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ANALYSIS OF A TWO-LEVEL SCHWARZ METHOD WITH COARSE

SPACES BASED ON LOCAL DIRICHLET–TO–NEUMANN MAPS

VICTORITA DOLEAN, FRÉDÉRIC NATAF, ROBERT SCHEICHL, AND NICOLE SPILLANE

Abstract. Coarse grid correction is a key ingredient in order to have scalable domain
decomposition methods. For smooth problems, the theory and practice of such two-level
methods is well established, but this is not the case for problems with complicated variation
and high contrasts in the coefficients. Stable coarse spaces for high contrast problems are
also important purely for approximation purposes, when it is not desirable to resolve all
the fine scale variations in the problem. In a previous study, two of the authors introduced
a coarse space adapted to highly heterogeneous coefficients using the low frequency modes
of the subdomain DtN maps. In this work, we present a rigorous analysis of a two-level
overlapping additive Schwarz method (ASM) with this coarse space, which provides an
automatic criterion for the number of modes that need to be added per subdomain to obtain
a convergence rate of the order of the constant coefficient case. Our method is suitable for
parallel implementation and its efficiency is demonstrated by numerical examples on some
challenging problems with high heterogeneities for automatic partitionings.

1. Introduction

When using an iterative method in a one-level domain decomposition framework, one may
encounter a long stagnation or a slow convergence even in the case where physical coefficients
are homogeneous: convergence deteriorates when the number of subdomains increases. This
is a problem since, to perform well, one needs to have a scalable algorithm, i.e., an algorithm
whose convergence rate is weakly dependent on the number of subdomains, see [34] and
references therein. In order to achieve scalability, global information on the solution needs
to be shared between subdomains. This process takes the form of a coarse space correction
leading to a two-level algorithm or preconditioner. The BPS preconditioner introduced
by Bramble, Paschiak and Schatz [1] is of this type. We can also mention the two-level
overlapping Schwarz and the balancing Neumann-Neumann preconditioner, as well as the
FETI algorithm, which have been extensively investigated, see [34] and references therein.
The abstract analysis of two-level overlapping Schwarz methods, which we will use, is due
to [9]. For symmetric systems the balancing preconditioner was proposed by Mandel [20].
The FETI algorithm was first introduced by [13].

The definition of a two-level preconditioner is closely related to its key ingredient: the
choice of an appropriate coarse space. Our goal here is to build such a coarse space in the
context of domain decomposition methods for elliptic problems with highly heterogeneous
coefficients. When the jumps in the coefficients are across subdomain interfaces or inside the
subdomains (and not near their boundaries), classical coarse spaces give good results, see
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e.g. [8, 21, 28, 26, 6, 7]. However, when the discontinuities are along subdomain interfaces,
classical results break down. This is what we work to improve.

In previous work, [23], two of the authors proposed the construction of a coarse subspace,
which leads to a two-level method that is observed to be robust with respect to heterogeneous
coefficients for fairly arbitrary domain decompositions, e.g. provided by an automatic graph
partitioner such as METIS or SCOTCH [19, 5]. This method was extensively studied from a
numerical point of view in [24]. The construction is based on the low-frequency modes asso-
ciated with the Dirichlet-to-Neumann (DtN) map on each subdomain. After obtaining the
eigenvectors associated with the near-kernel components of the DtN operator, we use their
harmonic extensions to the whole subdomain to build the coarse grid. With this method,
even for discontinuities along (rather than across) the subdomain interfaces, the iteration
counts are robust to arbitrarily large jumps of the coefficients leading to a very efficient, au-
tomatic method for these kinds of problems. It is also suitable for parallel implementation.
Similar ideas to build stable coarse spaces, based on the solution of eigenvalue problems on
the whole subdomain, have also been presented in other papers on Schwarz methods [15, 10],
as well as in earlier work on algebraic multigrid methods [2, 4].

In this paper we will analyze the two-level preconditioner proposed in [23] theoretically. In
order to do this, we will use the framework of weighted Poincaré inequalities, introduced and
successfully applied to different domain decomposition methods in [29, 30, 27, 14, 32, 33].
Our analysis is inspired by the techniques in [15], as well as by the abstract framework
developed in [33]. However, the DtN coarse space is better designed to deal with coefficient
variations that are strictly interior to the subdomain, leading to a smaller dimension than
the coarse space proposed in [15]. Only heuristic ideas are given in [15] to overcome this
problem. For our coarse space we have a rigorous justification. The result that we obtain,
generalizes the classical estimates of overlapping Schwarz methods to the case where the
coarse space is richer than just the constant mode per domain [25], or other classical coarse
spaces (cf. [34]).

The rest of the paper is organized as follows. In Section 2 we introduce the general
framework. The model problem, its discretization and some weighted norms, depending on
the coefficients, are introduced in Section 2.1. Then the decomposition into subdomains, the
overlapping Schwarz method and some weighted Poincaré inequalities, including a new trace
result, are presented in Sections 2.2–2.3. In Section 3 the new coarse space is presented, at
local and global level, and theoretical stability results are shown (e.g. stability of the coarse
space projectors), then a condition number estimate of the two-level method based on the
existence of a stable decomposition is given in Theorem 3.5. Extensive numerical results for
rather hard test cases are given in Section 4, followed by some conclusions in Section 5.

2. Preliminaries and notation

2.1. Model problem and discretization. We consider the variational formulation of a
second order, elliptic boundary value problem with Dirichlet boundary conditions: Find
u∗ ∈ H1

0 (Ω), for a given polygonal (polyhedral) domain Ω ⊂ IRd (d = 2 or 3) and a source
term f ∈ L2(Ω), such that

(2.1)

∫

Ω

α(x) ∇u∗ · ∇v

︸ ︷︷ ︸

≡ a(u∗, v)

=

∫

Ω

f(x)v(x)

︸ ︷︷ ︸

≡ (f, v)

, for all v ∈ H1
0 (Ω).
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Ω1 Ω2

Figure 1. Coefficient α varying along and across the interface.

We are interested in the case where the diffusion coefficient α = α(x) is a positive piecewise
constant function that may have large variations within Ω, especially with discontinuities
along and across the subdomain interfaces (see Figure 1). To be precise, we assume that the
domain is a union of polygonal (polyhedral) subdomains Yl, such that:

Ω =
⋃m

l=1 Y l and α(x) = αl, for all x ∈ Yl and l = 1, . . . , m.

For any domain D ⊂ Ω we need the usual norms, with the standard notations ‖ · ‖L2(D),
| · |H1(D) and ‖ · ‖H1(D), as well as the L2 inner product (v, w)L2(D). In addition to this, we
need to define some related weighted quantities, which will be very useful in the following:

• the weighted H1 (or energy) norm

(2.2) |v|2a,D =

∫

D

α(x)|∇v|2.

Note that if v ∈ H1
0 (D) this is indeed a norm, and for v ∈ H1(D) this is only a

seminorm. We denote the seminorm by | · |a,D.
• the weighted L2 norm

(2.3) ‖v‖2
0,α,D =

∫

D

α(x)v2.

• the weighted L2 inner product

(v, w)0,α,D =

∫

D

α(x)vw.

When D = Ω we omit the domain from the subscript and write ‖ · ‖a and ‖ · ‖0,α instead of
‖ · ‖a,Ω and ‖ · ‖0,α,Ω , respectively.

Finally, we will also need averages and norms defined on (d − 1)–dimensional manifolds
X ⊂ IRd, namely for any v ∈ L2(X) and for any β ∈ L∞(X) we define

vX :=
1

|X|

∫

X

u and ‖v‖0,β,X :=

∫

X

βv2.

We consider a discretization of the variational problem (2.1) with continuous, piecewise
linear finite elements (FE). To define the FE spaces and the approximate solution, we as-
sume that we have a shape regular, simplicial triangulation Th of Ω. We assume that this
triangulation also resolves Yl, namely, for l = 1, . . . , m we have:

(2.4) Ω =
⋃

τ∈Th
τ and Y l =

⋃

τ∈Th,l
τ,
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where Th,l ⊂ Th, for l = 1, . . . , m. The standard space of continuous and piecewise linear
(w.r.t Th) functions is then denoted by Vh, and the subspace of functions from Vh that vanish
on the boundary of Ω by Vh,0. In our analysis, we will also need restrictions of FE functions
into subdomains D ⊂ Ω that are resolved by Th. The space of restrictions of the functions in
Vh to D is denoted by Vh(D). Similarly, the space of restrictions of functions from Vh, which
are supported in D̄ is denoted by Vh,0(D). Thus, Vh(D) ⊂ H1(D) and Vh,0(D) ⊂ H1

0 (D). Ih

denotes the standard nodal value interpolation operator from C(D) to Vh(D).
To finish this section let us write the discrete FE problem that we want to solve: Find

uh ∈ Vh,0 such that

(2.5) a(uh, vh) = (f, vh), for all vh ∈ Vh,0.

In the description and in the analysis of our preconditioners we will frequently switch
between this variational point of view of the problem and a purely algebraic one. For
that matter, let {φi}n

i=1 be the usual basis for Vh,0 consisting of nodal “hat” functions with
n := dim(Vh,0). Then (2.5) can be compactly written as

(2.6) Au = f ,

where Ai,j := a(φj, φi), fi = (f, φi), i, j = 1, . . . , n and u is the vector of coefficients
corresponding to the unknown FE function uh in (2.5). In the following we will often switch
between matrices and their corresponding bilinear forms, e.g. A and a(·, ·), as well as between
coefficient vectors in IRn and their corresponding FE functions in Vh,0, e.g. u and uh. We
use boldface for vectors and roman for FE functions.

Throughout the paper, the notation E . F (for two quantities E, F ) means that E/F is
bounded above independently, not only of the mesh size h and the method specific parameters
(such as diam(Ωj) and δj , defined below for j = 1, . . . , J), but also of the values of the
coefficient α(x) at all x ∈ Ω. Moreover E h F means that E . F and E . F .

2.2. Automatic domain decomposition and partitions of unity. In order to automat-
ically construct robust two-level Schwarz type methods for (2.5) we first partition our domain
Ω into a set of non-overlapping subdomains {Ω′

j}
J
j=1 using for example a graph partitioner

such as METIS or SCOTCH[19, 5]. Each subdomain Ω′
j is then extended to a domain Ωj by

adding one or several layers of fine grid elements, thus creating an overlapping decomposition
{Ωj}J

j=1 of Ω. For the moment we only assume that each point x in Ω is contained in at
most N0 subdomains.

We also need a partition of unity of functions {χj}
J
j=1 defined on Ω, subordinate to the

overlapping decomposition {Ωj}J
j=1. To construct such a partition of unity automatically we

define first, for each fine grid node xi ∈ Ω, the index set N (xi) that contains the indices of
all the domains Ωj that contain xi. Then, for each subdomain Ωj we define χj ∈ Vh,0(Ωj)
by setting

(2.7) χj(xi) :=
dist(xi, ∂Ωj)

∑

k∈N (xi)
dist(xi, ∂Ωk)

, at all fine grid nodes xi ∈ Ωj .

Clearly these functions form a partition of unity on Ω and satisfy 0 ≤ χj ≤ 1. Moreover, if

Ω◦
j := {x ∈ Ωj : χj(x) < 1}
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denotes the boundary layer of Ωj that is overlapped by neighbouring domains, then it is also
easy to verify that

(2.8) |∇χj| . δ−1
j

where δj denotes the width of Ω◦
j at the narrowest place.

We now state the assumption that links the distribution of the values of the coefficient
α(x) of the PDE and the domain partitioning.

Assumption 2.1. We assume that each Ω◦
j , j = 1, . . . , J , can be subdivided into regions

Djk, k = 1, . . . , Kj , such that diam(Djk) h δj and |Djk| h δd
j , and such that, for each k,

there exists a (d − 1)–dimensional manifold Xk ⊂ ∂Ωj ∩ Djk with the following properties:
(i) |Xk| h δd−1

j , (ii) maxx,y∈Xk
α(x)/α(y) = O(1) and (iii) there exists a path Py from each

y ∈ Djk to Xk, such that α(x) is an increasing function along Py (from y to Xk). Without
loss of generality, we assume that the triangulation Th resolves each of the regions Djk and
each of the manifolds Xk. See Figure 2 for some typical examples where the assumption is
either verified or not verified.

Remark 2.2. Following [29, 30], if condition (iii) in Assumption 2.1 holds, α(x) is called
quasi-monotone on Djk with respect to Xk. It implies that the manifold Xk lies in the
closure of the region Yl, where α takes its maximum on Djk. This quasi-monotonicity is
similar to the classical quasi-monotonicity defined in [8], if we can cluster the points in Djk

into shape-regular subregions Y of diameter h δj, where the coefficient variation is O(1), and
if we can then find a path PY with minimum diameter & δj from Y to Xk such that α(x) is
an increasing function along PY (from Y to Xk). If one of these paths PY is connected only
via an m-dimensional manifold, m < d − 1, then we call α(x) type-m quasi-monotone on
Djk with respect to Xk. Assumption 2.1 provides only a sufficient condition for the theory
below. It is not a necessary condition and various generalizations and extensions similar to
those in [27] could be considered. We will not do this here.

The following two lemmas, based on Assumption 2.1, are crucial in the analysis below.

Lemma 2.3. Let Assumption 2.1 be satisfied. Then there exists a uniform constant CP > 0
independent of the values of α(x), such that the following weighted Poincaré–type inequality
holds for all j = 1, . . . , J and k = 1, . . . , Kj:

‖v − vXk‖0,α,Djk
≤ CP δj |v|a,Djk

, for all v ∈ Vh(Djk).

The constant CP is independent of h, δj and diam(Ωj), if α(x) satisfies the classical quasi-
monotonicity condition (cf. Remark 2.2) on all Djk. It depends on log(δj/h) (resp. δj/h), if
α(x) is only type-(d − 2) (resp. type-(d − 3)) quasi-monotone on any Djk, k = 1, . . . , Kj.

Proof. Theorem 2.2 and Theorem 3.3 in [29]. �

Lemma 2.4. Let Assumption 2.1 be satisfied and trjα(x) := lim
y∈Ωj→x

α(y), for a.e. x ∈ ∂Ωj .

Then

‖u‖2
0,α,Ω◦

j
. C2

P δ2
j |u|

2
a,Ω◦

j
+ δj‖u‖

2
0,trjα,∂Ωj

, for all u ∈ Vh(Ω
◦
j ).

If α(x) satisfies the classical quasi-monotonicity condition (cf. Remark 2.2) on all Djk, then
the statement holds for all u ∈ H1(Ω◦

j ).
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δ

verified

δ

not verified

or

Figure 2. Overlap region between two subdomains with high-permeability
inclusions, such that Assumption 2.1 is verified (left) and not verified (right).

Proof. Let {Djk}
Kj

k=1 be the partitioning of Ω◦
j in Assumption 2.1 and let Xk be the (d− 1)–

dimensional manifold associated with Djk. Let ‖α‖∞,Djk
:= esssup{α(x) : x ∈ Djk}. Then

it follows from Lemma 2.3, as well as the triangle and the Cauchy-Schwarz inequalities, that

1
2
‖u‖2

0,α,Djk
≤ ‖u − uXk‖2

0,α,Djk
+ ‖uXk‖2

0,α,Djk

≤ C2
P δ2

j |u|
2
a,Djk

+
|Djk|

|Xk|2
‖α‖∞,Djk

(∫

Xk
u
)2

≤ C2
P δ2

j |u|
2
a,Djk

+
|Djk|

|Xk|
‖α‖∞,Djk

∫

Xk
u2

. C2
P δ2

j |u|
2
a,Djk

+ δj ‖u‖
2
0,α,Xk

.

In the last step, we have used Assumption 2.1, i.e. |Djk|/|Xk| . δj , α(x) attains its maximum
on Djk in a set containing Xk, and maxx,y∈Xk

α(x)/α(y) = O(1). The final result follows
by summing over k = 1, . . . , Kj. �

2.3. Two-level overlapping Schwarz method. Having defined overlapping subdomains
in Section 2.2, one-level Schwarz-type preconditioners for (2.5) or (2.6) can now simply be
introduced by defining restriction operators Rj from functions in Vh,0 to functions in Vh,0(Ωj)
or from vectors in IRn to vectors in IRnj , where nj := dim Vh,0(Ωj). As usual we use simple
injection, i.e. for any u ∈ Vh,0 we set (Rju)(xi) = u(xi) for every grid node xi ∈ Ωj . In
matrix notation the one-level overlapping additive Schwarz preconditioner is now simply

M−1
AS,1 =

J∑

j=1

RT
j A−1

j Rj where Aj := RjART
j .

This preconditioner is particularly well suited for preconditioning parallel iterative solvers,
such as conjugate gradients (CG) for (2.6), since all the subdomain solves can be carried out
independently of each other. However, the condition number and thus the number of CG
iterations grow with the number of subdomains J . Thus, it is essential to include a second,
coarse level in the preconditioner.

Let us assume that we have a subspace VH ⊂ Vh,0 and a restriction operator RH from
Vh,0 to VH . Then the two-level overlapping additive Schwarz preconditioner can be defined
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similarly to M−1
AS,1 as

M−1
AS,2 = RT

HA−1
H RH +

J∑

j=1

RT
j A−1

j Rj where AH := RHART
H .

In the classical algorithm VH consists simply of FEs on a coarser triangulation TH of Ω and
RH is the canonical restriction from Vh,0 to VH , leading to a fully scalable iterative method
(provided minj δj h H). However, unfortunately this preconditioner is not fully robust to
strong variations in the coefficient α and many recent articles, such as [16, 31, 15, 33, 35],
have attempted to propose and analyse alternative choices for VH and RH that lead to a
fully robust algorithm. In the next section, we will present a new, completely local approach
to construct such a coarse space and such a restriction using eigenvectors of local Dirichlet-
to-Neumann maps proposed in [23, 24].

Several alternative versions of these simple additive preconditioners exist, including the
multiplicative Schwarz preconditioner, hybrid versions, deflation based coarse grid correction,
or the restricted additive Schwarz (RAS) preconditioner [3]. We will only analyse the additive
preconditioner, but we note that all the other symmetric versions can be analysed in the
same way. The RAS variant is slightly different since it leads to a nonsymmetric iteration,
but we will see in Section 4 that it behaves in a similar way and can often give slightly better
results than the classical additive version above.

3. Coarse space construction based on local Dirichlet-to-Neumann maps

Our coarse space and the restriction operator will be constructed by defining a suitable set
of basis functions {Φk}N

k=1 with N usually larger than J , such that VH = span{Φk}N
k=1 and

the restriction RH is the canonical restriction associated with this basis. The construction
we propose, is to some extent inspired by two observations, already made elsewhere, namely

• that robust coarse space basis functions can in many cases be obtained on standard
simplicial meshes by harmonically extending suitable boundary data to the interior
of coarse mesh elements [16],

• that local spectral information about the underlying differential operator can be used
to obtain fully robust coarse spaces [15, 33].

While the coarse spaces in [16] are not able to deal with completely general piecewise constant
coefficients, the spaces in [15] are often too large, especially when there are many small,
isolated inclusions with large coefficient values. The coarse space presented here suffers
from neither of these drawbacks since it is based on local spectral information (so it is
parallelizable), and relies on minimal size interface information (only “absolutely necessary”
modes are taken into account in the coarse space). This interface information is then further
extended harmonically to the interior of the subdomains.

3.1. Local coarse space construction. To build a coarse space VH for (2.5) we will first
construct local basis functions on each subdomain Ωj . To this end, let us fix j ∈ {1, . . . , J}
and first consider at the continuous level the Dirichlet-to-Neumann map DtNj on the bound-
ary of Ωj . Let Γ := ∂Ωj and let vΓ : Γ → IR (such that vΓ|∂Ω = 0 if Γ ∩ ∂Ω 6= ∅). We
define

DtNj(vΓ) := α
∂v

∂nj

∣
∣
∣
∣
Γ

,
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ΩiΩi−1 Ωi+1

Figure 3. 1D example with many high coefficient inclusions per subdomain.

where nj is the unit outward normal to Ωj on Γ, and v satisfies

(3.1)
−div(α∇v) = 0 in Ωj ,

v = vΓ on Γ .

We see that DtNj maps the Dirichlet data vΓ on Γ to Neumann data (fluxes) on Γ. The
function v is the α–harmonic extension of the boundary data vΓ to the interior of Ωj . To
construct the (local) coarse basis functions, we use the low frequency modes of the Dirichlet
to Neumann operator DtNj with respect to the weighted L2–norm on Γ, i.e. the smallest
eigenvalues of

(3.2) DtNj(vΓ) = λ α vΓ.

For simplicity let us consider an interior subdomain Ωj that does not touch the (Dirichlet)
boundary of the global domain Ω. The other case carries through in a similar way.

Instead of looking for an eigenpair of equation (3.2) and then compute v the harmonic
extension of vΓ, we directly search for the pair (v, λ). It is straightforward to check that it
satisfies:

(3.3)
−div(α∇v) = 0 in Ωj ,

α
∂v

∂nj

= λ α v on Γ .

The variational formulation of (3.3) is: Find (v, λ) ∈ H1(Ωj) × IR such that

(3.4)

∫

Ωj

α∇v · ∇w = λ

∫

Γ

trjα v w , ∀w ∈ H1(Ωj)

where trjα is as defined in Lemma 2.4.

Remark 3.1. We note a clear relationship with the work of Galvis and Efendiev [15]. How-
ever, the significant difference lies in the fact that the latter uses local spectral basis func-
tions associated with the eigenproblem −div(α∇v) = λαv, posed on the entire subdomain
Ωj , which will always lead to a larger number of potentially critical eigenmodes. We can
easily illustrate this using the one-dimensional example in Figure 3: whatever the number
of islands in the interior of Ωj , our DtN coarse space consists of two vectors per subdomain
at most, since the DtN map is a two by two matrix which has two eigenvectors.
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To obtain the discrete form of the generalized eigenvalue problem (3.4), we consider the
bilinear forms aj : H1(Ωj) × H1(Ωj) → IR

aj(v, w) :=

∫

Ωj

α∇v · ∇w and m(v, w) :=

∫

Γ

trjα v w , ∀w ∈ H1(Ωj) .

With a finite element basis {φk}, the coefficient matrix of the variational form aj is

A
(j)
kl =

∫

Ωj

α∇φk · ∇φl.

Note that, for the whole domain Ω, the coefficient matrix is given by

Akl =

∫

Ω

α∇φk · ∇φl.

Let I (resp. Γ) be the set of indices corresponding to the interior (resp. boundary) degrees
of freedom and nΓ := #Γ the number of interface degrees of freedom. With block notations,
we have

A
(j)
I I = AI I, A

(j)
ΓI = AΓI and A

(j)
I Γ = AI Γ .

The matrix A
(j)
ΓΓ 6= AΓΓ, since it refers to the matrix prior to assembly with the neighboring

subdomains. Therefore, it cannot simply be extracted from the coefficient matrix A.
Let M be the weighted mass matrix on Γ corresponding to the variational form m i.e.,

(M)kl :=

∫

Γ

trjαφk φl .

Then we can write down the finite element approximation to generalized eigenproblem (3.4)
in matrix notation

(3.5) A(j)V = λMV

where V denotes the degrees of freedom of the finite element approximation to v.
To define the discrete action of the DtN map, let now vΓ,h :=

∑

k∈Γ VΓ,k φk be some
predescribed piecewise linear boundary data on Γ with coefficient vector VΓ ∈ R

nΓ, and let
Vh :=

∑

k∈I VI,k φk +
∑

l∈Γ VΓ,l φl ∈ Vh(Ωj) be its discrete harmonic extension. In matrix
notation, the finite element approximation top (3.1) reads AI IUI + AI ΓUΓ = 0, leading to
the usual discrete α-harmonic extension

(3.6) UI = −A−1
I I AI ΓUΓ.

We introduce

(MΓ)kl :=

∫

Γ

trjαφk φl , for all k, l ∈ Γ .

Thus we have,

A
(j)
ΓΓ VΓ + AΓIVI = λMΓVΓ ,

and using the discrete α-harmonic extension (3.6), the discrete form of (3.2) is a generalised
eigenvalue problem

(3.7) SΓVΓ = λ MΓVΓ .

for the Schur complement SΓ := A
(j)
ΓΓ − AΓIA

−1
I I AI Γ. Let the nΓ eigenpairs (λ

(j)
ℓ ,VΓ,ℓ)

nΓ

ℓ=1

corresponding to (3.7) be numbered in increasing order of λ
(j)
ℓ . Since matrices SΓ and MΓ

are symmetric the eigenvectors VΓ,ℓ, ℓ = 1, . . . , nΓ, are orthogonal in the SΓ and in the MΓ
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inner products. Note that SΓ is symmetric positive semidefinite and that in the case of an
interior subdomain, there is exactly one eigenvalue that is 0 with constant eigenvector.

Note that

(3.8) A(j)V
(j)
ℓ = λ

(j)
ℓ

[
0

0

0

MΓ

]

V
(j)
ℓ = M V

(j)
ℓ

and so V
(j)
ℓ is an eigenvector corresponding to the eigenvalue λ

(j)
ℓ of generalized eigenproblem

(3.5). Moreover, since

(

V
(j)
k

)T

A(j)V
(j)
ℓ =

[
−A−1

I I AI ΓVΓ,k

VΓ,k

]T [
0

SΓVΓ,ℓ

]

= VT
Γ,kSΓVΓ,ℓ = 0,

the vectors {V(j)
ℓ }nΓ

ℓ=1 are A(j)-orthogonal. Let us assume further, that they are normalised

in the A(j)-norm, such that ‖V(j)
ℓ ‖A(j) = 1. Since (A(j))−1

[
0
0

0
MΓ

]

has only got nΓ nonzero

eigenvalues, all the remaining eigenvalues of (3.8) are ∞, and so the smallest eigenvalues in
(3.7) are also the smallest eigenvalues of (3.8).

The local coarse space is now defined as the span of the finite element functions v
(j)
ℓ ∈

Vh(Ωj), ℓ ≤ mj ≤ nΓ, corresponding to the first mj eigenpairs of (3.8). For any u ∈ Vh(Ωj),

we can define the projection on span{v(j)
ℓ }

mj

ℓ=1 by

(3.9) Πju :=

mj∑

ℓ=1

aj

(

v
(j)
ℓ , u

)

v
(j)
ℓ ,

which is stable and satisfies a weak approximation property, as the following theorem shows.

Theorem 3.2. Let Assumption 2.1 hold. Then, for any u ∈ Vh(Ωj),

|Πju|a,Ωj
≤ |u|a,Ωj

and(3.10)

‖u − Πju‖0,α,Ω◦

j
.

√

cj(mj) δj |u|a,Ωj
,(3.11)

where cj(mj) := C2
P +

(

δjλ
(j)
mj+1

)−1

.

Proof. The stability estimate (3.10) follows immediately from the fact that Πj is an a(j)-
orthogonal projection. To prove (3.11) let us first apply Lemma 2.4, i.e.

(3.12) ‖u − Πju‖
2
0,α,Ω◦

j
. CP δ2

j |u − Πju|
2
a,Ω◦

j
+ δj‖u − Πju‖

2
0,trjα,Γ ,

It follows from the triangle inequality and (3.10) that

(3.13) |u − Πju|
2
a,Ω◦

j
≤ |u − Πju|

2
a,Ωj

. |u|2a,Ωj

and so it only remains to bound ‖u − Πju‖2
0,trjα,Γ.

To do this, let us extend the set {v(j)
ℓ }nΓ

ℓ=1 to an aj-orthonormal basis of Vh(Ωj) by adding

nj = dimVh,0(Ωj) = #I suitable functions v
(j)
nΓ+ℓ, ℓ = 1, . . . , nj , and write

(3.14) u =

nj+nΓ∑

ℓ=1

aj

(

v
(j)
ℓ , u

)

v
(j)
ℓ .
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IsoValue
-42104.2
21053.6
63158.8
105264
147369
189474
231580
273685
315790
357895
400000
442106
484211
526316
568421
610527
652632
694737
736842
842105

Figure 4. Coefficient distribution on a subdomain Ωj for a two-dimensional
model problem with high-permeability inclusions.

The restriction of the functions {v(j)
ℓ }nΓ

ℓ=1 to the boundary Γ forms a complete basis of Vh(Γ).

This implies that v
(j)
nΓ+ℓ ≡ 0 on Γ, for all ℓ = 1, . . . , nj. Moreover, it follows from the definition

of the eigenproblem (3.7) that the functions {v(j)
ℓ }nΓ

ℓ=1 are orthogonal also in the (·, ·)0,trjα,Γ

inner product. Therefore

‖u − Πju‖
2
0,trjα,Γ =

nΓ∑

ℓ=mj+1

a
(

v
(j)
ℓ , u

)2

‖v(j)
ℓ ‖2

0,trjα,Γ =

nΓ∑

ℓ=mj+1

1

λ
(j)
ℓ

a
(

v
(j)
ℓ , u

)2

(3.15)

≤
1

λ
(j)
mj+1

nΓ∑

ℓ=1

a
(

v
(j)
ℓ , u

)2

=
1

λ
(j)
mj+1

|u|2a,Ωj

and the result follows from (3.12), (3.13) and (3.15). �

As explained in previous work (cf. [24]), we only include eigenvectors with eigenvalues
smaller than diam(Ωj)

−1 in the construction of the coarse space. In the constant coefficient
case, the smallest eigenvalue of the DtN map is zero and it corresponds to the constant func-
tion 1. For a shape regular subdomain, the first positive eigenvalue is of order diam(Ωj)

−1,
see [12]. In the heterogeneous case, due to the variation of the coefficients we may possibly
have positive eigenvalues smaller than O

(
diam(Ωj)

−1
)
. Thus, in order to have a convergence

behavior similar to that in the constant coefficient case, it is natural to keep all eigenvectors
with eigenvalues smaller than diam(Ωj)

−1.

Remark 3.3. We consider now the two-dimensional permeability field α of a subdomain
shown in Figure 4. We show in Figure 5 a typical eigenvector used in [15] (left plot) and
a typical generalized eigenvector introduced in our paper (right plot). We note that the
eigenvectors used in the coarse space construction in the DtN case are related only to the
high-permeability islands that cross the boundaries of the local domain. Whereas for the
coarse space considered in [15] it is related to the islands in the interior of the subdomain
and thus their number is substantially larger.

3.2. Global coarse space construction, stability and interpolation estimates. Using
the partition of unity defined in Section 2.2, we now combine the local basis functions
constructed in the previous section to obtain a coarse space VH ⊂ Vh,0 on all of Ω.
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Figure 5. Eigenvector of the full subdomain eigenproblem for the model
problem in Figure 4 used in the coarse space construction in [15] (left) and
eigenvector of the interface-DtN map used in our construction here (right).

For any Ωj , 1 ≤ j ≤ J , let Πj be the projection onto the first mj local DtN eigenvectors
defined in (3.9) and let χj be the partition of unity function associated with Ωj defined
in (2.7). The new coarse space is now defined as

VH := span{ΦH
j,ℓ : 1 ≤ j ≤ J and 1 ≤ ℓ ≤ mj} , where ΦH

j,ℓ := Ih(χjv
(j)
ℓ )

and Ih is the standard nodal interpolant onto Vh,0(Ω). The dimension of VH is
∑J

j=1 mj . By
construction each of the functions Φj,ℓ ∈ Vh0, so that as required VH ⊂ Vh,0.

For a given function u ∈ Vh,0, we introduce the coarse interpolant of u as

(3.16) u0 := Ih

(
J∑

j=1

χjΠju|Ωj

)

∈ VH .

In the following, to ease the presentation when there is no confusion and it is clear from the
context, we will simply denote the restriction u|Ωj

of u onto Ωj by u, and write, e.g., Πju
instead of Πju|Ωj

.
The following theorem is key to proving the robustness of this coarse space construction.

Theorem 3.4. Let u ∈ Vh,0 be given and let u0 ∈ VH be the coarse grid interpolant of u,
defined in (3.16). Then there are functions uj ∈ Vh,0(Ωj), j = 1, . . . , J , such that

u =

J∑

j=0

uj and

J∑

j=0

‖uj‖
2
a .

J
max
j=1

{cj(mj)} ‖u‖
2
a ,

i.e. there exists a stable splitting of u.

Proof. We choose uj := Ih(χj(u − Πju)). Then clearly, since by definition u =
∑J

j=1 χju,

J∑

j=1

uj =

J∑

j=1

Ih(χj(u − Πju)) = Ih

(
J∑

j=1

χju

)

−
J∑

j=1

Ih (χjΠju) = u − u0 .
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It follows from a simple application of the triangle inequality that

(3.17)

J∑

j=0

‖uj‖
2
a ≤ ‖u − u0‖

2
a + ‖u‖2

a +

J∑

j=1

‖uj‖
2
a

Since the interpolant Ih is stable with respect to the a-norm (cf. [33, Lemma 2.3]) and since
each point is overlapped by at most N0 domains, we have

‖u − u0‖
2
a =

∥
∥
∥Ih

(

u −
J∑

j=1

χjΠju
)∥
∥
∥

2

a
.
∥
∥
∥u −

J∑

j=1

χjΠju
∥
∥
∥

2

a
.

J∑

j=1

‖χj(u − Πju)‖2
a

Substituting this into (3.17) and using the definition of uj as well as the a-stability of the
interpolant Ih we get

(3.18)

J∑

j=0

‖uj‖
2
a .

J∑

j=1

‖χj(u − Πju)‖2
a + ‖u‖2

a

Note that supp{χj} = Ωj and supp{∇χj} = Ω
◦

j . Thus, using triangle inequality and product
rule

(3.19)

J∑

j=1

‖χj(u − Πju)‖2
a .

J∑

j=1

‖χj‖
2
∞|u − Πju|

2
a,Ωj

+ ‖∇χj‖
2
∞‖u − Πju‖

2
0,α,Ω◦

j

.

J∑

j=1

|u|2a,Ωj
+ |Πju|

2
a,Ωj

+ δ−2
j ‖u − Πju‖

2
0,α,Ω◦

j
.

Note that in the last part we used the property of the partition of unity (2.8).
Since it was assumed that each point x ∈ Ω is contained in at most N0 subdomains, we

can now use Theorem 3.2 to deduce from (3.18) and (3.19) that

J∑

j=0

‖uj‖
2
a . ‖u‖2

a +
J∑

j=1

|u|2a,Ωj
cj(mj) .

J
max
j=1

{cj(mj)} ‖u‖
2
a ,

which ends the proof. �

As usual (see e.g. [34]), the existence of a stable splitting established in Theorem 3.4
together with the hypothesis that each point x ∈ Ω is contained in at most N0 subdomains
is sufficient to deduce the following bound on the condition number of M−1

AS,2A from the
abstract Schwarz theory.

Theorem 3.5. Let Assumption 2.1 be satisfied. Then the condition number of the two-level
Schwarz algorithm with a coarse space based on local DtN maps can be bounded by

κ(M−1
AS,2A) .

J
max
j=1

{cj(mj)} .

(

C2
P +

J
max
j=1

1

δjλ
(j)
mj+1

)

.

The hidden constant is independent of h, δj, and diam(Ωj), as well as any jumps in α.
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Figure 6. Subdomain partitioning into 16 subdomains using METIS.

Remark 3.6. Note that, by choosing the number mj of modes per subdomain in the coarse

space as discussed at the end of Section 3.1, i.e. such that λ
(j)
mj+1 ≥ diam(Ωj)

−1, the method
we implement in the next section satisfies

κ(M−1
AS,1A) .

(

C2
P +

J
max
j=1

diam(Ωj)

δj

)

.

Hence, provided the weighted Poincaré constant CP in Assumption 2.1 is uniformly bounded,
independently of any jumps in the coefficients, we retrieve the classical estimate for the
Additive Schwarz Method. An interesting observation is that the bound depends only in an
additive way on the constant CP and on the ratio of subdomain diameter to overlap.

4. Numerical Results

We solve the model problem (2.1) on the domain Ω = [0, 1]2 using standard continuous,
piecewise linear (P1) finite elements. The diffusion α is a function of x. The boundary
condition is u = 0 on the left side boundary and ∂u

∂n
= 0 on the remainder. The corresponding

discretizations and data structures were obtained by using the software FreeFem++ [18] in
connection with the METIS partitioner [19]. We will test the standard additive Schwarz (AS)
and the restricted additive Schwarz (RAS) preconditioners with and without coarse space,
in particular comparing the new coarse space based on harmonic extensions of eigenvectors
of the local DtN operators with the standard coarse space that is the piecewise constant
space of Nicolaides [25]. We test the method on (fairly irregular) overlapping partitions into
J subdomains. These overlapping partitions are built by adding layers to non-overlapping
ones obtained, e.g., via graph partitioner METIS (see Figure 6). Extensive numerical results
have been presented in a previous paper [24]. Here we present only a selection of difficult
test cases, with so called inclusions and channels.

In order to compare our method to existing codes we solve two test cases with known
difficulties. The diffusion coefficient α is highly heterogeneous, it takes values between 1 and
approximately 2 × 106 and contains both high-permeability inclusions and channels. First
of all we will analyze the performance of the method by increasing the number of channels
and then by increasing the number of inclusions.
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IsoValue
-47367.4
23685.2
71053.6
118422
165790
213159
260527
307895
355264
402632
450001
497369
544737
592106
639474
686842
734211
781579
828947
947368

IsoValue
-99998.9
50001
150001
250001
350001
450001
550001
650001
750001
850001
950000
1.05e+06
1.15e+06
1.25e+06
1.35e+06
1.45e+06
1.55e+06
1.65e+06
1.75e+06
2e+06

IsoValue
-121052
60527.3
181580
302632
423685
544738
665790
786843
907895
1.02895e+06
1.15e+06
1.27105e+06
1.39211e+06
1.51316e+06
1.63421e+06
1.75526e+06
1.87632e+06
1.99737e+06
2.11842e+06
2.42105e+06

IsoValue
-142104
71053.6
213159
355264
497369
639474
781580
923685
1.06579e+06
1.2079e+06
1.35e+06
1.49211e+06
1.63421e+06
1.77632e+06
1.91842e+06
2.06053e+06
2.20263e+06
2.34474e+06
2.48684e+06
2.84211e+06

Figure 7. Test Problem 1: Successively adding channels.

AS AS+Nicolaides AS+DtN RAS RAS+Nicolaides RAS+DtN
no channel 529 1000 57 243 245 41
1 channel 619 520 64 227 228 46
2 channels > 1000 516 68 226 226 47
3 channels 585 697 76 212 213 44

Table 1. Number of iterations for Test Problem 1 (additive coarse grid correction).

We use a uniform triangulation with 160 × 160 nodes and a partition into 16 (irregular)
subdomains (see Figure 6). Each subdomain is extended by one layer, leading to an overlap
of 2 layers, such that δj = 2h for all j = 1, . . . , J . . We use the AS preconditioner within
conjugate gradients (CG) and the RAS preconditioner within GMRES, and in each case we
stop the iteration process, when the relative residual is smaller than 10−6.

We start with only inclusions and add the channels one by one as shown in Figure 7 (Test
Problem 1). When there are no channels, α varies between 1 and 106, as indicated by the
colours in Figure 7. With all three channels present, α varies between 1 and 2.8 × 106. The
corresponding convergence results are given in Table 1. Our algorithm performs significantly
better. The piecewise constant coarse space has virtually no effect on the performance of
either AS or RAS, leading to iteration numbers that differ little from the results without
any coarse grid in all four cases. Our new coarse space, on the other hand, is fully robust
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AS AS+Nicolaides AS+DtN RAS RAS+Nicolaides RAS+DtN
no channel 529 656 39 243 231 25
1 channel 619 538 41 227 215 28
2 channels >1000 808 47 226 211 27
3 channels 585 641 47 212 199 28

Table 2. Number of iterations for Test Problem 1 (deflation-based coarse grid correction).

Over J = 16 Total number nΓj of Number mj of functions included in VH from Ωj

subdomains eigenvalues on Γj no channel 1 channel 2 channels 3 channels

Minimum 70 1 1 1 1
Maximum 191 4 4 4 4
Average 138.8 2.75 2.88 2.94 2.94

Sum 2220 44 46 47 47

Table 3. Size of the coarse space for Test Problem 1.

to the coefficient variation and to the addition of channels, and it leads to a gain of at least
a factor 8 compared to the one-level method in all cases. The situation is similar, if we
use deflation-based coarse grid correction [22] with the same coarse spaces (see Table 2).
However, the absolute numbers of iterations are reduced almost by a factor 2 in this case.
Our theory applies equally to this case (see e.g. [17] for details), but we will not include any
further numerical results with deflation-based coarse grid correction.

Table 3 gives some information on the size of the coarse space that we build with our
automatic selection strategy: for each number of channels we give minj mj and maxj mj , as
well as the global coarse space size nH =

∑

j mj and the average number of modes included

per subdomain nH/J . For comparison, we also include information on the total number
nΓj of eigenmodes of the discrete DtN operator on each subdomain. We note that adding
channels does not have a big influence on the size of the coarse space; we only need three
additional eigenvectors in the case of three channels compared to the case of no channels.

Then, using the same domain and the same partition we successively add inclusions with-
out any channels present as shown in Figure 8 (Test Problem 2). The results are in Table 4.
Again, the piecewise constant coarse space is not working at all for this test problem. The
DtN-based coarse space is almost completely robust to an increase in the number of inclu-
sions and requires again significantly less iterations than the one-level method inall cases.
Note that the subdomain partition (cf. Figure 6) is not aligned with the inclusions at all
(cf. Figure 8). In Table 5 we see that also in this test problem, the coarse space size grows
only very slowly with the number of inclusions and even in the hardest case nH is only 53
(cf. the dimension n of Vh,0, and thus of A is 25600).

The last series of tests, in Table 6, aims to prove that the number mj of eigenvectors
per subdomain chosen by our automatic algorithm is indeed optimal in some sense. For
Test Problem 1 with one channel, we first reduce the number of coarse basis functions per
subdomain by one, this has a huge influence on the iteration count. Then we add one basis
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IsoValue
-15788.4
7895.71
23685.1
39474.6
55264
71053.4
86842.8
102632
118422
134211
150000
165790
181579
197369
213158
228948
244737
260526
276316
315789

IsoValue
-26314.7
13158.9
39474.6
65790.3
92106.1
118422
144738
171053
197369
223685
250000
276316
302632
328948
355263
381579
407895
434211
460526
526316

IsoValue
-47367.4
23685.2
71053.6
118422
165790
213159
260527
307895
355264
402632
450001
497369
544737
592106
639474
686842
734211
781579
828947
947368

IsoValue
-57893.7
28948.3
86843
144738
202632
260527
318422
376316
434211
492106
550000
607895
665790
723685
781579
839474
897369
955263
1.01316e+06
1.15789e+06

Figure 8. Test Problem 2: Successively adding inclusions.

AS AS+Nicolaides AS+DtN RAS RAS+Nicolaides RAS+DtN
2 × 2 inclusions 108 80 51 100 81 41
3 × 3 inclusions 194 342 58 154 153 46
5 × 5 inclusions 529 > 1000 57 243 245 41
6 × 6 inclusions 835 823 71 266 267 51

Table 4. Number of iterations for Test Problem 2 (additive coarse grid correction).

Over J = 16 Total number nΓj of Number mj of functions included in VH from Ωj

subdomains eigenvalues on Γj no channel 1 channel 2 channels 3 channels

Minimum 70 1 1 1 1
Maximum 191 3 3 4 5
Average 138.8 1.63 2.06 2.75 3.31

Sum 2220 26 33 44 53

Table 5. Size of the coarse space for Test Problem 2.



18 VICTORITA DOLEAN, FRÉDÉRIC NATAF, ROBERT SCHEICHL, AND NICOLE SPILLANE

function per subdomain and notice that this has much less effect. This suggests that the
selection process we have designed is indeed the best compromise between enriching the
coarse grid and solving a reasonably sized coarse problem.

AS RAS
No coarse space 619 227
Nicolaides’ piecewise constant coarse space 520 228
DtN space with max{mj − 1, 1} functions from Ωj 446 177
DtN space with mj functions from Ωj 64 46
DtN space with mj + 1 functions from Ωj 37 32

Table 6. Iteration numbers when reducing or increasing the number mj of
coarse basis functions per subdomain given by the automatic selection strategy.

5. Conclusions

In this paper we have given a rigorous analysis of the coarse space proposed in [23, 24].
We have seen that a robust coarse space can be chosen automatically with the method
proposed there, if all the eigenmodes of local DtN maps that are smaller than the inverse
of the diameter of the respective subdomain are included in the coarse space. Moreover,
our results show that this selection criterion is to some extent optimal with respect to cost
and robustness. It remains to be seen whether the proposed coarse space has also got
good approximation properties in the context of multiscale approximation techniques from
problems, where it is not desirable to resolve all the fine scale variation. For the coarse space
based on subdomain eigenproblems developed in the context of two-level Schwarz methods
in [15], this has already been demonstrated to some extent in [11]. We are also currently
working on the extension of the ideas in this paper to linear elasticity problems.

We included a small number of numerical tests to confirm the theoretical results on some
hard test problems with a complicated coefficient distribution (channels and inclusions) and a
high contrast in the values of the coefficient. We did not study the dependence on geometrical
parameters in detail, and because we only considered small overlap it was also not possible to
verify how important Assumption 2.1 is in practice. Figure 2 gives typical situations where
the assumption is not satisfied, but we believe that in practice a much more complicated
coefficient distribution and a larger overlap would be necessary to really observe any loss of
robustness of the proposed method. The extensive tests in [23, 24] do also suggest this.
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France.

E-mail address : nataf@ann.jussieu.fr

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK.

E-mail address : R.Scheichl@bath.ac.uk

Laboratoire J.L. Lions, CNRS UMR 7598, Université Pierre et Marie Curie, 75005 Paris,
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