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CREATING CHAOS FROM A GENERIC FAMILY OF VECTOR

FIELDS ADMITTING A HOPF BIFURCATION

CAMILLE POIGNARD

Abstract. This text deals with the problem of creating a chaotic differential

system from a generic one-parameter family of smooth vector fields on Rn,
that exhibits a Hopf bifurcation, by imposing a dynamics on the parameter.

We prove that if all the non purely imaginary eigenvalues of the Jacobian at

the bifurcation point have a strictly negative real part, we can create such a
chaotic system by inducing a hysteresis dynamics on it. After having presented

the proof of this result, we illustrate it by showing how to induce a chaotic

behavior in a four-dimensional differential system modeling the behavior of a
hypothetical regulatory system.

1. Introduction

Although far from experiment, this article is motivated by the growing interest in
understanding and controlling biological regulatory systems, two main topics in sys-
tems and synthetic biology, where identification and characterization of regulatory
units with prescribed dynamical features are essential (see [9] and [5]). Many meta-
bolic and genetic intracellular regulations are homeostatic, that is they maintain
constant some viability parameters (rate, concentration, level, etc.) by perpetually
adapting the internal state of the cell to a changing environment. Temperature,
pH, osmotic pressure are emblematic, but other examples are the control of internal
concentration of metal ions which are essential as trace but become lethal at higher
rate (as can be seen in [7]). In general, breaking of homeostasis can lead important
damages, like Wilson’s disease in the context of copper homeostasis ([7]).

The question addressed in this article is how to break homeostasis and induce
complex and even chaotic dynamics in a given model of homeostatic regulatory unit.
In the article [6], an analogous approach led to the following result: given a one-
parameter family of smooth ordinary differential equations that all have a globally
stable asymptotic state, it is possible, under very mild conditions, to construct a
feedback on the parameter to get a chaotic dynamical system. Here we consider a
generic one-parameter family of smooth vector fields on Rn admitting a local Hopf
bifurcation: we prove that if the non purely imaginary eigenvalues of the Jacobian
at the bifurcation point have a strictly negative real part, we can create under a
generic hypothesis, a (fast) hysteresis dynamics on the parameter, so as to obtain
a slow-fast chaotic dynamical system. Naturally, the expression ”slow-fast” system
refers to the singular perturbations theory. Indeed, we need to put two scales of
time in our extended system, otherwise it would have too many possible behaviors.
In our setting, a chaotic dynamical system is a system having a strictly positive
topological entropy, which guarantees a sensitive dependence on initial conditions.
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As usual, the transition from a time-continuous dynamical system to a discrete one
relies on the construction of a Poincaré return map. And to prove the presence of a
chaotic behavior, we will show that this return map has a Horseshoe-type dynamics.
We refer the reader to [1], [2], [11] for more details on these standard techniques.
Remark that concerning the proof of our result, our strategy differs from the one
adopted by E.Pécou in [6] in which a homoclinic orbit is constructed, so as to
meet or to reconstruct a well-known chaotic situation (namely those respectively
described by the Shilnikov’s theorem, and the geometric Lorenz attractors); here
we directly construct a Horseshoe.

The paper is divided in three parts. In the first one (section 2), we state and
prove the main result (Theorem (2.5)) that we have just presented above, in the
case n = 2. The mechanism creating chaos relies on a linear model (see 2.3.b)
with two spirals having close but distinct centers, for which we construct a one-
dimensional Poincaré section which is covered twice. Then we prove that chaos is
kept up when the situation is no more linear by constructing a Horseshoe from this
one-dimensional section (see 2.3.c and 2.3.d). We finish this section by proving a
corollary of Theorem (2.5).
Next, the general case n ≥ 2 is proved in section 3 with the exactly same reasoning,
because the assumption on the Jacobian at the bifurcation point forces the dynamics
to locally restrict itself to a manifold of dimension two. Let us mention that the
ideas developed here have been more or less already studied by many authors like
R.Lozi ([4]), even though they did not consider the matching of an oscillating system
(the one having a Hopf bifurcation) with a bistable one.
Lastly, in the third part (section 4) we illustrate our result by exhibiting a chaotic
behavior in a system of four differential equations and nineteen parameters, called
V-system. These equations have been introduced by J.J Tyson1 and E.Pécou, and
represent a hypothetical gene regulatory network with classical regulatory functions
of Michaelis-Menten and Hill type. In order to be in the situation of the first part,
we need to use three scales of time (subsection 4.2), which comes to imposing three
different scales of parameters. In the last subsection 4.3, we numerically exhibits
for this particular system a Poincaré map that covers twice the section on which it
is defined, which guarantees the presence of chaos in this system.

Let us notice that our result is in coherence with Thomas’ conjecture which
states that a positive (the bistable switch) and a negative (the Hopf subsystem)
feedbacks are necessary conditions for chaos ([8]).

2. The result in the case n = 2.

Let (fµ)µ∈R be a generic family of smooth vector fields in Rn, depending smoothly

on the parameter µ, admitting a local Hopf bifurcation in a point x0 of Rn, for the
value of parameter µ0. For each real µ, the associated vector field has a flow
governed by the equation:

ẋ = f (x, µ) ,

where f is the smooth function naturally defined on Rn+1 by the equality f (x, µ) =
fµ (x). Our goal is to prove that under an assumption of contractility of the eigen-
values of the Jacobian at x0, and under a hypothesis on the curve of critical points

1John Tyson, Department of Biological Sciences, Virginia Polytechnic Institute and State
University.
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of f, which is implicitely defined in a neighborhood of x0, we can construct a smooth
function g such that the extended singularly perturbed system:

ẋ = f (x, µ)

εµ̇ = g (x, µ) ,

where ε is a small positive number, is chaotic.
In the rest of the section we set n = 2.

2.1. The hypotheses. Here we precise the context given above.

2.1.a. Assumptions on the function f. H1 There exists a value µ0 and a critical
point x0 of the field fµ0 such that the Jacobian Dxfµ0

(
x0
)

has a pair of pure
imaginary complex eigenvalues ±iβ with β > 0.

By the implicit function theorem, the curve of zeros of f is, in a neighborhood of(
x0, µ0

)
, the graph of a smooth function in the variable µ, defined in a small open

interval U . We denote by φ = (φ1, φ2) this function.

H2 Let α (µ) ± iβ (µ) be the eigenvalues of the Jacobian Dxfµ (φ (µ)) that are
equal to ±iβ in µ0. We assume we have α′ (µ0) 6= 0, which means that the two
eigenvalues cross the pure imaginary axis with a non-zero velocity.

Under these two assumptions, there exists a change of variables for which the
Taylor expansion of degree three of f is of the form:

ẋ1 =
(
a0µ+ b0

(
x21 + x22

))
x1 −

(
ω + a1µ+ b1

(
x21 + x22

))
x2(1)

ẋ2 =
(
ω + a1µ+ b1

(
x21 + x22

))
x1 +

(
a0µ+ b0

(
x21 + x22

))
x2.(2)

Generically, the coefficients a0, b0 are non null in the last equations: in this case,
restricting the interval U if necessary, the Hopf bifurcation’s theorem tells us that
all the fixed points φ (µ) with µ smaller than µ0 are focuses encircled by limit cycles
(which disappear in the bifurcation value µ0), and all the fixed points φ (µ) with
µ greater than µ0 are also focuses but with inverse stability. Recall that this Hopf
bifurcation is supercritical if α′ (µ0) < 0, which means that the cycles are stable so
that the focuses in the planes µ > µ0 are stable ones, or subcritical ifnot (in which
case the stability is reverse).

Remark 2.1. It is well known that Assumptions H1,H2 are not sufficient to get
a Hopf bifurcation. This can be seen by looking at the system (written in complex
form) ż = (µ+ i) z. Our result will also work for such a degenerate case.

2.1.b. Hysteresis curve. We want to perturb the parameter µ by imposing a dy-
namics on it thanks to a curve called hysteresis (or sometimes switch):

Definition 2.2. By hysteresis we mean a connected curve in R2, defined by some
equations of the form g (x, y) = 0, where g is a smooth function from R2 to R, for
which there exist two reals x∗ < x∗∗ such that:
(i)For every x < x∗ or x > x∗∗, there is only one z in R verifying g (x, z) = 0, and
this unique critical point of the equation ẏ = g (x, y) is asymptotically stable.
(ii)For every x∗ < x < x∗∗, there are exactly three zeros (x, zi)i=1,2,3 of g. Among

them, two points say z1, z3 are asymptotically stable critical points of ẏ = g (x, y)
(and the other one is repulsive).
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(iii)For x = x∗ or x = x∗∗ there are exactly two zeros (x, zi)i=1,2 of g. One of the
zi’s is asymptotically stable and the other one is degenerate.4 CAMILLE POIGNARD AND ELISABETH PÉCOU
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Figure 1. A hysteresis curve.

Notation 2.2. In the rest of the text we will only use the notations (x∗, y∗),
(x∗∗, y∗∗) so as to mention the first and second saddle-node bifurcation points of a
given hysteresis.

Remark 2.3. Notice that the inferior and superior branches of a hysteresis defined
by a function g are no more invariant when we perturb the equation ẏ = g(x, y) by
adding an equation of the form ẋ = f(x, y), as we are going to do in the rest.

We will denote by G2 the set of smooth real-valued functions g on R2 defining
such curves, and by Gc,2 the subset of G2 composed of hysteresis that can in addition
be described as the graph of a (cubic-like) function in the variable y. (By a cubic
function we mean a third degree polynomial function).
We will also use hysteresis having flat inferior and superior branches and a linear
unstable one. We will refer to them as hysteresis with flat branches. They are
defined by their points (x∗, y∗) and (x∗∗, y∗∗), that we’ll also call bifurcation points,
even though we cannot really say there is a bifurcation in this case. Gp,2 will be the
set of piecewise linear functions from R2 to R, defining such curves. To construct
an element h of Gp,2, one can for instance take a negative real a and define the real
function e by:

∀x ∈ R, e(x) =





y∗∗ if x ≤ a,
(y∗∗ − y∗) x/a + y∗ if x ∈ [a, 0],

y∗ if x ≥ 0

Then it suffices to bend the graph of e by considering the function h (x, y) =
e (x − by) − y, for a convenient choice of the constant b, and to notice that the
three constant branches of the hysteresis defined by h have the desired stability.

2.2. Working out the result in the case n = 2. In all the subsection we set
n = 2. The main result of the paper is the following:

Theorem 2.4. Let us assume the hypotheses H1,H2 on f are satisfied. If the
function φ verifies (φ�

1(µ0), φ
�
2(µ0)) �= (0, 0), then there exists a smooth function h

in G2, and a non zero real a, such that for every sufficiently small positive number

Figure 1. A hysteresis curve.

So a hysteresis can be decomposed in three parts: two stable curves that we call
the superior and inferior branches, separated by the unstable branch. If y∗, y∗∗ are
the degenerate critical points of the vector fields gx∗ and gx∗∗ let us remark that
locally in (x∗, y∗) appears a saddle-node bifurcation, since in a neighborhood of it
we have a stable critical point and an unstable one that collapse and then disappear,
as the parameter x varies. We call (x∗, y∗) the ”first saddle-node bifurcation point”.
The same thing happens in the ”second saddle-node bifurcation point” (x∗∗, y∗∗).

Notation 2.3. In the rest of the text we will only use the notations (x∗, y∗),
(x∗∗, y∗∗) so as to mention the first and second saddle-node bifurcation points of a
given hysteresis.

Remark 2.4. Notice that the inferior and superior branches of a hysteresis defined
by a function g are no more invariant when we perturb the equation ẏ = g (x, y) by
adding an equation of the form ẋ = f (x, y), as we are going to do in the following.

We will denote by G2 the set of smooth real-valued functions g on R2 defining
such curves, and by Gc,2 the subset of G2 composed of hysteresis that can in addi-
tion be described as the graph of a (cubic-like) function in the variable y. (By a
cubic function we mean a third degree polynomial function).
We will also use hysteresis having flat inferior and superior branches and a linear
unstable one (see figure 2), and will refer to them as hysteresis with flat branches.
They are defined by their points (x∗, y∗) and (x∗∗, y∗∗), that we’ll also call bifur-
cation points, even though we cannot really say there is a bifurcation in this case.
Gp,2 will be the set of piecewise linear functions from R2 to R, defining such curves.
To construct an element h of Gp,2, one can for instance take a negative real a and
define the real function e by:

∀x ∈ R, e (x) =





y∗∗ ifx ≤ a,
(y∗∗ − y∗)x/a+ y∗ if x ∈ [a, 0],

y∗ ifx ≥ 0

Then it suffices to bend the graph of e by considering the function h (x, y) =
e (x− by) − y, for a convenient choice of the constant b, and to notice that the
three constant branches of the hysteresis defined by h have the desired stability.
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Figure 2. A hysteresis with flat branches.

2.2. The theorem. The two-dimensional version of our result is the following:

Theorem 2.5. Let us assume Hypotheses H1,H2 on f are satisfied. If the function
φ verifies (φ′1 (µ0) , φ′2 (µ0)) 6= (0, 0), then there exists a smooth function h in G2,
and a non zero real number a, such that for every sufficiently small positive number
ε, the singularly perturbed system:

(3)





ẋ1 = f1 (x1, x2, µ)
ẋ2 = f2 (x1, x2, µ)
εµ̇ = h (x1 + ax2, µ)

,

taken in a neighborhood V of
(
x0, µ0

)
enough small, is chaotic.

Notice that the hypothesis on the curve of critical points of f is generic, and that
this condition is the same as the one asked by E.Pécou, in her article [6].
If one wants to have a hysteresis that can be described as a cubic-like function in
the variable µ, the analogous result is the following:

Corollary 2.6. With the same assumptions as in Theorem (2.5), there exists a
smooth function h in Gc,2, a non zero real a, and two small numbers 0 < ε1 < ε2,
such that for every ε in ]ε1, ε2[, the system (3), taken in a neighborhood V of

(
x0, µ0

)

enough small, is chaotic.

The proof of this corollary is the same as the one of (2.5), except for its last step
(see subsection 2.4).

2.3. Proof of Theorem (2.5). All along the proof, we assume that we have α′ (µ0) <
0 (in case of a Hopf bifurcation at µ0 this means the cycles are stable ones). The
case where α′ (µ0) > 0 is totally similar (see the remark at the end of the subsection).

First we describe the hysteresis curves with flat branches that are conveniently
placed comparing with the curve of critical points φ, in order to prove Theorem
(2.5) in the (weaker) case when the function h is in Gp,2. Later we will transform
the convenient function h into a smooth one.
Let us fix a value µ∗∗ in U greater than µ0. Because of the generic assumption there
exists a value µ∗ for which we have φ (µ∗) 6= φ (µ∗∗). Without loss of generality, we
suppose that the point (φ (µ∗) , µ∗) is the origin O. We want to work with a function
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g of which set of zeros is the cartesian product of the straight line (Oφ (µ∗∗)) with
a hysteresis in the plane orthogonal to this line. To do this we begin by choosing
two values x∗1, x

∗∗
1 verifying x∗1 < x∗∗1 < 0 if φ2 (µ∗∗) > 0 (or else x∗1 > x∗∗1 > 0 if

φ2 (µ∗∗) < 0) and such that the hysteresis with flat branches defined by the two
bifurcation points (x∗1, 0) and (x∗∗1 , µ

∗∗) does not intersect the graph of φ in another
point than the origin. Besides we ask that the reals x∗1, x

∗∗
1 are close enough to zero,

so that the points (x∗1, 0) and (x∗∗1 , 0) are inside the possible cycle C0 belonging to
the plane µ = 0 (see the figure 3).
6 CAMILLE POIGNARD AND ELISABETH PÉCOU
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φ(µ∗∗)
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Figure 2. The Hopf bell-like surface and the surface defined by a
piecewise-linear hysteresis.

2.3.a. Using the singular perturbations theory to describe the flow of (2). Let’s
take a piecewise linear function g from R3 to R of the same kind as above. By
construction, the system (2) admits the origin as unique critical point. Remark
that since the function x1 �→ h (x1, 0) is constant, there exists locally in the origin,
an invariant stable manifold of dimension one and an unstable one of dimension two.
In fact, we even have that the inferior and superior half planes of the hysteresis, that
are the cartesian products of the stable branches of h by (Oφ (µ∗∗)), are invariant
except near the two straight lines ∆∗ and ∆∗∗ (that we’ll call the two fold lines of the
hysteresis), respectively defined by the equations x1 +ax2 = x∗

1 and x1 +ax2 = x∗∗
1 .

This is clear by the Cauchy-Lipschitz theorem, which can be applied here because
the function h is Lipschitz continuous (indeed, the function e defined at the end of
2.1.b is Lipschitz continuous).

Figure 3. The Hopf bell-like surface and the surface defined by a
piecewise-linear hysteresis.

In the rest of the text we will assume without loss of generality that φ2 (µ∗∗) > 0,
and thus the values x∗1, x

∗∗
1 will be taken negative. Now that we have defined our

function h, we set g (x1, x2, µ) = h (x1 + ax2, µ), where x1 + ax2 = 0 is an equation
of the straight line (Oφ (µ∗∗)). Our first goal is to prove that for a certain choice
of the values x∗1, x

∗∗
1 and µ∗∗, such a function g verifies that the system:
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



ẋ1 = f1 (x1, x2, µ)
ẋ2 = f2 (x1, x2, µ)
εµ̇ = g (x1, x2, µ)

,(4)

is chaotic.

2.3.a. Using the singular perturbations theory to describe the flow of (4). Let’s
take a piecewise linear function g from R3 to R of the same kind as above. By
construction, the system (4) admits the origin as unique critical point. Remark
that since the function x1 7→ h (x1, 0) is constant, there exists locally in the origin,
an invariant stable manifold of dimension one and an unstable one of dimension two.
In fact, we even have that the inferior and superior half planes of the hysteresis,
that are the cartesian products of the stable branches of h by the line (Oφ (µ∗∗)),
are invariant except near the two straight lines ∆∗ and ∆∗∗ (that we call the two
fold lines of the hysteresis), respectively defined by the equations x1 + ax2 = x∗1
and x1 + ax2 = x∗∗1 . This is clear by the Cauchy-Lipschitz theorem, which can be
applied here because the function h is Lipschitz continuous (indeed, the function e
defined at the end of 2.1.b is Lipschitz continuous).
Moroever, these invariant half planes can be described as (constant) graphs in
the variables x1, x2: namely the graphs ξ− (x1, x2) = 0 for (x1, x2) above ∆∗ and
ξ+ (x1, x2) = µ∗∗ for (x1, x2) below ∆∗∗.
This fact allows us to use singular perturbation theory:

Proposition 2.7. As ε > 0 tends to zero, the flow ϕ2,ε of (4) is C0-approached
by a flow ϕ2 of which trajectories are successions of continuous arcs, each of them
being the union of a segment of the form

{(
x01, x

0
2, µ
)

: 0 ≤ µ ≤ µ∗∗
}

with a solution
of one of the equations ẋ = f (x, ξ+ (x)) and ẋ = f (x, ξ− (x)). More precisely, we
have:

∀M > 0, ∀p ∈ V, ∀t ∈ [0,M ], lim
ε→0

ϕ2,ε (p, t) = ϕ2 (p, t) ,

where V is a neighborhood of
(
x0, µ0

)
enough small.

Proof. It suffices to apply the classical Tychonoff theorem on slow-fast systems, of
which assumptions are very easy to verify here (see [3], [10]). Briefly, the idea is
the following: for ε > 0 enough small, any point which is not a zero of our function
g will be carried vertically (that is to say along the µ-axis) by the flow ϕ2,ε until it
reaches a stable part of the hysteresis, in which case its motion will be defined by
the flow reduced on this surface. The equation associated to such a reduced flow is
called a slow equation.

To precise this idea, let ϕ+ be the reduced flow associated to the slow equation
ẋ = f (x, ξ+ (x)). By construction of our hysteresis defined by g, its critical point
φ (µ∗∗) (which is unique in a neighborhood of

(
x0, µ0

)
enough small) is stable. So,

for initial conditions enough close to this point, the trajectories will hit the fold
line ∆∗∗ in a finite time, afterwards they will not exist anymore. Moroever, asking
that the value x∗∗1 be closer to zero if necessary, we get that these trajectories are
almost logarithmic spirals defined by a polar equation of the form:

ρ = ρ0e

α (µ∗∗)
β (µ∗∗)

(θ−θ0)
,
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in the sense that locally in φ (µ∗∗), the flow ϕ+ is close to its linear part.
The same holds for the reduced flow ϕ− of the other slow equation ẋ = f (x, ξ− (x)).

In this case, the trajectories are nearby repulsive logarithmic spirals, having a polar
equation defined by the positive coefficient α (0) /β (0) (see figure 4).

Now, let us denote by ϕ2 the continuous flow, of which trajectories are those
of the reduced flows ϕ+, ϕ− connected between them by vertical segments of the
form

{(
x∗1, x

0
2, µ
)

: 0 ≤ µ ≤ µ∗∗
}

or
{(
x∗∗1 , x

0
2, µ
)

: 0 ≤ µ ≤ µ∗∗
}

. Tychonoff’s the-
orem tells us that ϕ2 is the limit of ϕ2,ε as ε tends to zero, in the meaning of the
proposition (2.7).8 CAMILLE POIGNARD AND ELISABETH PÉCOU
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Figure 3. The dynamics of the flow ϕ2.
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Figure 4. The flow ϕ3.

Proposition 2.8. There exists a choice of the values x∗
1 < x∗∗

1 < 0 and µ∗∗ > 0
such that the linear limit flow ϕ3 associated to the system (2) covers at least twice a
segment I belonging to the plane µ = 0. More precisely, there exists a decomposition
I = I1 ∪ I2 in two sub-intervals and a Poincaré return map P (associated to ϕ3)
defined on I, such that the images P 2 (I1), P 2 (I2) strictly contain I.

Figure 4. The dynamics of the flow ϕ2.

�

Definition 2.8. The flow ϕ2 of the proposition (2.7) is called the limit flow asso-
ciated to the system (4).

2.3.b. A linear model creating chaos. Here we simplify again our problem by con-
sidering the case where the reduced flows ϕ− and ϕ+ (of which orbits are repulsive
spirals centered at the origin, and attractive ones centered at φ (µ∗∗)), are linear.
The linear limit flow of the proposition (2.7) obtained by this way is denoted by
ϕ3. We claim we have:

Proposition 2.9. There exists a choice of the values x∗1 < x∗∗1 < 0 and µ∗∗ > 0
such that the linear limit flow ϕ3 associated to the system (4) covers at least twice a
segment I belonging to the plane µ = 0. More precisely, there exists a decomposition
I = I1 ∪ I2 in two sub-intervals and a Poincaré return map P (associated to ϕ3)
defined on I, such that the images P 2 (I1), P 2 (I2) strictly contain I.

Proof. Let F1,F2 be the linear flows defined in the plane µ = 0, of which orbits
are respectively centered at the origin (0, 0) and at the point φ (µ∗∗), and have the
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x1 + ax2 = 0

1

Figure 5. The flow ϕ3.

polar equations:

ρ = ρ0e

α (0)

β (0)
(θ−θ0)

and ρ = ρ0e

α (µ∗∗)
β (µ∗∗)

(θ−θ0)
.

We use these two flows so as to fix the position of the two fold lines ∆∗,∆∗∗ of our
hysteresis h (i.e to fix the values x∗1, x

∗∗
1 ). Recall that their slopes is −1/a.

(i)We begin with the position of the fold ∆∗.
Given an initial condition M0 = (ρ0, θ0) near the origin, any point M = (ρ, θ)
belonging to the trajectory (F1 (M0, t))t∈R satisfies:

M =


ρ0e

α (0)

β (0)
(θ−θ0)

cos (θ) , ρ0e

α (0)

β (0)
(θ−θ0)

sin (θ)


 ,

in cartesian coordinates. Derivating this expression in θ, we get that the locus of
points at which the tangent of the flow F1 has a slope equals to −1/a, is a straight
line, having a constant angle with the half-axis Ox1 equals to

arctan




α (0)

β (0) a
+ 1

1

a
− α (0)

β (0)


 ,

or π/2 in the case where a = β (0) /α (0) (see figure 6).

Denote by A the intersection of this straight line with one having an equation of
the form x1+ax2 = b where b is strictly negative. Call ∆ this last line, and consider
the first return of the point A in ∆, that is to say the point B = F1 (A, τ (A)), where
τ (A) is the first strictly positive time necessary for A to hit this line. We obtain a
straight line (OB) which is clearly the locus of first return of the points, in which
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the slope of the tangent to F1 is −1/a, in this tangent. To see this, it suffices to
observe that the image of a logarithmic spiral under a homotethy is still a spiral of
same nature, defined by the same coefficient (here α (0) /β (0)). Remark that (OB)
has a slope strictly smaller than a.
From the construction of these two lines (OA) and (OB), we adjust the position of
∆∗ by taking the circle centered at φ (µ∗∗) of ray Oφ (µ∗∗): it cuts (OB) in a point
at which we draw ∆∗ (figure 6).10 CAMILLE POIGNARD AND ELISABETH PÉCOU
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∆
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x1 + ax2 = 0

1

Figure 5. Construction of the fold line ∆∗.

necessary for the point M to reach ∆∗∗), we get that the image J � = [A�
1B

�
1] of J

under Ψ1 is a segment of which extremity B�
1 has a strictly positive x2-coordinate.

Moreover, fixing the value x∗∗
1 so that the origin be enough close to ∆∗∗, we obtain

that J � intersects the spiral S0 in at least 3 points having a strictly negative x2-
coordinate, and such that the extremity A�

1 = Ψ1 (A1) does not belong to the spiral
S1 (see figure 6).
(iii) Now that we have fixed our hysteresis h, let us prove that ϕ3 is chaotic.
By (ii) the segment J � contains three points M1, M2, M3 of the spiral S0 (all having
a strictly negative x2-coordinate) which are consecutive (i.e there exist two times
t1, t2 > 0, such that ϕ3 (t1, M3) = M2 and ϕ3 (t2, M2) = M1). Then let us consider
the first return map Ψ in the axis (Ox1) associated to the flow ϕ3 (or equivalently
F1), and set:

�
I1 = [Ψ (M1) Ψ (M2)]

I2 = [Ψ (M2) Ψ (M3)]
.

By construction we have:�
Ψ(J �) = Ψ ◦ Ψ1 ◦ Ψ0 (I1) � I1 ∪ I2

Ψ ◦ Ψ1 ◦ Ψ0 (I1) = Ψ ◦ Ψ1 ◦ Ψ0 (I2)
,

which means that the map Ψ ◦ Ψ1 ◦ Ψ0 covers the interval I = I1 ∪ I2 twice.

Figure 6. Construction of the fold line ∆∗.

(ii) Then, we consider the flow F2, so as to position ∆∗∗.
Let us denote by J = [A1B1] the segment of which extremities are the intersections
of ∆∗ with our two straight lines (OA) and (OB). We know there is a unique
trajectory S0 of the flow F1 which is tangent to ∆∗, and that the tangency point
is the boundary A1 of this segment.
The return of J in the line (Oφ (µ∗∗)) by rotations centered at φ (µ∗∗) is a segment
of the form [OC] with C having a strictly non zero x2-coordinate. As the value
µ∗∗ ≥ µ0 was chosen arbitrarily in the construction of our hysteresis h, we can take
it closer to µ0 if necessary, so that we can make the spiraling motion of the flow F2

be very close to a rotation one. Thus denoting by Ψ1 the application of first return
in ∆∗∗ (i.e defined by the equality Ψ1 (M) = F2 (M, τ (M)), where τ (M) is the time
necessary for the point M to reach ∆∗∗), we get that the image J ′ = [A′1B

′
1] of J

under Ψ1 is a segment of which extremity B′1 has a strictly positive x2-coordinate.
Moreover, fixing the value x∗∗1 so that the origin be enough close to ∆∗∗, we obtain
that J ′ intersects the spiral S0 in at least 3 points having a strictly negative x2-
coordinate, and such that the extremity A′1 = Ψ1 (A1) does not belong to the spiral
S1 (see figure 7).
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(iii) Now that we have fixed our hysteresis h, let us prove that ϕ3 is chaotic.
By (ii) the segment J ′ contains three points M1,M2,M3 of the spiral S0 (all having
a strictly negative x2-coordinate) which are consecutive (i.e there exist two times
t1, t2 > 0, such that ϕ3 (t1,M3) = M2 and ϕ3 (t2,M2) = M1). Then let us consider
the first return map Ψ in the axis (Ox1) associated to the flow ϕ3 (or equivalently
F1), and set:

{
I1 = [Ψ (M1) Ψ (M2)]

I2 = [Ψ (M2) Ψ (M3)]
.

By construction we have:
{

Ψ(J ′) = Ψ ◦Ψ1 ◦Ψ0 (I1) ) I1 ∪ I2
Ψ ◦Ψ1 ◦Ψ0 (I1) = Ψ ◦Ψ1 ◦Ψ0 (I2)

,

which means that the map Ψ ◦Ψ1 ◦Ψ0 covers the interval I = I1 ∪ I2 twice.

From all of this we conclude that the segment I is a Poincaré section for the
linear limit flow ϕ3. Let P be the return map of ϕ3 associated to this section. This
map does not cover I twice because we have P (I1) = I2, but the map P 2 does
(because P (I2) = Ψ ◦Ψ1 ◦Ψ0 (I1) contains I2), which finishes the proof. �

Our application P of the previous proposition is piecewise continuous, because
the boundary points of the segments I1, I2 (denoted Ψ (M1) ,Ψ (M2) ,Ψ (M3) in
the previous proof) are discontinuous ones. It is well known that any piecewise
continuous application of an interval covering at least twice this interval has strictly
positive topological entropy. Thus, we have proved:

Corollary 2.10. There exists a choice of the three values x∗1 < x∗∗1 < 0 and µ∗∗ > 0
such that the linear limit flow ϕ3 associated to the system (4) is chaotic.

2.3.c. Proof of the result when the hysteresis is piecewise linear with flat branches.
Now let us consider again the limit flow ϕ2 of the system (4), but this time without
assuming that ϕ+ and ϕ− are linear. In this case we still have a Poincaré return
map P associated to ϕ2 and defined on a segment I = I1 ∪ I2 belonging to the
plane µ = 0, such that the images P2 (I1) and P2 (I2) strictly contain I.

Indeed, making a Taylor development of the function x 7→ f (x, 0) at the origin
(0, 0), we get by the implicit function theorem, that the locus of points at which the
tangent of the flow ϕ− is parallel to (Oφ (µ∗∗)) is (locally at (0, 0)) a curve which
is tangent to the straight line (OA) of the construction we made above. Similarly
the points of first return in these tangents form now a curve tangent (at the origin
(0, 0)) to the straight line (OB) we had before. So the circle of ray (Oφ (µ∗∗)) still
cuts this curve in a point at which we can draw the line ∆∗. Then we can go on
the same construction as in the linear model.

Then, from this segment I constructed above, we can create a rectangular section
transverse to the plane µ = 0, admitting a Horseshoe:

Proposition 2.11. For the same choice of the values x∗1, x
∗∗
1 , µ

∗∗ taken in the
proposition (2.9), there exists a rectangle R transverse to the plane µ = 0, such
that for any ε > 0 enough small, the flow ϕ2,ε of the system (4) covers at least
twice this section.
More precisely, there exists a decomposition R = R1∪R2 in two rectangles such that
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Figure 6. The one-dimensional section I covered twice by the flow ϕ3.

From all of this we conclude that the segment I is a Poincaré section for the
linear limit flow ϕ3. Let P be the return map of ϕ3 associated to this section. This

Figure 7. The one-dimensional section I covered twice by the flow ϕ3.

for any ε > 0 enough small, the flow ϕ2,ε admits a Poincaré return map Pε defined
on R, such that P2

ε (R1) ,P2
ε (R2) are disjoint and contain both one rectangle that

intersects R along all its length (see figure 8).

Proof. Let us fix a positive number s > 0. We consider the rectangle R1 (s) which
is above I1, that is to say defined by:

R1 (s) = {(x1, x2, µ) : (x1, x2) ∈ I1 andµ ∈ [0, s]} ,
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and set R (s) = R1 (s)∪R2(s), where R2(s) is the rectangle of height s, associated
to the segment I2.
As previously, for any ε enough small, there exists a Poincaré return map Pε asso-
ciated to the flow ϕ2,ε which is defined on the rectangle R (s). Each of the images
P2
ε (R1 (s)) and P2

ε (R2 (s)) is a rectangle that crosses R (s) by covering all its
lenght. Therefore, to obtain a horseshoe, it suffices to verify that these two images
are disjoint.

We first remark that the images under P2
ε of the interiors

◦
R1 (s),

◦
R2 (s) of the two

rectangles, must be disjoint: indeed there is no point z1, z2 in
◦

R1 (s) ×
◦

R2 (s) such
that Pε (z1) = Pε (z2), otherwise we would have

ϕ2,ε (τ (z1)− τ (z2) , z1) = z2,

and thus either z1 or z2 would return in R (s) in a time strictly smaller than the
first return time in this section. Then, let Γ (s) be the edge common to our two
rectangles, that is the segment above the point Ψ (M2) belonging to both I1 and
I2. By construction of the return map P, the distance between P2 (Ψ (M2)) and
the boundary of I is strictly positive (see the proof of the proposition (2.9)). Thus,
as this distance does not depend on ε and by continuity of each flow ϕ2,ε, there
exists a value s0 such that for any ε > 0 enough small, the image P2

ε (Γ (s0)) does
not intersect the section R (s0). The assertion is proved. �

The conclusion of all we have done in subsection 2.3, is that there exists a choice
of the values x∗1, x

∗∗
1 , µ

∗∗ for which the associated function g constructed at the
beginning of subsection 2.3 verifies that (for every ε > 0 enough small) the system
(4) is chaotic, which is the piecewise linear version of Theorem (2.5) .

2.3.d. End of the proof of the result. Finally, we can transform the piecewise linear
hysteresis h into a smooth one, by smoothing the rough edges near the points
(x∗1, µ

∗) and (x∗∗1 , µ
∗∗): this does not affect the dynamics of our system since the

images (under the flow (φt)t∈R) of the invariant Cantor set included in R (s0) are
all at a distance strictly positive of the flat branches, in particular of the rough
edges of the hysteresis. The result is proved in the case α′ (µ0) < 0.

Remark 2.12. In the case where α′ (µ0) > 0 (which corresponds to a subcritical
Hopf bifurcation), it suffices to take the symmetric of the hysteresis we considered
above with regard to the axis Ox1. The exactly same reasoning applies in this case.
The proof is achieved.

2.4. Proof of Corollary (2.6). Let us consider again the set R (s0) defined above.
There exist two small numbers 0 < ε1 < ε2 such that for any ε in ]ε1, ε2[, both
P2
ε (R1 (s0)) and P2

ε (R2 (s0)) will cover this set while being at a bounded distance
of the plane µ = 0.
We can therefore bend the inferior stable branch of the piecewise linear hysteresis
h without modifying the dynamics established above (see Proposition (2.14) at the
end of the remark 2.13 below), and also smooth the rough edge near the point
(x∗1, µ

∗). We obtain an inferior branch that can be described as the graph of a
smooth function in the variable µ. Applying the same for the superior branch of h,
we get the result.

Remark 2.13. To conclude section 2, a natural question that remains is to know
whether the same construction of our horseshoe-type dynamics still works if we take
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µ = 0

Γ(s0)

P2
ε (R1(s0))

P2
ε (R2(s0))

1

Figure 8. The covering of the rectangle R (s0) by the map P2
ε

(for a fixed ε in ]ε1, ε2[).

a cubic-like hysteresis in Gc,2 instead of smoothing a flat branches one as we did.
In fact, the answer is no. Indeed, let us take again the vector field

F (x, µ) = (f (x, µ) ,h (x1 + ax2, µ) /ε)

of our problem, where this time h is a function in Gc,2. Then, the Jacobian at the
origin (which is the only fixed point of F) is:

DF (O) =




∂f1
∂µ

(O)

Df(O)
∂f2
∂µ

(O)

1

ε

∂h (0, 0)

∂x1

a

ε

∂h (0, 0)

∂x1

1

ε

∂h (0, 0)

∂µ




.

Since the coefficients at the bottom left of this matrix are no more equal to zero,
then when ε vary in ]0, 1[ all the possible cases can happen concerning its spectrum:
it can, for instance, be only composed of real eigenvalues, in which case the spiraling
motion would not exist, and thus our construction could not be applied.

What we only have is the following proposition (of which proof is just an appli-
cation of the implicit function theorem), which tells us that given a very small ε,
if the stable branches of the hysteresis have a slope of order ε, then the dynamics
is the same as in the flat case. In other words, our choice of the hysteresis in our
results is optimum.

Proposition 2.14. Let B be a square matrix of size two, of which spectrum is
(α± iβ), with α, β > 0, and let A (ε) be the matrix of size three:

A (ε) =




a1,3
B a2,3

a3,1 aa3,1 −γε


 ,

where γ is a strictly positive number. Then for any ε enough small, the spectrum
S (A (ε)) of A (ε) has the form:

S (A (ε)) = {α+ εz1 (ε)± i (β + εz2 (ε)) ,−γ/ε+ εz3 (ε)},
where the zi (ε) are bounded functions of ε.
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3. The result in the general case n ≥ 2

Theorem (2.5) can be extended to the case where (fµ)µ∈R is a family of vector

fields in Rn, with n ≥ 2, provided we make an additional hypothesis of contractility
on the other eigenvalues of the Jacobian at the bifurcation point.

3.1. The hypotheses. H1′ There exists a value µ0 and a critical point x0 of the
field fµ0

such that the Jacobian Dxfµ0

(
x0
)

has a pair of pure imaginary complex
eigenvalues ±iβ with β > 0, and the other eigenvalues λ3, · · · , λn have a strictly
negative real part.
Here again, we denote by φ = (φ1, · · · , φn) the smooth function defined on a neigh-
borhood U of the bifurcation value µ0, that locally defines the graph of fixed points
associated to the function f.

Hypothesis H2 on the cross of the pure imaginary axis with a non-zero velocity,
has not changed.
Remark that restricting U if necessary, we have that the eigenvalues λ2 (µ) , · · · , λn (µ)
(which are equal to λ2, · · · , λn in µ = µ0) have also a strictly negative real part.
For each µ in U , we denote by Πµ the plane span by the real and imaginary parts of
the eigenvectors associated to α (µ)± iβ (µ). Note that all those planes are almost
parallel because these eigenvectors vary smoothly with the parameter µ.

Under these two assumptions, the center manifold theorem gives us the existence,
for every µ in U , of a smooth manifold of dimension two Wµ, tangent at the point
(φ (µ) , µ) to the plane Πµ. This manifold is attracting for the flow of the equation
ẋ = f (x, µ). Moroever, for every µ in U , the dynamics of this system restricted to
Wµ is given by equations of the form:

(5)

{
u̇1 =

(
a0µ+ b0

(
u21 + u22

))
u1 −

(
ω + a1µ+ b1

(
u21 + u22

))
u2

u̇2 =
(
ω + a1µ+ b0

(
u21 + u22

))
u1 +

(
a0µ+ b0

(
u21 + u22

))
u2

.

3.2. The theorem and its proof. The n-dimensional version of our result is the
following:

Theorem 3.1. Let us suppose that Hypotheses H1′,H2 on the function f are
satisfied. Assume moroever that the projection of the graph x = (φ1 (µ) , · · · , φn (µ))
on the plane Πµ0

is not reduced to the point (φ (µ0) , µ0). Then, there exist two
distinct integers i, j in [1, n], two non zero real numbers ai, aj and a smooth function
h in G2 such that for every ε > 0 enough small, the singularly perturbed system:

(6)

{
ẋ = f (x, µ)
εµ̇ = h (aixi + ajxj , µ)

,

taken in a neighborhood of
(
x0, µ0

)
enough small, is chaotic.

Proof. The exactly same reasoning as in the two-dimensional case can be applied.
(i)Indeed, let us first fix a value µ∗∗ in U , strictly greater than µ0. By assumption
on the graph x = φ (µ), there exists a value of the parameter (say 0) which is
strictly smaller than µ0 and such that the projection X0 of the point (φ (µ∗∗) , 0)
on the plane Π0 is not equal to the fixed point (φ (0) , 0). Without loss of generality,
we assume that this last point is the origin O = (0, · · · , 0) of Rn+1.
Then we consider two planes H∗, H∗∗ which are parallel to the plane containing
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the origin and the two points (φ (µ∗∗) , 0) , X0. There exist two distinct integers i, j
in [1, n], such that the equations of these planes are of the form:

aixi + ajxj = x∗

aixi + ajxj = x∗∗,

where ai, aj and x∗, x∗∗ are four non zero numbers. The intersections H∗ ∩Π0 and
H∗∗ ∩ Π0 are two lines that will be our two fold lines ∆∗,∆∗∗ of subsection 2.3.
To finish this first step we consider the element h in Gp,2 defining the hysteresis
with flat branches of which bifurcation points are (x∗, 0) and (x∗∗, µ∗∗), in order
to prove the piecewise linear version of the result before smoothing this convenient
hysteresis.
(ii) Without loss of generality, we can assume that the origin is very close to the
two fold lines that intersect by the way a small neighborhood of the origin in
Rn+1, in which the flow of the system (6) is very close to its linear part. Thanks
to the hypothesis H1′, we can therefore construct a rectangular section I in the
hyperplane µ = 0, that transversely cross the plane Π0, and which is covered twice
by the limit flow associated to (6). It remains to extend vertically this section I,
that is to say to consider the sets

R (s) = {(x, µ) ∈ I × [0, s]} ,

for some small strictly positive s. There exist a value s0 such that R (s0) is a Horse-
shoe for the flow of the system (6). We conclude by taking off this rectangle from
the hyperplane µ = 0, and by smoothing the hysteresis as in the two-dimensional
case. �

To finish section 3, we also have the similar corollary as in section 2:

Corollary 3.2. With the same assumptions as in Theorem (3.1), there exist two
integers i, j in [1, n], two non zero real numbers ai, aj, a smooth function h in Gc,2
and two small numbers 0 < ε1 < ε2, such that for every ε in ]ε1, ε2[, the system (6),
taken in a neighborhood of

(
x0, µ0

)
enough small, is chaotic.
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4. Application to a four-dimensional differential system modeling
the behavior of a hypothetical gene regulatory network.

Here we use the reasoning made in the first part in order to induce chaos in the
following differential system:





Ȧ =

ksa + ksaa

(
A

jaa

)2

+ ksac

(
C

jac

)2

1 +

(
A

jaa

)2

+

(
B

jab

)2

+

(
C

jac

)2 − kdaA

Ḃ =

ksb + ksba

(
A

jba

)2

1 +

(
A

jba

)2 − kdbB

Ċ =
ksc

1 +

(
D

jcd

)2 − kdcC

Ḋ =

ksd + ksda

(
A

jda

)2

1 +

(
A

jda

)2

+

(
C

jdc

)2 − kddD

,

and to explain how this chaotic motion is created. As said in the introduction, this
system has been provided by J.J Tyson1. We will call it V-system in recognition of
its origin, and will denote it by V .
This is an autonomous system with nineteen parameters and four equations. The
variables A,B,C,D represent concentrations of four constituants evolving in a cell:
thus they will be taken only positive. The equations describe the chemical reactions
between them and come from the Michaelis-Menten laws. The other quantities
ksa, ksaa, jaa, ksac... are also concentrations but assumed to be constant. The aim
is to find a set of values of these parameters that we’ll denote P1, for which the
associated V-system V 1 is chaotic, with the only rule that these values must be
positive.
Numerical tests realized with the software Xdim lead us to consider the set of values
P0:





ksa = 0.05, ksaa = 5, ksac = 2.4, kda = 0.1

jaa = 2.5, jab = 0.5, jac = 2

ksb = 0, ksba = 0.3, jba = 17.5, kdb = 0.03

ksc = 48, kdc = 4, jcd = 1.5

ksd = 16, ksda = 16, jda = 3, jdc = 1, kdd = 4

,

because the system V 0 seemed to present an unpredictable behavior. Here again,
these numerical values have been provided J.J Tyson1.

4.1. The V-system as the coupling of two sub-systems of R2. The strategy
adopted is to divide the V-system in two sub-systems of two equations (denoted
by VA,B for the one in the variables A,B and VC,D for the one in the variables
C,D) and to recognize in VA,B a negative feedback circuit (by showing that this
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sub-system admits a local Hopf bifurcation) and in VC,D a positive feedback circuit
(caracterized by a hysteresis). By a circuit in VA,B , we mean that the constituants
A,B mutually influence their becoming; the fact that it is negative signifies that
one of them activates the production of the other while this last one inhibits the
production of the first. The same holds for VC,D.
In the rest of the text, V 0

A,B ,V
0
C,D will be the sub-systems of the model V 0, and

similarly for V 1,V 1
A,B ,V

1
C,D.

4.1.a. A local Hopf bifurcation in the sub-system VA,B. The sub-system VA,B is the
one defined by the equations:





Ȧ =

ksa + ksaa

(
A

jaa

)2

+ ksac

(
C

jac

)2

1 +

(
A

jaa

)2

+

(
B

jab

)2

+

(
C

jac

)2 − kdaA

Ḃ =

ksb + ksba

(
A

jba

)2

1 +

(
A

jba

)2 − kdbB

,

where C is considered here as a parameter.
For every C, let FC (A,B) be the vector field in R2 associated to VA,B . Making

Ḃ = 0 and replacing the expression of B in the first equation, we can express the
nullcline of this system, that is to say the set {(A,B,C) : FC (A,B) = (0, 0)}, as
the graph of a function in the variable A of the form:







A,

ksb + ksba

(
A

jba

)2

kdb

(
1 +

(
A

jba

)2
) , f



A,

ksb + ksba

(
A

jba

)2

kdb

(
1 +

(
A

jba

)2
)






, A ≥ 0




,

where f is a complicated function that we do not need to write.
The Jacobian matrix DFC (A,B) of our vector field is:




2A (ksaa − kdaA)

j2aa

(
1 +

(
A

jaa

)2

+

(
B

jab

)2

+

(
C

jac

)2
) − kda

−2kdaAB

j2ab

(
1 +

(
A

jaa

)2

+

(
B

jab

)2

+

(
C

jac

)2
)

2j2baA (ksba − ksb)
(j2ba +A2)

2 −kdb




.

Naturally we are interested in the eigenvalues of this matrix for points (A,B,C)
belonging to the nullcline. The calculations are inextricable, but using Mathemat-
ica, we find that for the values (A,B,C) = (16.5139, 4.71033, 3.30896), the jacobian
matrix of V 0

A,B has two pure imaginary eigenvalues, and so this system admits a
local Hopf bifurcation. Remark that since the function f above is not constant, the
assumption of Theorem (2.5) (which asks that the curve of critical points is not a
vertical axis) is satisfied.
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4.1.b. A hysteresis in the sub-system VC,D. Now we study the second sub-system
VC,D defined by the two equations:





Ċ =
ksc

1 +

(
D

jcd

)2 − kdcC

Ḋ =

ksd + ksda

(
A

jda

)2

1 +

(
A

jda

)2

+

(
C

jdc

)2 − kddD
.

Making Ḋ = 0 and replacing the new expression of D in the third equation, we get,
provided that the values ksd and ksda are the same, that the nullcline associated to
this subsystem is:






A,C,

1

kdd




ksd + ksda

(
A

jda

)2

1 +

(
A

jda

)2

+

(
C

jdc

)2





 : (A,C) ∈ CA,C




,

where we have set:

CA,C =





(A,C) ∈ R2
+ : kdcC =

ksc

(
1 +

(
A

jda

)2

+

(
C

jdc

)2
)2

(
1 +

(
A

jda

)2

+

(
C

jdc

)2
)2

+
ksd

2

k2ddj
2
cd

(
1 +

(
A

jda

)2
)2





.

We claim this last set is, under certain conditions on the parameters (which are
satisfied by P0) a hysteresis. To do this we prove the following property:

Property 4.1. Assuming we have
ksd
kddjcd

> 2 and ksd = ksda, there exist two

numbers 0 < A∗ < A∗∗ such that:

- ∀A < A∗ or A > A∗∗, there is exactly one point in CA,C
- ∀A ∈ (A∗, A∗∗), there are exactly three points in CA,C
- If A = A∗ or A = A∗∗, there are exactly two points in CA,C .

Proof. To reduce the expressions appeared above, we introduce a new variable:

X = 1 +

(
A

jda

)2

.

As we are only interested in the positive values of our variables, we can use X
instead of using A in our calculations. Let fX (C) be the right-hand side of the
equation defining the set CA,C . A simple calculus shows that f ′X is strictly positive
on R∗+, tends to zero as C tends to infinity, and that we have f ′X (0) = 0. Thus the
graph of fX has a form given by the figure (9):

Now the idea is to study the intersection of the previous graph with the line
kdcC when kdc varies. Let search on positive values C0 for which the tangent at
the point (C0, fX (C0)) passes through (0, 0). Such a point C0 verifies the equality
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fX(C)

O

1

Figure 9. Graph of the function fX .

f ′X (C0)C0 = fX (C0), that is to say:

4
ksd

2

k2ddj
2
cd

(
C0

jdc

)2

X2

(
X +

(
C0

jdc

)2
)2

+
ksd

2

k2ddj
2
cd

X2

= X +

(
C0

jdc

)2

,

which is equivalent to:

C0
3 + 3X2C0

(
1− ksd

2

k2ddj
2
cd

)
+ 3XC0

2 +X3

(
1 +

ksd
2

k2ddj
2
cd

)
= 0,

where C0 is equal to
C2

0

j2dc
. And since we have

ksd
kddjcd

> 2, there exist two strictly

positive solutions (depending on the variable A) 0 < C1 < C2 of this equation, and
so two values 0 < C1 < C2 for which the tangent at (Ci, fX (Ci)) passes through
the origin.
So for every positive A, there exist two thresholds 0 < k1 (A) < k2 (A) (which are
the two slopes of the tangents) such that:

- if kdc < k1 (A) or kdd > k2 (A), there is only one point in CA,C ,
- if kdc = k1 (A) or kdd = k2 (A) there are two points in this curve,
- if k1 (A) < kdc < k2 (A) there are three points in it.

Considering again kdc as a fixed parameter, it remains to justify why we can express
this last result in terms of the variable A. To do this, we look at the monotony of
ki. We have:

ki (A) =
4kscksd

2

jdck2ddj
2
cd

X2
√

Ci

(X + Ci)
3

(
1 +

ksd
2

k2ddj
2
cd

(
X

X + Ci

)2
)2 ,

and because Ci is a root of the equation written above, so:

(Ci +X)
3

=
ksd

2

k2ddj
2
cd

(3Ci −X)X2.

From this last equality, we get two informations: the first one is that the quotient
Ci/X is a constant and thus does not depend on the variable A, the second one is
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- if kdc < k1 (A) or kdd > k2 (A), there is only one point in CA,C ,
- if kdc = k1 (A) or kdd = k2 (A) there are two points in this curve,
- if k1 (A) < kdc < k2 (A) there are three points in it.

O kdck1(A) k2(A)

1

Figure 9. The curve CA,C for a fixed A.

Considering again kdc as a fixed parameter, it remains to justify why we can express
this last result in terms of the variable A. To do this, we look at the monotony of
ki. We have:

ki (A) =
4kscksd

2

jdck2
ddj

2
cd

X2
√

Ci

(X + Ci)
3

�
1 +

ksd
2

k2
ddj

2
cd

�
X

X + Ci

�2
�2 ,

and because Ci is a root of the equation written above, so:

(Ci + X)
3

=
ksd

2

k2
ddj

2
cd

(3Ci − X) X2.

From this last equality, we get two informations: the first one is that the quotient
Ci/X is a constant and thus does not depend on the variable A, the second one is
the following expression of the square root

√
Ci:

�
Ci =

kddjcd

ksd

√
3

�
Ci + X

�
(Ci + X)

2

X2
+

ksd
2

k2
ddj

2
cd

X

Ci + X
.

Substituting in the expression of ki (A) we obtain the existence of two strictly
positive constants (γi)i=1,2, such that for every positive A, we have:

ki (A) =
γi�

1 +

�
A

jda

�2
,

which implies the strict monotony of the functions ki. Thus the numbers k−1
1 (kdc)

and k−1
2 (kdc) are well defined and distinct because k1 (A) �= k2 (A) for any positive

A. Setting A∗ = k−1
1 (kdc), and A∗∗ = k−1

2 (kdc) we get the result. �

Figure 10. The curve CA,C for a fixed A.

the following expression of the square root
√

Ci:

√
Ci =

kddjcd

ksd
√

3

√
Ci +X

√
(Ci +X)

2

X2
+

ksd
2

k2ddj
2
cd

X

Ci +X
.

Substituting in the expression of ki (A) we obtain the existence of two strictly
positive constants (γi)i=1,2, such that for every positive A, we have:

ki (A) =
γi√

1 +

(
A

jda

)2
,

which implies the strict monotony of the functions ki. Thus the numbers k−11 (kdc)
and k−12 (kdc) are well defined and distinct because k1 (A) 6= k2 (A) for any positive
A. Setting A∗ = k−11 (kdc), and A∗∗ = k−12 (kdc) we get the result. �

Property 4.2. Assuming the parameters satisfy the conditions
ksd
kddjcd

> 2 and

ksd = ksda, then CA,C is a hysteresis defined by a function in Gc,2. In particular,
this is the case of the set C 0

A,C associated to the V-system V 0.

Proof. Since the set CA,C can be expressed as the graph of a function in the variable
C, and thanks to the property (4.1), we are sure it has the form of a hysteresis
defined by an element of the set Gc,2. To see that the stability conditions required
in our definition of a hysteresis are satisfied, it suffices to consider the sign of the

derivatives
∂g

∂C
(A,C) where g (A,C) = kdcC − fX (C).

Concerning the set of parameters P0, we have
ksd
kddjcd

= 32 and ksd = ksda (= 16),

and the function g belongs to Gc,2. �

Lastly, the isocline of VC,D appears as the intersection of the cartesian product
of CA,C by R+ with the set:





(A,C,D) : D =
1

kdd




ksd + ksda

(
A

jda

)2

1 +

(
A

jda

)2

+

(
C

jdc

)2







.
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This intersection is a smooth curve in the three-dimensional space (A,C,D) (see
the figure 11).

O

A

C

D

1

Figure 11. The isocline of the sub-system VC,D

4.2. Using three scales of time to be in the situation of Theorem (2.5).
In order to apply the theorem (2.5), we force the parameters ksd, ksda, kdd to be
much more greater than the other ones, by considering the following system, which
is still of V-system type:





Ȧ =

ksa + ksaa

(
A

jaa

)2

+ ksac

(
C

jac

)2

1 +

(
A

jaa

)2

+

(
B

jab

)2

+

(
C

jac

)2 − kdaA

Ḃ =

ksb + ksba

(
A

jba

)2

1 +

(
A

jba

)2 − kdbB

Ċ =
ksc

1 +

(
D

jcd

)2 − kdcC

Ḋ =
1

ε




ksd + ksda

(
A

jda

)2

1 +

(
A

jda

)2

+

(
C

jdc

)2 − kddD




,

where ε is a very small positive number.
Indeed, by Tychonoff’s theorem that we used before, the dynamics of this last
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system is asymptotically (and approximately) the same as the following slow system:





A′ =

ksa + ksaa

(
A

jaa

)2

+ ksac

(
C

jac

)2

1 +

(
A

jaa

)2

+

(
B

jab

)2

+

(
C

jac

)2 − kdaA

B′ =

ksb + ksba

(
A

jba

)2

1 +

(
A

jba

)2 − kdbB

C ′ =

ksc

(
1 +

(
A

jda

)2

+

(
C

jdc

)2
)2

(
1 +

(
A

jda

)2

+

(
C

jdc

)2
)2

+
ksd

2

k2ddj
2
cd

(
1 +

(
A

jda

)2
)2 − kdcC

,

where ′ stands for the derivative according to the fast time. The assumptions re-
quired to get this asymptotic behavior are those of 2.3.a (and are again very easy to
verify), of which is added the fact that the reduced problem admits an asymptoti-
cally stable critical point. For this reason, the approximation stated by Tychonoff’s
theorem remains true for an infinite time (see [3] for further explanations).

Now in this slow system we recognize the hysteresis defined by the set CA,C .
Thus it suffices to choose another positive number ε′ very small but greater than ε
and to consider the V-system:





Ȧ =

ksa + ksaa

(
A

jaa

)2

+ ksac

(
C

jac

)2

1 +

(
A

jaa

)2

+

(
B

jab

)2

+

(
C

jac

)2 − kdaA

Ḃ =

ksb + ksba

(
A

jba

)2

1 +

(
A

jba

)2 − kdbB

Ċ =
1

ε′




ksc

1 +

(
D

jcd

)2 − kdcC




Ḋ =
1

ε




ksd + ksda

(
A

jda

)2

1 +

(
A

jda

)2

+

(
C

jdc

)2 − kddD




.
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The dynamics of this system is in a first time captured in a three-dimensional space
in which it is approximately described by the following slow system S :




A′ =

ksa + ksaa

(
A

jaa

)2

+ ksac

(
C

jac

)2

1 +

(
A

jaa

)2

+

(
B

jab

)2

+

(
C

jac

)2 − kdaA

B′ =

ksb + ksba

(
A

jba

)2

1 +

(
A

jba

)2 − kdbB

C ′ =
1

ε′




ksc

(
1 +

(
A

jda

)2

+

(
C

jdc

)2
)2

(
1 +

(
A

jda

)2

+

(
C

jdc

)2
)2

+
ksd

2

k2ddj
2
cd

(
1 +

(
A

jda

)2
)2 − kdcC




.

Now S is of the same type as the system studied in the first, namely of the kind
{
ẋ = f (x, µ)

εµ̇ = g (x, µ)
,

where f admits a local Hopf bifurcation and g defines a hysteresis curve. According
to the first part this system is chaotic if the bifurcation surfaces are well-placed.

4.3. Numerical evidence of a chaotic motion. Obviously the position of the
bifurcations surfaces and the shape of the hysteresis are changed when we modify
the values of the parameters. We consider the set P1:





ksa = 0.05, ksaa = 5, ksac = 2.4, kda = 0.1

jaa = 2.5, jab = 0.5, jac = 2

ksb = 0, ksba = 0.3, jba = 17.5, kdb = 0.03

ksc = 330, kdc = 32, jcd = 1.5

ksd = 3.87, ksda = 3.87, jda = 2.9119, jdc = 0.75, kdd = 1.001

,

in which we have imposed the different scales of parameters explained above. We
cannot really increase the values because of numerical instabilities appeared in the
software Xdim for such high values. Remark that the parameters of the system
V 1
A,B and V 0

A,B are the same, thus V 1
A,B still admits a Hopf bifurcation. Moroever

we have
ksd
kddjcd

= 2.57742 and ksd = ksda thus by the proposition 4.2 the set C 1
A,C

is a hysteresis. The figure (12) shows the bifurcation surfaces associated to the slow
system S 1.

With Xdim we found a Poincaré map that covers twice the section on which it is
defined, in an exactly similar way as planned (see figures (13), (14) and (15)). This
convinces us that S 1 is chaotic. Such a section can be found for the V-system V1,
by multiplying the parameters ksd, ksda, kdd by a very great number.



CHAOS OBTAINED FROM A HOPF BIFURCATION 25

CHAOS OBTAINED FROM A HOPF BIFURCATION 23

the values of the parameters. We consider the set P1:



ksa = 0.05, ksaa = 5, ksac = 2.4, kda = 0.1

jaa = 2.5, jab = 0.5, jac = 2

ksb = 0, ksba = 0.3, jba = 17.5, kdb = 0.03

ksc = 330, kdc = 32, jcd = 1.5

ksd = 3.87, ksda = 3.87, jda = 2.9119, jdc = 0.75, kdd = 1.001

,

in which we have imposed the different scales of parameters explained above. We
cannot really increase the values because of numerical instabilities appeared in the
software Xdim for such high values. Remark that the parameters of the system
V 1

A,B and V 0
A,B are the same, thus V 1

A,B still admits a Hopf bifurcation. Moroever

we have
ksd

kddjcd
= 2.57742 and ksd = ksda thus by the proposition 3.2 the set C 1

A,C

is a hysteresis. The figure (11) shows the bifurcation surfaces associated to the slow
system S 1.

Figure 11. The hysteresis and the curve of critical points associ-
ated to the Hopf bifurcation of the system S 1

With Xdim we found a Poincaré map that covers twice the section on which it
is defined, in an exactly similar way as planned (see figures (12) and (13)).

This convinces us that S 1 is chaotic. Such a section can be found for the Vir-
giniator V1, by multiplying the parameters ksd, ksda, kdd by a very great number.

Figure 12. The hysteresis and the curve of critical points associ-
ated to the Hopf bifurcation of the system S 1

Figure 13. A trajectory of the system S 1.

5. Conclusion

We have investigated how to create a chaotic behavior from a family of vector
fields admitting (generically) a Hopf bifurcation. This study permitted us to see
this problem in two different ways: the first one is the perturbation of the parameter
of this family of vector fields, the second, of which interest comes from biological
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Figure 14. A Poincaré map for the flow of S 1 that covers twice
the segment on which it is defined.

regulatory systems, is the coupling of the differential system associated to this
bifurcation, with a bistable one.
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