a) (b) (c)Figure 1. Walks onsidered in [17℄, [2℄ and [9℄, respetivelyAnother appliation of this work is the one-dimensional voter model. This lattie-basedinterating partile systems is used to model the spread of an opinion through a statipopulation via nearest-neighbor interations, and �nds appliation in modeling ompetingspeies. It is a disrete-time proess on {0, 1}Z, where eah site in Z is labeled either 0or 1. Two adjaent sites (a pair) are alled an unlike pair when the labels are 01 or 10.The voter model then has the following dynamis. At eah time step the model seletsuniformly at random from amongst all unlike pairs. The hosen pair is �ipped to either 00or 11, with equal hane of eah. Sine our version of the voter model lives on the in�nitelattie, the ground state is the so-alled Heaviside on�guration
. . . 111000 . . . ,and the initial on�guration is assumed to be one with a �nite number of unlike pairs. Forexample, with N the number of �nite bloks of zeros (or ones), a on�guration looks like

. . . 111

κ1︷︸︸︷
0000

σ1︷︸︸︷
1111

κ2︷︸︸︷
00

σ2︷ ︸︸ ︷
11111 . . .

κN︷ ︸︸ ︷
000000

σN︷︸︸︷
1111 000 . . . ,with κℓ (resp. σℓ) the size of the ℓth blok of zeros (resp. ones). It is lear that N is a non-inreasing funtion of the time, sine more and more bloks will merge as time progresses.In fat, the Heaviside on�guration (N = 0) is an absorbing state. Therefore, for thevoter model, a ruial harateristi is the hitting time τ of the Heaviside on�guration.In [2℄ it is shown that E[τ3/2−ǫ] < ∞ and E[τ3/2+ǫ] = ∞, for any ǫ > 0 and any initialon�guration. In proving the latter fat, it su�es to onsider the ase N = 1, beause

N is non-inreasing and hene the proess always has to pass before absorption through
N = 1. Therefore, in [2℄ the proess (κ1(n), σ1(n))n∈Z+

= (X(n), Y (n))n∈Z+
is onsidered,whih is learly a random walk in the quarter plane that is absorbed when it reahes theboundary {(0, 0)} ∪ {(i, 0) : i > 1} ∪ {(0, j) : j > 1}. De�ne Z

∗

+ = {1, 2, . . .}. With
pi,j = P

[
(X(n + 1), Y (n + 1)) = (X(n), Y (n)) + (i, j)

∣∣(X(n), Y (n)) ∈ Z
∗2
+

]
,the dynamis of the voter model is desribed by p1,0 = p1,−1 = p0,−1 = p−1,0 = p−1,1 =

p0,1 = 1/6, see Figure 1(b). This random walk thus plays an important role in the votermodel. It desribes the situation in whih the last two remaining groups try to imposetheir opinions on eah other. This situation is in many ases rather persistent, partiularlywhen both groups are of onsiderable size; see [3℄ for some simulation results that supportthis fat. We are interested in the situation in whih one of the two groups forms a lear



WALKS REACHING AGAINST ALL ODDS THE OTHER SIDE OF THE QUARTER PLANE 3minority, and nevertheless, wins the battle with the other muh larger group. It is lear thatthis is a large deviations event, and it is for this event that we obtain preise asymptotis.A third appliation of the results in this paper is the phenomenon of spontaneoussymmetry breaking in the asymmetri exlusion proess. Godrèhe et al. [9℄ show thatin some limiting regime, this phenomenon an be formulated as the hitting probabilityof the random walk with the transitions as in Figure 1(). Contrary to the �rst twoappliations, this random walk learly has a negative drift.Hene, in all three appliations, we are interested in random walks reahing the vertialaxis, before the horizontal axis, in situations where reahing �rst the horizontal axis is muhmore likely. In the next setion we present our results for the probability of this event, forboth zero-drift and negative-drift random walks. We shall also disuss the onsequenesfor the three appliations. 2. Main resultsDenote by (X,Y ) = (X(n), Y (n))n∈Z+
a random walk in the quarter plane Z

2
+, and let

P(i0,j0)[E ] be the probability of event E onditional on (X(0), Y (0)) = (i0, j0). Throughoutwe shall make the following assumption:(H1) The walk is homogeneous inside of the quarter plane, with transition probabilities
{pi,j}−16i,j61 to the eight nearest neighbors.Denote the horizontal and vertial axes by

H = {(i, 0) : i > 0}, V = {(0, j) : j > 0},and de�ne H∗ = H \ {(0, 0)} and V∗ = V \ {(0, 0)}. The prinipal objet of study in thispaper is the probability(2.1) P(i0,j0)[(X,Y ) hits V before H∗],for whih we derive an exat expression, as well as an asymptoti expression for the largedeviations ase i0 → ∞.In this paper we shall for the most part restrit to random walks (X,Y ) that, besides(H1), satisfy the following assumptions:(H2) In the list p1,1, p1,0, p1,−1, p0,−1, p−1,−1, p−1,0, p−1,1, p0,1, there are no three onse-utive zeros;(H3) p1,1 + p−1,1 + p−1,−1 + p1,−1 < 1;(H4) The drifts are non-positive: ∑
−16i,j61 ipi,j 6 0 and ∑

−16i,j61 jpi,j 6 0.Assumption (H4) guarantees that the random walk will hit one of the boundaries withprobability one. With assumption (H1) and (H3) we an use the general framework forrandom walks in the quarter plane developed by Fayolle et al. [6℄ (see Subsetion 3.3 formore details). Assumption (H2) exludes degenerate random walks, whih an typiallybe analyzed using easier methods.Here is our �rst main result.Theorem 1. Let (X,Y ) be a random walk satisfying (H1)�(H4). If(2.2) ∑
−16i,j61 ipi,j = 0 and ∑

−16i,j61 jpi,j = 0,there exists a onstant A ∈ (0,∞) suh that
P(i0,j0)[(X,Y ) hits V before H∗] ∼ A

j0

i0
, i0 → ∞.



4 JOHAN S.H. VAN LEEUWAARDEN AND KILIAN RASCHELIn Setion 4 we present an expliit expression for the onstant A in Theorem 1. For themodel in Figure 1(a) of nuleosome shifting, an inspetion of Theorem 1 reveals(2.3) P(i0,j0)[(X,Y ) hits V before H∗] ∼

√
1 − ν2

(ν+λ)2

arccos( ν
ν+λ)

j0

i0
, i0 → ∞.Opheusden and Redig [17℄ were able to derive (2.3) using the following approah. First,one de�nes a generating funtion of whih the probabilities in (2.1) are the oe�ients.They then show that this generating funtion satis�es a ertain funtional equation. Thisis the funtional equation that is arhetypal of random walks in the quarter plane, see(3.10). The funtional equation de�nes a harateristi urve, and by onsidering itstangent points one an determine the dominant singularity of the generating funtion.The nature of this dominant singularities then gives the asymptoti deay, in this ase

O(1/i0). Hene, an asymptoti estimate for (2.1) is derived by studying a funtionalequation without having to solve it. The only drawbak of this approah is that oneannot obtain the onstant term in the asymptoti expression, beause this would requirean exat expression for the generating funtion and an investigation of this exat expressionin the viinity of its dominant singularity. Despite this fat, Opheusden en Redig were ableto derive the onstant term in (2.3) by studying the ontinuum limit of the random walk.They onjetured that the asymptoti behavior of the ontinuum limit is the same as forthe random walk, and provided strong numerial evidene. Here we provide the proof ofthis onjeture.For the voter model in Figure 1(b), our Theorem 1 gives
P(i0,j0)[(X,Y ) hits V before H∗] ∼ 3

√
3

2π

j0

i0
, i0 → ∞.We next present a result for random walks with a negative drift.Theorem 2. Let (X,Y ) be a random walk satisfying (H1)�(H4). If(2.4) ∑

−16i,j61 ipi,j 6 0 and ∑
−16i,j61 jpi,j < 0,there exist onstants B(j0) ∈ (0,∞) and ρ ∈ (0, 1) suh that

P(i0,j0)[(X,Y ) hits V before H∗] ∼ B(j0)
ρi0

i
3/2
0

, i0 → ∞.The same result an be shown to hold for random walks with no transitions to the North,North-East and East. Introdue the assumption(H2') p−1,1+p−1,0+p−1,−1+p0,−1+p1,−1 = 1, p−1,1 6= 0, p1,−1 6= 0 and p−1,1+p1,−1 6= 1,Note that this assumption is satis�ed by the random walk in Figure 1(), and that (H1)and (H2') immediately render (H3) and (H4). We have the following result.Theorem 3. Let (X,Y ) be a random walk satisfying (H1) and (H2'). There exist onstants
C(j0) ∈ (0,∞) and ρ ∈ (0, 1) suh that

P(i0,j0)[(X,Y ) hits V before H∗] ∼ C(j0)
ρi0

i
3/2
0

, i0 → ∞.
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Figure 2. A tandem queue.Expliit expressions for the quantities B(j0), C(j0) and ρ in Theorem 2 and Theorem 3are derived in Setion 4. For the model of Godrèhe et al. [9℄ in Figure 1(), Theorem 3yields(2.5) P(i0,j0)[(X,Y ) hits V before H∗] ∼ C(j0)
ρi0

i
3/2
0

, i0 → ∞with
ρ =

2

λ

[
1 − λ −

√
(1 − λ)(1 − 2λ)

]
.This result math with Godrèhe et al. [9, Equation (6.41)℄. As in Opheusden and Redig[17℄, Godrèhe et al. [9℄ used a funtional equation to derive the term ρi0i

−3/2
0 in (2.5),but sine the funtional equation was not solved expliitly, it was impossible to derive theonstant term C(j0). We provide an exat expression for C(j0) in Theorem 10.Let us �nally present a result for random walk with a negative drift in the horizontaldiretion, and zero drift in the vertial diretion.Theorem 4. Let (X,Y ) be a random walk satisfying (H1)�(H4). If(2.6) ∑

−16i,j61 ipi,j < 0 and ∑
−16i,j61 jpi,j = 0,there exists a onstant D ∈ (0,∞) suh that

P(i0,j0)[(X,Y ) hits V before H∗] ∼ D
j0

i
1/2
0

, i0 → ∞.An example of suh a walk is displayed in Figure 2, with p1,0 = λ, p0,1 = ν and p−1,1 = νand assuming λ < ν. This walk represents the transitions of a tandem queue with Poissonarrivals at queue 1 with rate λ, exponential servies at both queues with mean 1/ν, and allustomers traversing from the �rst queue to the seond queue before leaving the system.In this ase (2.1) desribes the probability that, starting with i0 ustomers in queue 1, and
j0 ustomers in queue 2, queue 2 empties before queue 1. The onstant D is identi�ed inSetion 4 and for the tandem queue in Figure 2 takes the form

D =

√
ν − λ

πν
.The remainder of the paper is strutured as follows. We �rst derive, in Setion 3, anexpliit expression for the probability (2.1), for whih we rely heavily on earlier work in[8, 12℄. In fat, this analysis leads to expressions for the generating funtions, of whih the



6 JOHAN S.H. VAN LEEUWAARDEN AND KILIAN RASCHELprobabilities in (2.1) are the oe�ients, in terms of integrals that involve ertain onformalgluing funtions. In Setion 4 we prove Theorems 1�4 by asymptotially evaluating theexat integral expressions for the generating funtions obtained in Setion 3. Finally,inspired by [17℄, we present the ontinuum limit for the zero-drift random walk in Setion5. This ontinuum limit allows for an easy and expliit analysis of the type of eventdesribed in (2.1). We show that the onstant that arises in the ontinuum limit matheswith the exat onstant we obtain in our preise asymptoti expression for (2.1). This seemsto suggest an interhange-of-limits, but establishing a formal proof of this fat remains anopen problem. 3. Exat integral representationsWe �rst derive an expliit expression for the probability (2.1) in terms of integralrepresentations for the generating funtions
hi0,j0(x) =

∑

i>1

P(i0,j0)[(X,Y ) hits H before V∗ and at (i, 0)]xi−1,(3.1)
h̃i0,j0(y) =

∑

j>1

P(i0,j0)[(X,Y ) hits V before H∗ and at (0, j)]yj−1,

hi0,j0
0,0 = P(i0,j0)[(X,Y ) hits (0, 0) before H∗ ∪ V∗].Note that the probability (2.1) follows from(3.2) P(i0,j0)[(X,Y ) hits V before H∗] = h̃i0,j0(1) + hi0,j0

0,0 = 1 − hi0,j0(1).The seond equality in (3.2) is due to the fat that under (H1)�(H4), the proess hits theboundary with probability 1, see [7℄. In Subsetion 3.1 we introdue some lassial notionsregarding the framework in [6℄ that aims at solving funtional equations for the abovegenerating funtions using the theory of boundary value problems. This framework leadsto the results presented in Subsetion 3.2.3.1. Basi properties of the kernel. A ommon and ruial quantity of interest in thestudy of walks with small steps (as in (H1)) in the quarter plane is the kernel(3.3) K(x, y) = xy[
∑

−16i,j61 pi,jx
iyj − 1].It an also be written as

K(x, y) = a(x)y2 + b(x)y + c(x) = ã(y)x2 + b̃(y)x + c̃(y),where(3.4)
a(x) =p1,1x

2+p0,1x+p−1,1, b(x) =p1,0x
2−x+p−1,0, c(x) =p1,−1x

2+p0,−1x+p−1,−1,

ã(y) = p1,1y
2+ p1,0y+ p1,−1, b̃(y) = p0,1y

2− y+ p0,−1, c̃(y) = p−1,1y
2+ p−1,0y+ p−1,−1.We de�ne(3.5) d(x) = b(x)2 − 4a(x)c(x), d̃(y) = b̃(y)2 − 4ã(y)c̃(y).Under (H1)�(H2), the polynomial d has degree three or four, and we denote its roots by

{xℓ}16ℓ64 with
|x1| 6 |x2| 6 |x3| 6 |x4|,



WALKS REACHING AGAINST ALL ODDS THE OTHER SIDE OF THE QUARTER PLANE 7and x4 = ∞ if d is a third-degree polynomial. One an easily see that x1 ∈ (−1, 1) and that
x4 ∈ (1,∞)∪{∞}∪ (−∞,−1]. As for the roots x2 and x3, they are positive and suh that
x1 < x2 6 1 6 x3. Furthermore, x2 = 1 (resp. x3 = 1) if and only if ∑

−16i,j61 jpi,j = 0(resp. ∑
−16i,j61 ipi,j = 0). The polynomial d̃ in (3.5) and its roots {yℓ}16ℓ64 satisfysimilar properties. These fats, as well as Lemma 5 below, are proved in [6, Chapter 2℄.Lemma 5. The polynomial d is positive on (x2, x3) ∪ (x4, x1) and negative on (x1, x2) ∪

(x3, x4). Similarly, d̃ is positive on (y2, y3) ∪ (y4, y1) and negative on (y1, y2) ∪ (y3, y4).In what follows, we all X(y) and Y (x) the algebrai funtions de�ned by K(X(y), y) = 0and K(x, Y (x)) = 0. With (3.3)�(3.5) we have(3.6) X(y) =
−b̃(y) ± d̃(y)1/2

2ã(y)
, Y (x) =

−b(x) ± d(x)1/2

2a(x)
.The funtions X(y) and Y (x) both have two branhes, alled X0, X1 and Y0, Y1. Lemma 5says that these branhes are meromorphi on C\([x1, x2]∪[x3, x4]) and C\([y1, y2]∪[y3, y4]),respetively. We �x notation by requiring that

|X0| 6 |X1|, |Y0| 6 |Y1|.Let us �nally introdue(3.7) µj0(x) =
1

[2a(x)]j0

(j0−1)/2∑

k=0

(
2k + 1

j0

)
d(x)k[−b(x)]j0−(2k+1).This quantity appears in the expression of hi0,j0(x) that we shall give in Theorem 6. It islosely related to Y (x): sine d(x) is non-positive for x ∈ [x1, x2] ∪ [x3, x4], see Lemma 5,the two branhes (3.6) of Y (x) are omplex onjugates in these intervals. Expression (3.6)and some elementary alulations then yield(3.8) Y0(x)j0 − Y1(x)j0 = ±2i[−d(x)]1/2µj0(x).In order to determine the sign ± in (3.8), we have to speify whether x → [x1, x2]∪ [x3, x4]from above or below�remember that the branhes Y0(x) and Y1(x) are not meromorphion x ∈ [x1, x2] ∪ [x3, x4].3.2. Exat hitting probabilities. We shall now derive an expression for the generatingfuntion hi0,j0 de�ned in (3.1), for whih we �rst need to introdue a ertain onformalmapping. For this, de�ne the urve

X([y1, y2]) = X0([y1, y2]) ∪ X1([y1, y2]),with is symmetrial with respet to the real axis (sine for y ∈ [y1, y2], X0(y) and X1(y)are omplex onjugates, see Lemma 5 and (3.6)) and goes around the segment [x1, x2] (see[6, Theorem 5.3.3℄). Denote by
G X([y1, y2])the set bounded by X([y1, y2]), whih in addition ontains [x1, x2]. For instane, in the aseof the simple random walk (with p1,0 = p0,1 = p−1,0 = p0,−1 = 1/4), X([y1, y2]) is the unitirle (see [6, Theorem 5.3.3℄), hene G X([y1, y2]) is the unit dis, sine −1 6 x1, x2 6 1(see Subsetion 3.1).Let us now introdue a onformal gluing funtion for the set G X([y1, y2]), i.e., a funtion

w suh that
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• w is meromorphi in G X([y1, y2]);
• w establishes a onformal mapping of G X([y1, y2]) onto the omplex plane C utalong a segment;
• For all t on the boundary of G X([y1, y2]), i.e., for all t in X([y1, y2]), w(t) = w(t).For instane, if G X([y1, y2]) is the unit dis (whih is the ase for the simple random walk,see above), the funtion

w(t) =
t

(t − 1)2is a suitable onformal gluing funtion, as one an easily hek. In the general ase, theexistene of suh a funtion w follows from general results on onformal mappings [14℄, but�nding an expliit expression for w is in most ases a hallenging problem. However, forthe lass of walks at hand, we shall be able to �nd suitable funtions w; see (4.4) for theimportant zero-drift ase (2.2).Denote by w a onformal gluing funtion. With the notations of Subsetion 3.1, we havethe following result.Theorem 6. For x ∈ C \ (x3, x4),
hi0,j0(x) = xi0Y0(x)j0 +

1

π

∫ x2

x1

ti0µj0(t)

[
w′(t)

w(t) − w(x)
− w′(t)

w(t) − w(0)

]√
−d(t)dt.The proof of Theorem 6 is skethed in Subsetion 3.3. Theorem 6, together with thefat that Y0(1) = 1 (see [6, Equation (5.3.2)℄), yields(3.9) hi0,j0(1) = 1 +

1

π

∫ x2

x1

ti0µj0(t)

[
w′(t)

w(t) − w(1)
− w′(t)

w(t) − w(0)

]√
−d(t)dt.Thanks to (3.2), (3.9) immediately yields an expression for the hitting probability (2.1).3.3. Proof of Theorem 6. We only sketh the proof of Theorem 6, beause we largelymimi the proof in [12℄ for the ase of two positive drifts, i.e.,

∑
−16i,j61 ipi,j > 0,

∑
−16i,j61 jpi,j > 0.A lose examination of the proof in [12℄ makes lear that the result for positive driftsremains to hold in the zero-drift and negative-drift ases. The only di�erene betweenthese ases is that the onformal gluing funtion w introdued in Subsetion 3.2 will bedi�erent. To be somewhat more spei�, we now present the four main steps of the proofof Theorem 6, losely following the original approahes of [6℄ and [12℄.Step 0. Using simple reursion relations it an be shown that hi0,j0(x), h̃i0,j0(y) and

hi0,j0
0,0 satisfy the funtional equation (see [12, Setion 2℄)(3.10) hi0,j0(x) + h̃i0,j0(y) + hi0,j0

0,0 − xi0yj0 = K(x, y)×
∑

i,j>1

∑

n>0

P(i0,j0)[(X(n), Y (n)) = (i, j), (X,Y ) did not hit H ∪ V between 0 and n].Step 1. Thanks to the fundamental identity (3.10), we prove that hi0,j0(x) satis�es thefollowing boundary value problem. Let G X([y1, y2]) be the set introdued in Subsetion3.2. Then(i) hi0,j0 is holomorphi in G X([y1, y2]);



WALKS REACHING AGAINST ALL ODDS THE OTHER SIDE OF THE QUARTER PLANE 9(ii) For all t on the boundary of G X([y1, y2]),
hi0,j0(t) − hi0,j0(t) = ti0Y0(t)

j0 − ti0Y0(t)
j0 .The problem of �nding a funtion satisfying (i)�(ii) is a partiular instane of a boundaryvalue problem with shift (the omplex onjugation plays in (ii) the role of the shift), see[14℄ for an extensive treatment of this topi. Items (i) and (ii) follow from [6, Theorem6.5.2℄. Note that (ii) is easily proved: it essentially su�es to evaluate (3.10) both at X0(y)and X1(y), for all y ∈ [y1, y1]. In this way, the kernel K(x, y) vanishes, and in fat theright-hand side of (3.10) too. Finally, taking the di�erene of the equations orrespondingto X0(y) and X1(y) leads to (ii).Step 2. We transform the problem (i)�(ii) into a boundary value problem with aboundary ondition on a segment. This an be done via a onformal gluing funtionfor the set G X([y1, y2]) as disussed in Subsetion 3.2. We refer to [18, Setion 3℄ for moredetails.Step 3. The solution of the latter boundary value problem is elementary, see [14℄ or[18, Setion 3℄, and an be formulated in terms of Cauhy integrals. The expliit integralrepresentation of hi0,j0(x) follows. A similar expression an be obtained for h̃i0,j0(y).Remark. We an now elaborate on the reasons for assuming (H1) and (H3). First, if wewould allow larger jumps, we ould still obtain a funtional equation for the generatingfuntion of the hitting probabilities, but the tehnique that is used to solve (3.10) doesnot arry over. Further, �nding a onformal gluing funtion w requires introduing theRiemann surfae de�ned by

{(x, y) ∈ C
2 : K(x, y) = 0}.For small jumps as in (H1), this Riemann surfae has genus 0 or 1, see [6℄. If the jumps arelarger, the genus of this Riemann surfae inreases, and the problem of �nding w beomesmore intriate. The reason for assuming (H3) is that for p1,1+p−1,1+p−1,−1+p1,−1 = 1 it ispossible that the branhes (3.6) of the algebrai funtions X(y) and Y (x) are meromorphion the whole C. In this ase we annot state (and solve!) a boundary value problem, sinethis requires omplex onjugate branhes on some interval.4. Asymptoti analysisWe now prove Theorems 1�4, by asymptotially evaluating the integral expressions ofthe generating funtion hi0,j0 derived in Setion 3.4.1. Proof of Theorem 1 (zero-drift ase). Assume (2.2) and let a be de�ned as in(3.4), d as in (3.5), and(4.1) θ = arccos

(
−

∑
−16i,j61 ijpi,j

[
∑

−16i,j61 i2pi,j]1/2 · [∑
−16i,j61 j2pi,j]1/2

)
.Theorem 7. The onstant A in Theorem 1 is given by(4.2) [−d′′(1)]1/2

23/2θa(1)
.



10 JOHAN S.H. VAN LEEUWAARDEN AND KILIAN RASCHELIn order to prove Theorem 1 and Theorem 7, we �rst identify an appropriate onformalgluing funtion w for the domain G X([y1, y2]). De�ne(4.3) f(t) =

{
d′′(x4)/6 + d′(x4)/[t − x4] if x4 6= ∞,

d′′(0)/6 + d′′′(0)t/6 if x4 = ∞.The next two lemmas are taken from [8, Setion 2℄.Lemma 8. Let f be as in (4.3). In the zero-drift ase (2.2), the funtion w de�ned by(4.4) w(t) = sin

(
π

θ

[
arcsin

{[
1

3
− 2f(t)

d′′(1)

]
−1/2

}
− π

2

])2is a suitable onformal gluing funtion for the set G X([y1, y2]).This exat expression renders the behavior of w near t = 1.Lemma 9. Let w be as in (4.4) and θ as in (4.1). There exists an α 6= 0 suh that(4.5) w(t) =
α + o(1)

(1 − t)π/θ
, t ↑ 1.Proof of Theorem 1 and Theorem 7. Thanks to (3.2), it is enough to prove that

hi0,j0(1) = 1 − Aj0/i0 + O(1/i20)with A as in (4.2). First, sine w(1) = ∞ (see (4.5)) and sine x2 = 1 (see Subsetion 3.1),(3.9) yields(4.6) hi0,j0(1) = 1 − 1

π

∫ 1

x1

ti0µj0(t)
w′(t)

w(t) − w(0)

√
−d(t)dt.For t ∈ [x1, 1], we introdue(4.7) µj0(t)

√
−d(t) =

∑

k>1

αk(t − 1)k,
w′(t)

w(t) − w(0)
=
∑

k>−1

βk(t − 1)k.The �rst sum in (4.7) starts at k = 1 beause 1 is a double root of d. The seond sum in(4.7) starts at k = −1 beause w has a singularity at 1 of the kind (4.5). With (4.6) wethen obtain(4.8) hi0,j0(1) = 1 − 1

π

∫ 1

x1

ti0 [α1β−1 + (α2β−1 + α1β0)(t − 1) + . . .]dt.Sine, for p > 0, ∫ 1

x1

ti0(t − 1)p dt =
(−1)pp!

i1+p
0

+ O(i−2−p
0 ),we dedue that(4.9) hi0,j0(1) = 1 − α1β−1

πi0
+ O(i−2

0 ).It remains to identify α1 and β−1. First, sine w has a singularity of order π/θ at 1 (see(4.5)), it is immediate that β−1 = −π/θ. In addition, sine 1 is a double root of d, we



WALKS REACHING AGAINST ALL ODDS THE OTHER SIDE OF THE QUARTER PLANE 11obtain that α1 = µj0(1)[−d′′(1)/2]1/2 . Moreover, the equality d(1) = 0 together with (3.7)implies that
µj0(1) =

j0[−b(1)]j0−1

[2a(1)]j0
=

j0

2a(1)

[
c(1)

a(1)

](j0−1)/2

.The last identity follows from −b(1) = 2[a(1)c(1)]1/2 , whih indeed holds beause d(1) = 0and b(1) < 0. Moreover, under assumption (2.2) we have a(1) = c(1), in suh a way that
α1 = [j0/(2a(1))] · [−d′′(1)/2]1/2 . The proof is ompleted. �Remark. Theorem 1 provides �rst-order expansions of hi0,j0(1) and h̃i0,j0(1). By extendingour approah, we ould obtain expansions up to any order, see (4.6)�(4.9).Remark. Notie that d′′(1) < 0, so that A > 0, see (4.2). Indeed, it is proved in [6℄ thatunder (H1)�(H4) and (2.2), only two roots of d are equal to 1. In partiular, d′′(1) 6= 0.By ontinuity of d′′(1) with respet to the parameters {pi,j}−16i,j61, it is enough to hekthat for one walk, we have d′′(1) < 0. This an be easily done, for instane for the simplerandom walk.4.2. Proofs of Theorems 2-4 (negative-drift ase).Theorem 10. The onstants B(j0) and ρ in Theorem 2 are given by ρ = x2 and(4.10) B(j0) =

x
3/2
2√
2π

j0

2a(x2)

[
c(x2)

a(x2)

](j0−1)/2

d′(x2)
1/2β0,with β0 as in (4.14).Proof of Theorem 2 and Theorem 10. We now assume (2.4). For t ∈ [x1, x2] de�ne(4.11)

µj0(t)
√

−d(t) =
√

x2 − t
∑

k>0

αk(t − x2)
k,

w′(t)

w(t) − w(1)
− w′(t)

w(t) − w(0)
=
∑

k>0

βk(t − x2)
k.With (3.9) we then obtain

hi0,j0(1) = 1 +
1

π

∫ x2

x1

ti0[α0β0 + (α1β0 + α0β1)(t − x2) + . . .]
√

x2 − t dt.Sine, for p > 0,(4.12) ∫ x2

x1

ti0(x2 − t)1/2+p dt = Γ(p + 3/2)
x

3/2+i0+p
2

i
3/2+p
0

+ O(i
−5/2−p
0 ),we dedue that(4.13) hi0,j0(1) = 1 +

α0β0Γ(3/2)x
3/2+i0
2

πi
3/2
0

+ O(i
−5/2
0 ).In partiular, the fat that ρ = x2 ∈ (0, 1) is a diret onsequene of (2.4) and [6, Lemma2.3.9℄. It remains to identify α0 and β0. First, we obviously have α0 = d′(x2)

1/2µj0(x2),see (4.11). Further, the equality d(x2) = 0 together with (3.7) gives
µj0(x2) =

j0[−b(x2)]
j0−1

[2a(x2)]j0
=

j0

2a(x2)

[
c(x2)

a(x2)

](j0−1)/2

.



12 JOHAN S.H. VAN LEEUWAARDEN AND KILIAN RASCHELThe analysis of β0 is more elaborate and requires, aording to (4.11), a detailed desriptionof the onformal gluing funtion w for the set G X([y1, y2]). We shall make ruial use ofa onformal gluing funtion derived in [6, 12℄. Beause the desription of this onformalgluing funtion would require the introdution of many new symbols, we hoose to justgive some of its most important properties, and we refer to [12, Equation (16)℄ for its fullexpression. The properties of w we shall use here are the following (see [12, Proposition15℄):(P1) w has a simple pole at x2;(P2) The other possible poles of w are on (x2, x3) ∩ (X(y2),∞);(P3) The set w(Xℓ([y1, y2])) is a real interval without double points.Properties (P1) and (P2) together with (4.11) imply that(4.14) β0 =
w(0) − w(1)

limt→x2
[(t − x2)w(t)]

.This quantity is well de�ned (i.e., �nite): thanks to (P1), the denominator of (4.14) isnon-zero, and thanks to (P2) and sine 0 < x2 and 1 6 Xℓ(y2) (see Lemma 11), w(0) and
w(1) are �nite. To onlude, let us show that β0 is non-zero. For this, we �rst note thatboth 0 and 1 belong to the losure of G X([y1, y2]). Indeed, Xℓ(y1) 6 0, see [12, Lemma23℄, and Xℓ(y2) > 1, see Lemma 11. If 0 and 1 are in the open domain G X([y1, y2]), then
w(0) 6= w(1): indeed, by de�nition (see Subsetion 3.2), w is one-to-one in G X([y1, y2]). Ifeither 0 or 1 lies on the boundary of G X([y1, y2]), the latter reasoning still works. If both
0 and 1 lie on the boundary and if w(0) = w(1), (P3) gives w(Xℓ([y1, y2])) = R ∪ {∞}.The latter is a ontradition with the onnetedness of G X([y1, y2]). �Proof of Theorem 4. In this proof we assume (2.6). In partiular, this implies that x2 = 1and x3 > 1, see [6, Lemma 2.3.9℄. Moreover, (P1) then gives that the funtion w has asimple pole at 1, and the identity (4.6) still holds. For t ∈ [x1, 1], we introdue(4.15) µj0(t)

√
−d(t) =

√
1 − t

∑

k>0

αk(t − 1)k,
w′(t)

w(t) − w(0)
=
∑

k>−1

βk(t − 1)k.Equations (4.6) and (4.15) yield that
hi0,j0(1) = 1 − 1

π

∫ 1

x1

ti0 [α0β−1 + (α1β−1 + α0β0)(t − 1) + . . .]
1√

1 − t
dt.With (4.12), we obtain

hi0,j0(1) = 1 − Γ(1/2)α0β−1

πi
1/2
0

+ O(i
−3/2
0 ).Furthermore, the fat that w has a simple pole at 1 implies that β−1 = −1, and

α0 = d′(1)1/2µj0(1) = j0
d′(1)1/2

2a(1)
.In partiular, the onstant D in Theorem 4 is given by D = d′(1)1/2/(2

√
πa(1)). �Lemma 11. The quantity Xℓ(y2) is suh that:

• If ∑
−16i,j61 ipi,j < 0, then Xℓ(y2) > 1;

• If ∑
−16i,j61 ipi,j = 0, then Xℓ(y2) = 1.
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−16i,j61 ipi,j = 0 we have y2 = 1, see [6, Lemma 2.3.9℄, and, therefore, Xℓ(y2) =

Xℓ(1) = 1, see [6, Lemma 5.3.1℄. If we now assume that∑
−16i,j61 ipi,j < 0 and Xℓ(y2) = 1,then thanks to (3.6) we obtain that y2 is a solution to(4.16) ã(y) + b̃(y) + c̃(y) = 0.On the other hand, it is straightforward that 1 is a solution to (4.16)�this is indeed simplyequivalent to the equality ∑

−16i,j61 pi,j = 1. Using the root-oe�ient relationships, weobtain that the other root is c(1)/a(1) > 1. This ontradits the fat that y2 < 1, whihis proved in [6, Lemma 2.3.9℄. This means that Xℓ(y2) 6= 1. To prove that Xℓ(y2) > 1,it is enough to do this for one walk, using the ontinuity of the di�erent quantities withrespet to the parameters {pi,j}−16i,j61. This is easily done for, for example, walks with
p1,0 + p0,1 + p−1,0 + p0,−1 = 1. �Remark. The expression of β0 given in (4.14) an be onsiderably simpli�ed in someases: see [11, Theorem 7℄, [12, Remark 16℄ and [18, Theorem 3℄ for a list of ases wherethe onformal mapping w takes a partiular simple expression (those simple ases arepartiular instanes of walks for whih a ertain group of automorphisms in the sense ofMalyshev [16℄ is �nite). As an example, for walks with p1,0 + p0,1 + p−1,0 + p0,−1 = 1, wehave(4.17) w(t) =

(t − x1)(t − x4)

(t − x2)(t − x3)
.As another instane, for walks with p−1,1 + p1,0 + p0,−1 = 1 as in Figure 2, we have

w(t) =
t

(t − x2)(t − [p−1,1p0,−1/(p
2
1,0x2)]1/2)2

.Remark. The quantity B(j0) in (4.10) must be positive, sine it governs the asymptotibehavior of the hitting probabilities, see Theorem 3. As we shall see now, we an atuallyalso prove diretly the positivity of B(j0). First, sine both (2.4) and (2.6) imply d′(x2) < 0,we have that B(j0) > 0 if and only if β0 < 0�the latter inequality is not obvious from(4.14). In fat, sine β0 6= 0 (see the proof of Theorem 2 and Theorem 10), we an hekthat β0 < 0 on one partiular walk, by ontinuity of β0 with respet to the parameters
{pi,j}−16i,j61. This is easily done with the expression (4.17).Proof of Theorem 3. The proof of Theorem 3 is very similar to that of Theorem 2. First,
X([y1, y2]) is an ellipse [6, Theorem 6.3.1℄, and lassial expressions for the onformalgluing funtion are available [6, Equation (6.3.1)℄. We then transform this mapping by alinear transformation, in order to have a pole at x2. We all this new funtion w. Next,the integral representation of hi0,j0 in Theorem 6 remains to hold (see the four steps ofSubsetion 3.3). In partiular, the expansion of hi0,j0(1) given in (4.13) is still true. Asfor the onstants, ρ = x2, β0 is as in (4.14) and C(j0) has exatly the same expression as
B(j0) in (4.10). �5. Continuum limit for the zero-drift aseIn this setion we derive the ontinuum limit for the zero-drift random walks that satisfy(H1) and (2.2). As it turns out, the limiting proess is muh easier to analyze than theoriginal random walk, and in partiular, the hitting probability in (2.1) is obtained in a



14 JOHAN S.H. VAN LEEUWAARDEN AND KILIAN RASCHELstraightforward manner. In what follows, we write ∑i,j for ∑
−16i,j61, H for R+ and Vfor iR+. Moreover, let ⇒ denote onvergene in distribution.Theorem 12. We have

n−1/2(X(⌊nt⌋), Y (⌊nt⌋)t∈R+
⇒ (Xc, Y c) = (Xc

t , Y
c
t )t∈R+

, n → ∞with the generator of (Xc, Y c) given by(5.1) L =
1

2

[∑
i,j i2pi,j

∂2

∂x2
+ 2

∑
i,j ijpi,j

∂2

∂x∂y
+
∑

i,j j2pi,j
∂2

∂y2

]
.Proof. The generator (5.1) simply follows from studying the limit behavior of

1

ǫ

[∑
i,j pi,jf(x + iǫ, y + jǫ) − f(x, y)

]as ǫ → 0, for any funtion f regular enough; see [5℄. �Let(5.2) β =

[∑
i,j j2pi,j∑
i,j i2pi,j

]1/2

=

[
a(1) + c(1)

ã(1) + c̃(1)

]1/2with a, c, ã and c̃ as in (3.4). Investigating the ontinuum limit leads to the followingresult.Proposition 13. We have
P(x,y)[(X

c, Y c) hits V before H∗] =
1

θ
arctan

(
sin(θ)y

βx + cos(θ)y

)
,with θ as in (4.1).From Proposition 13 the following asymptoti result an be easily extrated.Corollary 14. For �xed y > 0, we have that(5.3) P(x,y)[(X

c, Y c) hits V before H∗] ∼ sin(θ)

βθ

y

x
, x → ∞.The next result shows the onstant term in (5.3) orresponds with the onstant term inthe asymptoti expression for the original zero-drift random walk.Proposition 15. Let A be the onstant in Theorem 1. Then

A =
[−d′′(1)]1/2

23/2θa(1)
=

sin(θ)

βθ
.Proof. Using (4.1) and (5.2), it is enough to show that(5.4) [−d′′(1)]1/2

23/2
= sin(θ)a(1)

[
ã(1) + c̃(1)

a(1) + c(1)

]1/2

= sin(θ)[a(1)ã(1)]1/2,where we have used that a(1) = c(1) and ã(1) = c̃(1), due to (2.2). Sine
sin(θ) = ±

(
1 −

[
∑

i,j ijpi,j ]
2

[
∑

i,j i2pi,j] · [
∑

i,j j2pi,j]

)1/2

= ±
(

1 −
[
∑

i,j ijpi,j ]
2

4a(1)ã(1)

)1/2

,
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−d′′(1)

8
=

(
1 −

[
∑

i,j ijpi,j ]
2

4a(1)ã(1)

)
a(1)ã(1),so that it su�es to prove that(5.5) −d′′(1)

2
= 4a(1)ã(1) − [

∑
i,j ijpi,j ]

2.Combining (3.4)�(3.5) yields
d′′(1) = 2b(1)b′′(1) + 2b′(1)2 − 8a′(1)c′(1) − 4a′′(1)c(1) − 4a(1)c′′(1).Sine a(1) = c(1) (see (2.2)) and a(1) + b(1) + c(1) = 0 (beause ∑i,j pi,j = 1), we obtain

d′′(1) = 2b′(1)2 − 8a′(1)c′(1) − 4a(1)[a′′(1) + b′′(1) + c′′(1)].Using that a′(1) + b′(1) + c′(1) = 0 (the fat that the drifts are zero indeed implies thatthe kernel K(x, 1) has a root of order two at 1, see Subsetion 3.1), we get
d′′(1) = 2[a′(1) − c′(1)]2 − 8a(1)[p1,1 + p1,0 + p1,−1] = 2[a′(1) − c′(1)]2 − 8a(1)ã(1),from whih (5.5) is an immediate onsequene. �Proof of Proposition 13. As in [1, Setion 5℄ we introdue(5.6) φ(x, y) = α(βx + cos(θ)y, sin(θ)y),where we have set(5.7) α =

1

[sin(θ)
∑

i,j j2pi,j]1/2
.The motivation of this de�nition is twofold (for a proof of the fats below, we refer to [1,Part 2℄):

• The ovariane of φ(Xc, Y c) is desribed by the identity matrix, so that φ(Xc, Y c)lies in the domain of attration of the standard Brownian motion;
• The funtion φ satis�es(5.8) L(g ◦ φ) =

1

2
∆g ◦ φ, ∆ =

∂2

∂u2
+

∂2

∂v2
.Introdue the notation (U c, V c) = φ(Xc, Y c). By (5.6), this random proess lives in theone(5.9) {ρ exp(iω) : 0 6 ρ < ∞, 0 6 ω 6 θ}.Another property of the proess (U c, V c) is that(5.10) P(x,y)[(X

c, Y c) hits V before H∗] = Pφ(x,y)[(U
c, V c) hits exp(iθ)H before H∗],and we shall now determine(5.11) P(u,v)[(U

c, V c) hits exp(iθ)H before H∗].Let us �rst prove that the probability (5.11) is harmoni inside of the one (5.9). For this,note that for (i0, j0) ∈ Z
2
+,∑

i,j pi,jP(i0+i,j0+j)[(X,Y ) hits V before H∗] = P(i0,j0)[(X,Y ) hits V before H∗].



16 JOHAN S.H. VAN LEEUWAARDEN AND KILIAN RASCHELAs a onsequene, on the positive quadrant we have
L
(
P(x,y)[(X

c, Y c) hits V before H∗]
)

= 0,with L as in (5.1). Thanks to (5.8), the probability (5.11) is then harmoni in the one(5.9). Therefore, we an searh for it as the imaginary part of a ertain holomorphifuntion H�unique, up to some real additive onstants. In other words,(5.12) P(u,v)[(U
c, V c) hits exp(iθ)H before H∗] = ℑ[H(u + iv)].To �nd this funtion H, we shall exploit the fat that we know its boundary values.Sine it is impossible (resp. ertain) for the proess (Xc, Y c) to be absorbed when startingfrom H∗ (resp. V), one must have
ℑ[H(z)] =

{
0 if z ∈ H∗,
1 if z ∈ exp(iθ)H∗.A suitable hoie for H is(5.13) H(z) =

1

θ
log(z),where log refers to the prinipal determination of the logarithm. This means, see [10℄, thatfor z ∈ C \ (−∞, 0] we have

log(z) = log(|z|) + i arg(z),where in the right-hand side above, log stands for the lassial logarithm funtion on (0,∞).For (5.12) and (5.13) we dedue that
P(u,v)[(U

c, V c) hits exp(iθ)H before H∗] =
1

θ
arctan

(v

u

)
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