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RANDOM WALKS REACHING AGAINST ALL ODDS THE OTHERSIDE OF THE QUARTER PLANEJOHAN S.H. VAN LEEUWAARDEN AND KILIAN RASCHELAbstra
t. For a homogeneous random walk in the quarter plane with nearest-neighbortransitions, starting from some state (i0, j0), we study the event that the walk rea
hesthe verti
al axis, before rea
hing the horizontal axis. We derive an exa
t expression forthe probability of this event, and derive an asymptoti
 expression for the 
ase when
i0 be
omes large, a situation in whi
h the event be
omes highly unlikely. The exa
texpression follows from the solution of a boundary value problem and is in terms of anintegral that involves a 
onformal gluing fun
tion. The asymptoti
 expression followsfrom the asymptoti
 evaluation of this integral. Our results �nd appli
ations in a modelfor nu
leosome shifting, the voter model and the asymmetri
 ex
lusion pro
ess.1. Introdu
tionConsider homogeneous random walks in the quarter plane with nearest-neighbortransitions. For su
h random walks, starting from some state (i0, j0), we study the eventof rea
hing the verti
al axis, before rea
hing the horizontal axis. We derive an exa
texpression for the probability of this event, and derive an asymptoti
 expression for the
ase when i0 be
omes large, a situation in whi
h the event be
omes highly unlikely. Weuse the 
lassi
al method of solving for the generating fun
tion via fun
tional equations andboundary value problems.Our primary motivation is the work of Opheusden and Redig [17℄ on the following one-dimensional parti
le system. Consider three parti
les in Z and let ηℓ(n) denote the positionof parti
le ℓ after n steps, with initial positions η1(0) < η2(0) < η3(0). The parti
les ea
hget a weight and are then equipped with the following dynami
s. At ea
h time step, oneof the parti
les is sele
ted with probabilities proportional to their weights. The 
hosenparti
le is then moved to either the left or the right, with equal probability. Denote by

X(n) = η2(n)−η1(n) and Y (n) = η3(n)−η2(n) the pair-wise distan
es. The dis
rete-timeMarkov 
hain (X(n), Y (n))n∈Z+
, with Z+ = {0, 1, . . .}, then 
learly is a random walk inthe quarter plane Z

2
+. In parti
ular, with parti
le two having weight ν and parti
les oneand three weights λ, one obtains the walk in Figure 1(a). For this walk Opheusden andRedig [17℄ studied the event of the Markov 
hain, starting from (X(0), Y (0)) = (14, 1),rea
hing the verti
al axis, before the horizontal axis. This event plays an important role instudying a nu
leosome shifting with respe
t to the DNA sequen
e. In [17℄ an asymptoti
expression was derived; see (2.3).Date: April 15, 2011.J.S.H. van Leeuwaarden: Department of Mathemati
s and Computer S
ien
e, Eindhoven University ofTe
hnology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. Email: j.s.h.v.leeuwaarden�tue.nl.K. Ras
hel: Fakultät für Mathematik, Universität Bielefeld, Postfa
h 100131, 33501 Bielefeld, Germany.Email: kras
hel�math.uni-bielefeld.de. 1
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(a) (b) (c)Figure 1. Walks 
onsidered in [17℄, [2℄ and [9℄, respe
tivelyAnother appli
ation of this work is the one-dimensional voter model. This latti
e-basedintera
ting parti
le systems is used to model the spread of an opinion through a stati
population via nearest-neighbor intera
tions, and �nds appli
ation in modeling 
ompetingspe
ies. It is a dis
rete-time pro
ess on {0, 1}Z, where ea
h site in Z is labeled either 0or 1. Two adja
ent sites (a pair) are 
alled an unlike pair when the labels are 01 or 10.The voter model then has the following dynami
s. At ea
h time step the model sele
tsuniformly at random from amongst all unlike pairs. The 
hosen pair is �ipped to either 00or 11, with equal 
han
e of ea
h. Sin
e our version of the voter model lives on the in�nitelatti
e, the ground state is the so-
alled Heaviside 
on�guration
. . . 111000 . . . ,and the initial 
on�guration is assumed to be one with a �nite number of unlike pairs. Forexample, with N the number of �nite blo
ks of zeros (or ones), a 
on�guration looks like

. . . 111

κ1︷︸︸︷
0000

σ1︷︸︸︷
1111

κ2︷︸︸︷
00

σ2︷ ︸︸ ︷
11111 . . .

κN︷ ︸︸ ︷
000000

σN︷︸︸︷
1111 000 . . . ,with κℓ (resp. σℓ) the size of the ℓth blo
k of zeros (resp. ones). It is 
lear that N is a non-in
reasing fun
tion of the time, sin
e more and more blo
ks will merge as time progresses.In fa
t, the Heaviside 
on�guration (N = 0) is an absorbing state. Therefore, for thevoter model, a 
ru
ial 
hara
teristi
 is the hitting time τ of the Heaviside 
on�guration.In [2℄ it is shown that E[τ3/2−ǫ] < ∞ and E[τ3/2+ǫ] = ∞, for any ǫ > 0 and any initial
on�guration. In proving the latter fa
t, it su�
es to 
onsider the 
ase N = 1, be
ause

N is non-in
reasing and hen
e the pro
ess always has to pass before absorption through
N = 1. Therefore, in [2℄ the pro
ess (κ1(n), σ1(n))n∈Z+

= (X(n), Y (n))n∈Z+
is 
onsidered,whi
h is 
learly a random walk in the quarter plane that is absorbed when it rea
hes theboundary {(0, 0)} ∪ {(i, 0) : i > 1} ∪ {(0, j) : j > 1}. De�ne Z

∗

+ = {1, 2, . . .}. With
pi,j = P

[
(X(n + 1), Y (n + 1)) = (X(n), Y (n)) + (i, j)

∣∣(X(n), Y (n)) ∈ Z
∗2
+

]
,the dynami
s of the voter model is des
ribed by p1,0 = p1,−1 = p0,−1 = p−1,0 = p−1,1 =

p0,1 = 1/6, see Figure 1(b). This random walk thus plays an important role in the votermodel. It des
ribes the situation in whi
h the last two remaining groups try to imposetheir opinions on ea
h other. This situation is in many 
ases rather persistent, parti
ularlywhen both groups are of 
onsiderable size; see [3℄ for some simulation results that supportthis fa
t. We are interested in the situation in whi
h one of the two groups forms a 
lear



WALKS REACHING AGAINST ALL ODDS THE OTHER SIDE OF THE QUARTER PLANE 3minority, and nevertheless, wins the battle with the other mu
h larger group. It is 
lear thatthis is a large deviations event, and it is for this event that we obtain pre
ise asymptoti
s.A third appli
ation of the results in this paper is the phenomenon of spontaneoussymmetry breaking in the asymmetri
 ex
lusion pro
ess. Godrè
he et al. [9℄ show thatin some limiting regime, this phenomenon 
an be formulated as the hitting probabilityof the random walk with the transitions as in Figure 1(
). Contrary to the �rst twoappli
ations, this random walk 
learly has a negative drift.Hen
e, in all three appli
ations, we are interested in random walks rea
hing the verti
alaxis, before the horizontal axis, in situations where rea
hing �rst the horizontal axis is mu
hmore likely. In the next se
tion we present our results for the probability of this event, forboth zero-drift and negative-drift random walks. We shall also dis
uss the 
onsequen
esfor the three appli
ations. 2. Main resultsDenote by (X,Y ) = (X(n), Y (n))n∈Z+
a random walk in the quarter plane Z

2
+, and let

P(i0,j0)[E ] be the probability of event E 
onditional on (X(0), Y (0)) = (i0, j0). Throughoutwe shall make the following assumption:(H1) The walk is homogeneous inside of the quarter plane, with transition probabilities
{pi,j}−16i,j61 to the eight nearest neighbors.Denote the horizontal and verti
al axes by

H = {(i, 0) : i > 0}, V = {(0, j) : j > 0},and de�ne H∗ = H \ {(0, 0)} and V∗ = V \ {(0, 0)}. The prin
ipal obje
t of study in thispaper is the probability(2.1) P(i0,j0)[(X,Y ) hits V before H∗],for whi
h we derive an exa
t expression, as well as an asymptoti
 expression for the largedeviations 
ase i0 → ∞.In this paper we shall for the most part restri
t to random walks (X,Y ) that, besides(H1), satisfy the following assumptions:(H2) In the list p1,1, p1,0, p1,−1, p0,−1, p−1,−1, p−1,0, p−1,1, p0,1, there are no three 
onse
-utive zeros;(H3) p1,1 + p−1,1 + p−1,−1 + p1,−1 < 1;(H4) The drifts are non-positive: ∑
−16i,j61 ipi,j 6 0 and ∑

−16i,j61 jpi,j 6 0.Assumption (H4) guarantees that the random walk will hit one of the boundaries withprobability one. With assumption (H1) and (H3) we 
an use the general framework forrandom walks in the quarter plane developed by Fayolle et al. [6℄ (see Subse
tion 3.3 formore details). Assumption (H2) ex
ludes degenerate random walks, whi
h 
an typi
allybe analyzed using easier methods.Here is our �rst main result.Theorem 1. Let (X,Y ) be a random walk satisfying (H1)�(H4). If(2.2) ∑
−16i,j61 ipi,j = 0 and ∑

−16i,j61 jpi,j = 0,there exists a 
onstant A ∈ (0,∞) su
h that
P(i0,j0)[(X,Y ) hits V before H∗] ∼ A

j0

i0
, i0 → ∞.
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tion 4 we present an expli
it expression for the 
onstant A in Theorem 1. For themodel in Figure 1(a) of nu
leosome shifting, an inspe
tion of Theorem 1 reveals(2.3) P(i0,j0)[(X,Y ) hits V before H∗] ∼

√
1 − ν2

(ν+λ)2

arccos( ν
ν+λ)

j0

i0
, i0 → ∞.Opheusden and Redig [17℄ were able to derive (2.3) using the following approa
h. First,one de�nes a generating fun
tion of whi
h the probabilities in (2.1) are the 
oe�
ients.They then show that this generating fun
tion satis�es a 
ertain fun
tional equation. Thisis the fun
tional equation that is ar
hetypal of random walks in the quarter plane, see(3.10). The fun
tional equation de�nes a 
hara
teristi
 
urve, and by 
onsidering itstangent points one 
an determine the dominant singularity of the generating fun
tion.The nature of this dominant singularities then gives the asymptoti
 de
ay, in this 
ase

O(1/i0). Hen
e, an asymptoti
 estimate for (2.1) is derived by studying a fun
tionalequation without having to solve it. The only drawba
k of this approa
h is that one
annot obtain the 
onstant term in the asymptoti
 expression, be
ause this would requirean exa
t expression for the generating fun
tion and an investigation of this exa
t expressionin the vi
inity of its dominant singularity. Despite this fa
t, Opheusden en Redig were ableto derive the 
onstant term in (2.3) by studying the 
ontinuum limit of the random walk.They 
onje
tured that the asymptoti
 behavior of the 
ontinuum limit is the same as forthe random walk, and provided strong numeri
al eviden
e. Here we provide the proof ofthis 
onje
ture.For the voter model in Figure 1(b), our Theorem 1 gives
P(i0,j0)[(X,Y ) hits V before H∗] ∼ 3

√
3

2π

j0

i0
, i0 → ∞.We next present a result for random walks with a negative drift.Theorem 2. Let (X,Y ) be a random walk satisfying (H1)�(H4). If(2.4) ∑

−16i,j61 ipi,j 6 0 and ∑
−16i,j61 jpi,j < 0,there exist 
onstants B(j0) ∈ (0,∞) and ρ ∈ (0, 1) su
h that

P(i0,j0)[(X,Y ) hits V before H∗] ∼ B(j0)
ρi0

i
3/2
0

, i0 → ∞.The same result 
an be shown to hold for random walks with no transitions to the North,North-East and East. Introdu
e the assumption(H2') p−1,1+p−1,0+p−1,−1+p0,−1+p1,−1 = 1, p−1,1 6= 0, p1,−1 6= 0 and p−1,1+p1,−1 6= 1,Note that this assumption is satis�ed by the random walk in Figure 1(
), and that (H1)and (H2') immediately render (H3) and (H4). We have the following result.Theorem 3. Let (X,Y ) be a random walk satisfying (H1) and (H2'). There exist 
onstants
C(j0) ∈ (0,∞) and ρ ∈ (0, 1) su
h that

P(i0,j0)[(X,Y ) hits V before H∗] ∼ C(j0)
ρi0

i
3/2
0

, i0 → ∞.
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Figure 2. A tandem queue.Expli
it expressions for the quantities B(j0), C(j0) and ρ in Theorem 2 and Theorem 3are derived in Se
tion 4. For the model of Godrè
he et al. [9℄ in Figure 1(
), Theorem 3yields(2.5) P(i0,j0)[(X,Y ) hits V before H∗] ∼ C(j0)
ρi0

i
3/2
0

, i0 → ∞with
ρ =

2

λ

[
1 − λ −

√
(1 − λ)(1 − 2λ)

]
.This result mat
h with Godrè
he et al. [9, Equation (6.41)℄. As in Opheusden and Redig[17℄, Godrè
he et al. [9℄ used a fun
tional equation to derive the term ρi0i

−3/2
0 in (2.5),but sin
e the fun
tional equation was not solved expli
itly, it was impossible to derive the
onstant term C(j0). We provide an exa
t expression for C(j0) in Theorem 10.Let us �nally present a result for random walk with a negative drift in the horizontaldire
tion, and zero drift in the verti
al dire
tion.Theorem 4. Let (X,Y ) be a random walk satisfying (H1)�(H4). If(2.6) ∑

−16i,j61 ipi,j < 0 and ∑
−16i,j61 jpi,j = 0,there exists a 
onstant D ∈ (0,∞) su
h that

P(i0,j0)[(X,Y ) hits V before H∗] ∼ D
j0

i
1/2
0

, i0 → ∞.An example of su
h a walk is displayed in Figure 2, with p1,0 = λ, p0,1 = ν and p−1,1 = νand assuming λ < ν. This walk represents the transitions of a tandem queue with Poissonarrivals at queue 1 with rate λ, exponential servi
es at both queues with mean 1/ν, and all
ustomers traversing from the �rst queue to the se
ond queue before leaving the system.In this 
ase (2.1) des
ribes the probability that, starting with i0 
ustomers in queue 1, and
j0 
ustomers in queue 2, queue 2 empties before queue 1. The 
onstant D is identi�ed inSe
tion 4 and for the tandem queue in Figure 2 takes the form

D =

√
ν − λ

πν
.The remainder of the paper is stru
tured as follows. We �rst derive, in Se
tion 3, anexpli
it expression for the probability (2.1), for whi
h we rely heavily on earlier work in[8, 12℄. In fa
t, this analysis leads to expressions for the generating fun
tions, of whi
h the
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oe�
ients, in terms of integrals that involve 
ertain 
onformalgluing fun
tions. In Se
tion 4 we prove Theorems 1�4 by asymptoti
ally evaluating theexa
t integral expressions for the generating fun
tions obtained in Se
tion 3. Finally,inspired by [17℄, we present the 
ontinuum limit for the zero-drift random walk in Se
tion5. This 
ontinuum limit allows for an easy and expli
it analysis of the type of eventdes
ribed in (2.1). We show that the 
onstant that arises in the 
ontinuum limit mat
heswith the exa
t 
onstant we obtain in our pre
ise asymptoti
 expression for (2.1). This seemsto suggest an inter
hange-of-limits, but establishing a formal proof of this fa
t remains anopen problem. 3. Exa
t integral representationsWe �rst derive an expli
it expression for the probability (2.1) in terms of integralrepresentations for the generating fun
tions
hi0,j0(x) =

∑

i>1

P(i0,j0)[(X,Y ) hits H before V∗ and at (i, 0)]xi−1,(3.1)
h̃i0,j0(y) =

∑

j>1

P(i0,j0)[(X,Y ) hits V before H∗ and at (0, j)]yj−1,

hi0,j0
0,0 = P(i0,j0)[(X,Y ) hits (0, 0) before H∗ ∪ V∗].Note that the probability (2.1) follows from(3.2) P(i0,j0)[(X,Y ) hits V before H∗] = h̃i0,j0(1) + hi0,j0

0,0 = 1 − hi0,j0(1).The se
ond equality in (3.2) is due to the fa
t that under (H1)�(H4), the pro
ess hits theboundary with probability 1, see [7℄. In Subse
tion 3.1 we introdu
e some 
lassi
al notionsregarding the framework in [6℄ that aims at solving fun
tional equations for the abovegenerating fun
tions using the theory of boundary value problems. This framework leadsto the results presented in Subse
tion 3.2.3.1. Basi
 properties of the kernel. A 
ommon and 
ru
ial quantity of interest in thestudy of walks with small steps (as in (H1)) in the quarter plane is the kernel(3.3) K(x, y) = xy[
∑

−16i,j61 pi,jx
iyj − 1].It 
an also be written as

K(x, y) = a(x)y2 + b(x)y + c(x) = ã(y)x2 + b̃(y)x + c̃(y),where(3.4)
a(x) =p1,1x

2+p0,1x+p−1,1, b(x) =p1,0x
2−x+p−1,0, c(x) =p1,−1x

2+p0,−1x+p−1,−1,

ã(y) = p1,1y
2+ p1,0y+ p1,−1, b̃(y) = p0,1y

2− y+ p0,−1, c̃(y) = p−1,1y
2+ p−1,0y+ p−1,−1.We de�ne(3.5) d(x) = b(x)2 − 4a(x)c(x), d̃(y) = b̃(y)2 − 4ã(y)c̃(y).Under (H1)�(H2), the polynomial d has degree three or four, and we denote its roots by

{xℓ}16ℓ64 with
|x1| 6 |x2| 6 |x3| 6 |x4|,
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an easily see that x1 ∈ (−1, 1) and that
x4 ∈ (1,∞)∪{∞}∪ (−∞,−1]. As for the roots x2 and x3, they are positive and su
h that
x1 < x2 6 1 6 x3. Furthermore, x2 = 1 (resp. x3 = 1) if and only if ∑

−16i,j61 jpi,j = 0(resp. ∑
−16i,j61 ipi,j = 0). The polynomial d̃ in (3.5) and its roots {yℓ}16ℓ64 satisfysimilar properties. These fa
ts, as well as Lemma 5 below, are proved in [6, Chapter 2℄.Lemma 5. The polynomial d is positive on (x2, x3) ∪ (x4, x1) and negative on (x1, x2) ∪

(x3, x4). Similarly, d̃ is positive on (y2, y3) ∪ (y4, y1) and negative on (y1, y2) ∪ (y3, y4).In what follows, we 
all X(y) and Y (x) the algebrai
 fun
tions de�ned by K(X(y), y) = 0and K(x, Y (x)) = 0. With (3.3)�(3.5) we have(3.6) X(y) =
−b̃(y) ± d̃(y)1/2

2ã(y)
, Y (x) =

−b(x) ± d(x)1/2

2a(x)
.The fun
tions X(y) and Y (x) both have two bran
hes, 
alled X0, X1 and Y0, Y1. Lemma 5says that these bran
hes are meromorphi
 on C\([x1, x2]∪[x3, x4]) and C\([y1, y2]∪[y3, y4]),respe
tively. We �x notation by requiring that

|X0| 6 |X1|, |Y0| 6 |Y1|.Let us �nally introdu
e(3.7) µj0(x) =
1

[2a(x)]j0

(j0−1)/2∑

k=0

(
2k + 1

j0

)
d(x)k[−b(x)]j0−(2k+1).This quantity appears in the expression of hi0,j0(x) that we shall give in Theorem 6. It is
losely related to Y (x): sin
e d(x) is non-positive for x ∈ [x1, x2] ∪ [x3, x4], see Lemma 5,the two bran
hes (3.6) of Y (x) are 
omplex 
onjugates in these intervals. Expression (3.6)and some elementary 
al
ulations then yield(3.8) Y0(x)j0 − Y1(x)j0 = ±2i[−d(x)]1/2µj0(x).In order to determine the sign ± in (3.8), we have to spe
ify whether x → [x1, x2]∪ [x3, x4]from above or below�remember that the bran
hes Y0(x) and Y1(x) are not meromorphi
on x ∈ [x1, x2] ∪ [x3, x4].3.2. Exa
t hitting probabilities. We shall now derive an expression for the generatingfun
tion hi0,j0 de�ned in (3.1), for whi
h we �rst need to introdu
e a 
ertain 
onformalmapping. For this, de�ne the 
urve

X([y1, y2]) = X0([y1, y2]) ∪ X1([y1, y2]),with is symmetri
al with respe
t to the real axis (sin
e for y ∈ [y1, y2], X0(y) and X1(y)are 
omplex 
onjugates, see Lemma 5 and (3.6)) and goes around the segment [x1, x2] (see[6, Theorem 5.3.3℄). Denote by
G X([y1, y2])the set bounded by X([y1, y2]), whi
h in addition 
ontains [x1, x2]. For instan
e, in the 
aseof the simple random walk (with p1,0 = p0,1 = p−1,0 = p0,−1 = 1/4), X([y1, y2]) is the unit
ir
le (see [6, Theorem 5.3.3℄), hen
e G X([y1, y2]) is the unit dis
, sin
e −1 6 x1, x2 6 1(see Subse
tion 3.1).Let us now introdu
e a 
onformal gluing fun
tion for the set G X([y1, y2]), i.e., a fun
tion

w su
h that
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• w is meromorphi
 in G X([y1, y2]);
• w establishes a 
onformal mapping of G X([y1, y2]) onto the 
omplex plane C 
utalong a segment;
• For all t on the boundary of G X([y1, y2]), i.e., for all t in X([y1, y2]), w(t) = w(t).For instan
e, if G X([y1, y2]) is the unit dis
 (whi
h is the 
ase for the simple random walk,see above), the fun
tion

w(t) =
t

(t − 1)2is a suitable 
onformal gluing fun
tion, as one 
an easily 
he
k. In the general 
ase, theexisten
e of su
h a fun
tion w follows from general results on 
onformal mappings [14℄, but�nding an expli
it expression for w is in most 
ases a 
hallenging problem. However, forthe 
lass of walks at hand, we shall be able to �nd suitable fun
tions w; see (4.4) for theimportant zero-drift 
ase (2.2).Denote by w a 
onformal gluing fun
tion. With the notations of Subse
tion 3.1, we havethe following result.Theorem 6. For x ∈ C \ (x3, x4),
hi0,j0(x) = xi0Y0(x)j0 +

1

π

∫ x2

x1

ti0µj0(t)

[
w′(t)

w(t) − w(x)
− w′(t)

w(t) − w(0)

]√
−d(t)dt.The proof of Theorem 6 is sket
hed in Subse
tion 3.3. Theorem 6, together with thefa
t that Y0(1) = 1 (see [6, Equation (5.3.2)℄), yields(3.9) hi0,j0(1) = 1 +

1

π

∫ x2

x1

ti0µj0(t)

[
w′(t)

w(t) − w(1)
− w′(t)

w(t) − w(0)

]√
−d(t)dt.Thanks to (3.2), (3.9) immediately yields an expression for the hitting probability (2.1).3.3. Proof of Theorem 6. We only sket
h the proof of Theorem 6, be
ause we largelymimi
 the proof in [12℄ for the 
ase of two positive drifts, i.e.,

∑
−16i,j61 ipi,j > 0,

∑
−16i,j61 jpi,j > 0.A 
lose examination of the proof in [12℄ makes 
lear that the result for positive driftsremains to hold in the zero-drift and negative-drift 
ases. The only di�eren
e betweenthese 
ases is that the 
onformal gluing fun
tion w introdu
ed in Subse
tion 3.2 will bedi�erent. To be somewhat more spe
i�
, we now present the four main steps of the proofof Theorem 6, 
losely following the original approa
hes of [6℄ and [12℄.Step 0. Using simple re
ursion relations it 
an be shown that hi0,j0(x), h̃i0,j0(y) and

hi0,j0
0,0 satisfy the fun
tional equation (see [12, Se
tion 2℄)(3.10) hi0,j0(x) + h̃i0,j0(y) + hi0,j0

0,0 − xi0yj0 = K(x, y)×
∑

i,j>1

∑

n>0

P(i0,j0)[(X(n), Y (n)) = (i, j), (X,Y ) did not hit H ∪ V between 0 and n].Step 1. Thanks to the fundamental identity (3.10), we prove that hi0,j0(x) satis�es thefollowing boundary value problem. Let G X([y1, y2]) be the set introdu
ed in Subse
tion3.2. Then(i) hi0,j0 is holomorphi
 in G X([y1, y2]);



WALKS REACHING AGAINST ALL ODDS THE OTHER SIDE OF THE QUARTER PLANE 9(ii) For all t on the boundary of G X([y1, y2]),
hi0,j0(t) − hi0,j0(t) = ti0Y0(t)

j0 − ti0Y0(t)
j0 .The problem of �nding a fun
tion satisfying (i)�(ii) is a parti
ular instan
e of a boundaryvalue problem with shift (the 
omplex 
onjugation plays in (ii) the role of the shift), see[14℄ for an extensive treatment of this topi
. Items (i) and (ii) follow from [6, Theorem6.5.2℄. Note that (ii) is easily proved: it essentially su�
es to evaluate (3.10) both at X0(y)and X1(y), for all y ∈ [y1, y1]. In this way, the kernel K(x, y) vanishes, and in fa
t theright-hand side of (3.10) too. Finally, taking the di�eren
e of the equations 
orrespondingto X0(y) and X1(y) leads to (ii).Step 2. We transform the problem (i)�(ii) into a boundary value problem with aboundary 
ondition on a segment. This 
an be done via a 
onformal gluing fun
tionfor the set G X([y1, y2]) as dis
ussed in Subse
tion 3.2. We refer to [18, Se
tion 3℄ for moredetails.Step 3. The solution of the latter boundary value problem is elementary, see [14℄ or[18, Se
tion 3℄, and 
an be formulated in terms of Cau
hy integrals. The expli
it integralrepresentation of hi0,j0(x) follows. A similar expression 
an be obtained for h̃i0,j0(y).Remark. We 
an now elaborate on the reasons for assuming (H1) and (H3). First, if wewould allow larger jumps, we 
ould still obtain a fun
tional equation for the generatingfun
tion of the hitting probabilities, but the te
hnique that is used to solve (3.10) doesnot 
arry over. Further, �nding a 
onformal gluing fun
tion w requires introdu
ing theRiemann surfa
e de�ned by

{(x, y) ∈ C
2 : K(x, y) = 0}.For small jumps as in (H1), this Riemann surfa
e has genus 0 or 1, see [6℄. If the jumps arelarger, the genus of this Riemann surfa
e in
reases, and the problem of �nding w be
omesmore intri
ate. The reason for assuming (H3) is that for p1,1+p−1,1+p−1,−1+p1,−1 = 1 it ispossible that the bran
hes (3.6) of the algebrai
 fun
tions X(y) and Y (x) are meromorphi
on the whole C. In this 
ase we 
annot state (and solve!) a boundary value problem, sin
ethis requires 
omplex 
onjugate bran
hes on some interval.4. Asymptoti
 analysisWe now prove Theorems 1�4, by asymptoti
ally evaluating the integral expressions ofthe generating fun
tion hi0,j0 derived in Se
tion 3.4.1. Proof of Theorem 1 (zero-drift 
ase). Assume (2.2) and let a be de�ned as in(3.4), d as in (3.5), and(4.1) θ = arccos

(
−

∑
−16i,j61 ijpi,j

[
∑

−16i,j61 i2pi,j]1/2 · [∑
−16i,j61 j2pi,j]1/2

)
.Theorem 7. The 
onstant A in Theorem 1 is given by(4.2) [−d′′(1)]1/2

23/2θa(1)
.



10 JOHAN S.H. VAN LEEUWAARDEN AND KILIAN RASCHELIn order to prove Theorem 1 and Theorem 7, we �rst identify an appropriate 
onformalgluing fun
tion w for the domain G X([y1, y2]). De�ne(4.3) f(t) =

{
d′′(x4)/6 + d′(x4)/[t − x4] if x4 6= ∞,

d′′(0)/6 + d′′′(0)t/6 if x4 = ∞.The next two lemmas are taken from [8, Se
tion 2℄.Lemma 8. Let f be as in (4.3). In the zero-drift 
ase (2.2), the fun
tion w de�ned by(4.4) w(t) = sin

(
π

θ

[
arcsin

{[
1

3
− 2f(t)

d′′(1)

]
−1/2

}
− π

2

])2is a suitable 
onformal gluing fun
tion for the set G X([y1, y2]).This exa
t expression renders the behavior of w near t = 1.Lemma 9. Let w be as in (4.4) and θ as in (4.1). There exists an α 6= 0 su
h that(4.5) w(t) =
α + o(1)

(1 − t)π/θ
, t ↑ 1.Proof of Theorem 1 and Theorem 7. Thanks to (3.2), it is enough to prove that

hi0,j0(1) = 1 − Aj0/i0 + O(1/i20)with A as in (4.2). First, sin
e w(1) = ∞ (see (4.5)) and sin
e x2 = 1 (see Subse
tion 3.1),(3.9) yields(4.6) hi0,j0(1) = 1 − 1

π

∫ 1

x1

ti0µj0(t)
w′(t)

w(t) − w(0)

√
−d(t)dt.For t ∈ [x1, 1], we introdu
e(4.7) µj0(t)

√
−d(t) =

∑

k>1

αk(t − 1)k,
w′(t)

w(t) − w(0)
=
∑

k>−1

βk(t − 1)k.The �rst sum in (4.7) starts at k = 1 be
ause 1 is a double root of d. The se
ond sum in(4.7) starts at k = −1 be
ause w has a singularity at 1 of the kind (4.5). With (4.6) wethen obtain(4.8) hi0,j0(1) = 1 − 1

π

∫ 1

x1

ti0 [α1β−1 + (α2β−1 + α1β0)(t − 1) + . . .]dt.Sin
e, for p > 0, ∫ 1

x1

ti0(t − 1)p dt =
(−1)pp!

i1+p
0

+ O(i−2−p
0 ),we dedu
e that(4.9) hi0,j0(1) = 1 − α1β−1

πi0
+ O(i−2

0 ).It remains to identify α1 and β−1. First, sin
e w has a singularity of order π/θ at 1 (see(4.5)), it is immediate that β−1 = −π/θ. In addition, sin
e 1 is a double root of d, we



WALKS REACHING AGAINST ALL ODDS THE OTHER SIDE OF THE QUARTER PLANE 11obtain that α1 = µj0(1)[−d′′(1)/2]1/2 . Moreover, the equality d(1) = 0 together with (3.7)implies that
µj0(1) =

j0[−b(1)]j0−1

[2a(1)]j0
=

j0

2a(1)

[
c(1)

a(1)

](j0−1)/2

.The last identity follows from −b(1) = 2[a(1)c(1)]1/2 , whi
h indeed holds be
ause d(1) = 0and b(1) < 0. Moreover, under assumption (2.2) we have a(1) = c(1), in su
h a way that
α1 = [j0/(2a(1))] · [−d′′(1)/2]1/2 . The proof is 
ompleted. �Remark. Theorem 1 provides �rst-order expansions of hi0,j0(1) and h̃i0,j0(1). By extendingour approa
h, we 
ould obtain expansions up to any order, see (4.6)�(4.9).Remark. Noti
e that d′′(1) < 0, so that A > 0, see (4.2). Indeed, it is proved in [6℄ thatunder (H1)�(H4) and (2.2), only two roots of d are equal to 1. In parti
ular, d′′(1) 6= 0.By 
ontinuity of d′′(1) with respe
t to the parameters {pi,j}−16i,j61, it is enough to 
he
kthat for one walk, we have d′′(1) < 0. This 
an be easily done, for instan
e for the simplerandom walk.4.2. Proofs of Theorems 2-4 (negative-drift 
ase).Theorem 10. The 
onstants B(j0) and ρ in Theorem 2 are given by ρ = x2 and(4.10) B(j0) =

x
3/2
2√
2π

j0

2a(x2)

[
c(x2)

a(x2)

](j0−1)/2

d′(x2)
1/2β0,with β0 as in (4.14).Proof of Theorem 2 and Theorem 10. We now assume (2.4). For t ∈ [x1, x2] de�ne(4.11)

µj0(t)
√

−d(t) =
√

x2 − t
∑

k>0

αk(t − x2)
k,

w′(t)

w(t) − w(1)
− w′(t)

w(t) − w(0)
=
∑

k>0

βk(t − x2)
k.With (3.9) we then obtain

hi0,j0(1) = 1 +
1

π

∫ x2

x1

ti0[α0β0 + (α1β0 + α0β1)(t − x2) + . . .]
√

x2 − t dt.Sin
e, for p > 0,(4.12) ∫ x2

x1

ti0(x2 − t)1/2+p dt = Γ(p + 3/2)
x

3/2+i0+p
2

i
3/2+p
0

+ O(i
−5/2−p
0 ),we dedu
e that(4.13) hi0,j0(1) = 1 +

α0β0Γ(3/2)x
3/2+i0
2

πi
3/2
0

+ O(i
−5/2
0 ).In parti
ular, the fa
t that ρ = x2 ∈ (0, 1) is a dire
t 
onsequen
e of (2.4) and [6, Lemma2.3.9℄. It remains to identify α0 and β0. First, we obviously have α0 = d′(x2)

1/2µj0(x2),see (4.11). Further, the equality d(x2) = 0 together with (3.7) gives
µj0(x2) =

j0[−b(x2)]
j0−1

[2a(x2)]j0
=

j0

2a(x2)

[
c(x2)

a(x2)

](j0−1)/2

.



12 JOHAN S.H. VAN LEEUWAARDEN AND KILIAN RASCHELThe analysis of β0 is more elaborate and requires, a

ording to (4.11), a detailed des
riptionof the 
onformal gluing fun
tion w for the set G X([y1, y2]). We shall make 
ru
ial use ofa 
onformal gluing fun
tion derived in [6, 12℄. Be
ause the des
ription of this 
onformalgluing fun
tion would require the introdu
tion of many new symbols, we 
hoose to justgive some of its most important properties, and we refer to [12, Equation (16)℄ for its fullexpression. The properties of w we shall use here are the following (see [12, Proposition15℄):(P1) w has a simple pole at x2;(P2) The other possible poles of w are on (x2, x3) ∩ (X(y2),∞);(P3) The set w(Xℓ([y1, y2])) is a real interval without double points.Properties (P1) and (P2) together with (4.11) imply that(4.14) β0 =
w(0) − w(1)

limt→x2
[(t − x2)w(t)]

.This quantity is well de�ned (i.e., �nite): thanks to (P1), the denominator of (4.14) isnon-zero, and thanks to (P2) and sin
e 0 < x2 and 1 6 Xℓ(y2) (see Lemma 11), w(0) and
w(1) are �nite. To 
on
lude, let us show that β0 is non-zero. For this, we �rst note thatboth 0 and 1 belong to the 
losure of G X([y1, y2]). Indeed, Xℓ(y1) 6 0, see [12, Lemma23℄, and Xℓ(y2) > 1, see Lemma 11. If 0 and 1 are in the open domain G X([y1, y2]), then
w(0) 6= w(1): indeed, by de�nition (see Subse
tion 3.2), w is one-to-one in G X([y1, y2]). Ifeither 0 or 1 lies on the boundary of G X([y1, y2]), the latter reasoning still works. If both
0 and 1 lie on the boundary and if w(0) = w(1), (P3) gives w(Xℓ([y1, y2])) = R ∪ {∞}.The latter is a 
ontradi
tion with the 
onne
tedness of G X([y1, y2]). �Proof of Theorem 4. In this proof we assume (2.6). In parti
ular, this implies that x2 = 1and x3 > 1, see [6, Lemma 2.3.9℄. Moreover, (P1) then gives that the fun
tion w has asimple pole at 1, and the identity (4.6) still holds. For t ∈ [x1, 1], we introdu
e(4.15) µj0(t)

√
−d(t) =

√
1 − t

∑

k>0

αk(t − 1)k,
w′(t)

w(t) − w(0)
=
∑

k>−1

βk(t − 1)k.Equations (4.6) and (4.15) yield that
hi0,j0(1) = 1 − 1

π

∫ 1

x1

ti0 [α0β−1 + (α1β−1 + α0β0)(t − 1) + . . .]
1√

1 − t
dt.With (4.12), we obtain

hi0,j0(1) = 1 − Γ(1/2)α0β−1

πi
1/2
0

+ O(i
−3/2
0 ).Furthermore, the fa
t that w has a simple pole at 1 implies that β−1 = −1, and

α0 = d′(1)1/2µj0(1) = j0
d′(1)1/2

2a(1)
.In parti
ular, the 
onstant D in Theorem 4 is given by D = d′(1)1/2/(2

√
πa(1)). �Lemma 11. The quantity Xℓ(y2) is su
h that:

• If ∑
−16i,j61 ipi,j < 0, then Xℓ(y2) > 1;

• If ∑
−16i,j61 ipi,j = 0, then Xℓ(y2) = 1.
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−16i,j61 ipi,j = 0 we have y2 = 1, see [6, Lemma 2.3.9℄, and, therefore, Xℓ(y2) =

Xℓ(1) = 1, see [6, Lemma 5.3.1℄. If we now assume that∑
−16i,j61 ipi,j < 0 and Xℓ(y2) = 1,then thanks to (3.6) we obtain that y2 is a solution to(4.16) ã(y) + b̃(y) + c̃(y) = 0.On the other hand, it is straightforward that 1 is a solution to (4.16)�this is indeed simplyequivalent to the equality ∑

−16i,j61 pi,j = 1. Using the root-
oe�
ient relationships, weobtain that the other root is c(1)/a(1) > 1. This 
ontradi
ts the fa
t that y2 < 1, whi
his proved in [6, Lemma 2.3.9℄. This means that Xℓ(y2) 6= 1. To prove that Xℓ(y2) > 1,it is enough to do this for one walk, using the 
ontinuity of the di�erent quantities withrespe
t to the parameters {pi,j}−16i,j61. This is easily done for, for example, walks with
p1,0 + p0,1 + p−1,0 + p0,−1 = 1. �Remark. The expression of β0 given in (4.14) 
an be 
onsiderably simpli�ed in some
ases: see [11, Theorem 7℄, [12, Remark 16℄ and [18, Theorem 3℄ for a list of 
ases wherethe 
onformal mapping w takes a parti
ular simple expression (those simple 
ases areparti
ular instan
es of walks for whi
h a 
ertain group of automorphisms in the sense ofMalyshev [16℄ is �nite). As an example, for walks with p1,0 + p0,1 + p−1,0 + p0,−1 = 1, wehave(4.17) w(t) =

(t − x1)(t − x4)

(t − x2)(t − x3)
.As another instan
e, for walks with p−1,1 + p1,0 + p0,−1 = 1 as in Figure 2, we have

w(t) =
t

(t − x2)(t − [p−1,1p0,−1/(p
2
1,0x2)]1/2)2

.Remark. The quantity B(j0) in (4.10) must be positive, sin
e it governs the asymptoti
behavior of the hitting probabilities, see Theorem 3. As we shall see now, we 
an a
tuallyalso prove dire
tly the positivity of B(j0). First, sin
e both (2.4) and (2.6) imply d′(x2) < 0,we have that B(j0) > 0 if and only if β0 < 0�the latter inequality is not obvious from(4.14). In fa
t, sin
e β0 6= 0 (see the proof of Theorem 2 and Theorem 10), we 
an 
he
kthat β0 < 0 on one parti
ular walk, by 
ontinuity of β0 with respe
t to the parameters
{pi,j}−16i,j61. This is easily done with the expression (4.17).Proof of Theorem 3. The proof of Theorem 3 is very similar to that of Theorem 2. First,
X([y1, y2]) is an ellipse [6, Theorem 6.3.1℄, and 
lassi
al expressions for the 
onformalgluing fun
tion are available [6, Equation (6.3.1)℄. We then transform this mapping by alinear transformation, in order to have a pole at x2. We 
all this new fun
tion w. Next,the integral representation of hi0,j0 in Theorem 6 remains to hold (see the four steps ofSubse
tion 3.3). In parti
ular, the expansion of hi0,j0(1) given in (4.13) is still true. Asfor the 
onstants, ρ = x2, β0 is as in (4.14) and C(j0) has exa
tly the same expression as
B(j0) in (4.10). �5. Continuum limit for the zero-drift 
aseIn this se
tion we derive the 
ontinuum limit for the zero-drift random walks that satisfy(H1) and (2.2). As it turns out, the limiting pro
ess is mu
h easier to analyze than theoriginal random walk, and in parti
ular, the hitting probability in (2.1) is obtained in a



14 JOHAN S.H. VAN LEEUWAARDEN AND KILIAN RASCHELstraightforward manner. In what follows, we write ∑i,j for ∑
−16i,j61, H for R+ and Vfor iR+. Moreover, let ⇒ denote 
onvergen
e in distribution.Theorem 12. We have

n−1/2(X(⌊nt⌋), Y (⌊nt⌋)t∈R+
⇒ (Xc, Y c) = (Xc

t , Y
c
t )t∈R+

, n → ∞with the generator of (Xc, Y c) given by(5.1) L =
1

2

[∑
i,j i2pi,j

∂2

∂x2
+ 2

∑
i,j ijpi,j

∂2

∂x∂y
+
∑

i,j j2pi,j
∂2

∂y2

]
.Proof. The generator (5.1) simply follows from studying the limit behavior of

1

ǫ

[∑
i,j pi,jf(x + iǫ, y + jǫ) − f(x, y)

]as ǫ → 0, for any fun
tion f regular enough; see [5℄. �Let(5.2) β =

[∑
i,j j2pi,j∑
i,j i2pi,j

]1/2

=

[
a(1) + c(1)

ã(1) + c̃(1)

]1/2with a, c, ã and c̃ as in (3.4). Investigating the 
ontinuum limit leads to the followingresult.Proposition 13. We have
P(x,y)[(X

c, Y c) hits V before H∗] =
1

θ
arctan

(
sin(θ)y

βx + cos(θ)y

)
,with θ as in (4.1).From Proposition 13 the following asymptoti
 result 
an be easily extra
ted.Corollary 14. For �xed y > 0, we have that(5.3) P(x,y)[(X

c, Y c) hits V before H∗] ∼ sin(θ)

βθ

y

x
, x → ∞.The next result shows the 
onstant term in (5.3) 
orresponds with the 
onstant term inthe asymptoti
 expression for the original zero-drift random walk.Proposition 15. Let A be the 
onstant in Theorem 1. Then

A =
[−d′′(1)]1/2

23/2θa(1)
=

sin(θ)

βθ
.Proof. Using (4.1) and (5.2), it is enough to show that(5.4) [−d′′(1)]1/2

23/2
= sin(θ)a(1)

[
ã(1) + c̃(1)

a(1) + c(1)

]1/2

= sin(θ)[a(1)ã(1)]1/2,where we have used that a(1) = c(1) and ã(1) = c̃(1), due to (2.2). Sin
e
sin(θ) = ±

(
1 −

[
∑

i,j ijpi,j ]
2

[
∑

i,j i2pi,j] · [
∑

i,j j2pi,j]

)1/2

= ±
(

1 −
[
∑

i,j ijpi,j ]
2

4a(1)ã(1)

)1/2

,
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−d′′(1)

8
=

(
1 −

[
∑

i,j ijpi,j ]
2

4a(1)ã(1)

)
a(1)ã(1),so that it su�
es to prove that(5.5) −d′′(1)

2
= 4a(1)ã(1) − [

∑
i,j ijpi,j ]

2.Combining (3.4)�(3.5) yields
d′′(1) = 2b(1)b′′(1) + 2b′(1)2 − 8a′(1)c′(1) − 4a′′(1)c(1) − 4a(1)c′′(1).Sin
e a(1) = c(1) (see (2.2)) and a(1) + b(1) + c(1) = 0 (be
ause ∑i,j pi,j = 1), we obtain

d′′(1) = 2b′(1)2 − 8a′(1)c′(1) − 4a(1)[a′′(1) + b′′(1) + c′′(1)].Using that a′(1) + b′(1) + c′(1) = 0 (the fa
t that the drifts are zero indeed implies thatthe kernel K(x, 1) has a root of order two at 1, see Subse
tion 3.1), we get
d′′(1) = 2[a′(1) − c′(1)]2 − 8a(1)[p1,1 + p1,0 + p1,−1] = 2[a′(1) − c′(1)]2 − 8a(1)ã(1),from whi
h (5.5) is an immediate 
onsequen
e. �Proof of Proposition 13. As in [1, Se
tion 5℄ we introdu
e(5.6) φ(x, y) = α(βx + cos(θ)y, sin(θ)y),where we have set(5.7) α =

1

[sin(θ)
∑

i,j j2pi,j]1/2
.The motivation of this de�nition is twofold (for a proof of the fa
ts below, we refer to [1,Part 2℄):

• The 
ovarian
e of φ(Xc, Y c) is des
ribed by the identity matrix, so that φ(Xc, Y c)lies in the domain of attra
tion of the standard Brownian motion;
• The fun
tion φ satis�es(5.8) L(g ◦ φ) =

1

2
∆g ◦ φ, ∆ =

∂2

∂u2
+

∂2

∂v2
.Introdu
e the notation (U c, V c) = φ(Xc, Y c). By (5.6), this random pro
ess lives in the
one(5.9) {ρ exp(iω) : 0 6 ρ < ∞, 0 6 ω 6 θ}.Another property of the pro
ess (U c, V c) is that(5.10) P(x,y)[(X

c, Y c) hits V before H∗] = Pφ(x,y)[(U
c, V c) hits exp(iθ)H before H∗],and we shall now determine(5.11) P(u,v)[(U

c, V c) hits exp(iθ)H before H∗].Let us �rst prove that the probability (5.11) is harmoni
 inside of the 
one (5.9). For this,note that for (i0, j0) ∈ Z
2
+,∑

i,j pi,jP(i0+i,j0+j)[(X,Y ) hits V before H∗] = P(i0,j0)[(X,Y ) hits V before H∗].
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onsequen
e, on the positive quadrant we have
L
(
P(x,y)[(X

c, Y c) hits V before H∗]
)

= 0,with L as in (5.1). Thanks to (5.8), the probability (5.11) is then harmoni
 in the 
one(5.9). Therefore, we 
an sear
h for it as the imaginary part of a 
ertain holomorphi
fun
tion H�unique, up to some real additive 
onstants. In other words,(5.12) P(u,v)[(U
c, V c) hits exp(iθ)H before H∗] = ℑ[H(u + iv)].To �nd this fun
tion H, we shall exploit the fa
t that we know its boundary values.Sin
e it is impossible (resp. 
ertain) for the pro
ess (Xc, Y c) to be absorbed when startingfrom H∗ (resp. V), one must have
ℑ[H(z)] =

{
0 if z ∈ H∗,
1 if z ∈ exp(iθ)H∗.A suitable 
hoi
e for H is(5.13) H(z) =

1

θ
log(z),where log refers to the prin
ipal determination of the logarithm. This means, see [10℄, thatfor z ∈ C \ (−∞, 0] we have

log(z) = log(|z|) + i arg(z),where in the right-hand side above, log stands for the 
lassi
al logarithm fun
tion on (0,∞).For (5.12) and (5.13) we dedu
e that
P(u,v)[(U

c, V c) hits exp(iθ)H before H∗] =
1

θ
arctan

(v

u

)
.Thanks to (5.6) and (5.10), the proof of Proposition 13 is then 
ompleted. �A
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