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On (K, k) vertex stable graphs with minimum size
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Abstract

A graph G is a (K, k) vertex stable graph if it contains a K, after deleting any subset
of k vertices. We give a characterization of (K, k) vertex stable graphs with minimum
size for ¢ = 3,4, 5.

Keywords: Stable graphs

1. Introduction

For terms not defined here we refer to [l As usual, the order of a graph G is the number
of its vertices (denoted by |G|) and the size of G is the number of its edges (denoted
by e(G)). A complete subgraph of order ¢q of G is called a ¢-clique of G. The complete
graph of order ¢ is denoted by K,. When a graph G contains a g-clique as subgraph, we
say “G contains a K,”. The union of p mutually disjoint copies of K, is denoted by pKj,.
When A is a set of vertices we denote by G — A the subgraph induced by V(G) — A.

In [, | Horvérth and G.Y Katona consider the notion of (H, k) stable graph: given
a simple graph H, an integer k£ and a graph G containing H as subgraph, G is a a
(H, k) stable graph whenever the deletion of any set of k edges does not lead to a H-free
graph. These authors counsider (P, k) stable graphs and prove a conjecture stated in [ﬂ]
on the minimum size of a (P4, k) stable graph. In [E], Dudek, Szymanski and Zwonek
are interested in a vertex version of this notion and introduce the (H,k) vertex stable

graphs.

1The research of APW was partially sponsored by polish Ministry of Science and Higher Education.
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Definition 1.1. [f] Let H be a graph. A graph is a (H,k) vertex stable graph if it
contains a graph isomorphic to H after deleting any subset of k vertices. By Q(H, k) we
denote the minimum size of a (H, k) vertex stable graph. If G is (H, k) vertex stable of

size Q(H, k) we call it minimum (H, k) vertex stable.

In this paper, we are only interested by (H,k) vertex stable graphs and, since no
confusion will be possible, a (H,k) vertex stable shall be simply called a (H, k) stable
graph.

In [E]7 the authors give values of Q(H, k) when H is isomorphic to C5, Cy or K4 and
provide upper bounds for some other cases while in [E, @] the bipartite case is considered.

It must be pointed out that in some cases the value of Q(H, k) can be obtained
without the description of extremal graphs, that is (H, k) vertex stable graphs whose
size is precisely Q(H, k). In this paper we describe the extremal (H,k) stable graphs
when H is isomorphic to K, for ¢ € {3,4,5} while in [E] we describe the extremal
(K4, k) stable graphs when k is small with respect to g.

By considering (H, k) stable graph with minimum size, it must be clear that we can
add some isolated vertices, the resulting graph remains to be a (H, k) stable graph with

minimum size. From now on, the graphs considered have no isolated vertices.

Proposition 1.2. /E/ If G is a (H, k) stable graph with minimum size then every vertex

as well as every edge is contained in a subgraph isomorphic to H.

Remark 1.3. Proposition@ implies, in particular, that when H = K, then the minimum

degree of a (H, k) stable graph with minimum size is at least ¢ — 1.

Lemma 1.4. [ Let k > 1. If G is (H,k) stable then for any vertez v, G — {v} is
(H,k — 1) stable.

Definition 1.5. Let H be a non complete graph on g +p+1 (p > 0) vertices and u be
one vertex. Let N be the neighbourhood of w and R = V(H) —u — N. We shall say that
H is a near complete graph (R,N,u) on q+p + 1 vertices (see Figure [I) when

o H — {u} is complete,

e dy(u)=q+e(e€{-1,0,1}).



Note that the set R is not empty since H is not complete. Hence, |R| = p — €, and

since H is not complete we must have p > 2 when dy(u) = ¢+ 1 and p > 1 when

dy(u) = q.

KCI*P

Figure 1: A near complete graph (R,N,u) on ¢ + p + 1 vertices

2. Preliminary results

Proposition 2.1. If G is a (K4, k) stable graph with minimum size (q > 3) then G has

no component isomorphic to a near complete graph (R,N,u) on q+ p+ 1 vertices.

Proof. Suppose, by contradiction, that there exists such a component H = (R, N, u)
on g+p+1 vertices with dg(u) = g+e¢ (e € {—1,0,1}). Since G is a (K, k)-stable graph
with minimum size, G — {u} is not (K, k)-stable. There exists a set .S with at most k
vertices such that S intersects every K, of G — {u}. There exists a K, in G — S and
clearly such a K, contains u. Since N is a K44 and N —S contains no K, |[SNN| > e+1
(trivial for e = —1). If [SNN| > e+ 2 then |[N — S| < ¢ —2, and hence S intersects every
K, containing u, a contradiction. Thus, [SOAN| =€+ 1 and [N — S| = ¢ — 1. If there
exists v in R — S then (N —S) + {v} is a K, in G — {u}, a contradiction. Thus, R C S.
Let a € Randbe N — S, and set ' = S — {a} + {b}. We have | §' |< k and G — S

contains no K, a contradiction.
O

Lemma 2.2. Let ¢ > 3 and k > 1 and let G be a minimum (K, k) stable graph.If u is

a vertex of degree ¢ — 1 then one of the following statements is true
3



o Yve N(u) dv)>qg+1,
o Q(Kq,k—1)+3(q—2) <Q(Kgy, k).

Proof. Since d(u) = ¢—1, {u}+ N(u) induces a complete graph on ¢ vertices. Assume
that some vertex w € N(u) has degree ¢+ a (a = —1 or a = 0) and let v € N(u) distinct
from w. Then G — v is a (Kg, k — 1) stable graph (Lemma [[.4). Since the degree of u in
G —{v} is ¢ — 2, no edge incident with u can be contained in a K,. We can thus delete
these ¢ — 2 edges and the resulting graph (say G’) is still a (K, k — 1) stable graph.
In G’, the degree of w is now q + a — 2. Hence, no edge incident with w in G’ can be
contained in a K,. Deleting these ¢ + a — 2 edges from G’ leads to a graph G' which
remains to be a (K, k — 1) stable graph.
By deleting v, we have e(G — {v}) < e(G) — (¢ — 1) and hence

’

e(G)<e(G)—(¢g—1)—(¢—2)

We get thus

"

Q(Kgk—1)<e(G)<e(G)~(¢g—1)—(¢g—2)—(¢g+a—2)

Since e(G) = Q(Kg, k), the result follows. O

Proposition 2.3. If G is a minimum (K, 1) stable graph (q > 4) then it is isomorphic
to Kq+1.

Proof. Let G be a minimum (K, 1) stable graph. Since K 41 is (K4, 1) stable,

clearly e(G) < (’”2'1). We can assume that G is connected. Otherwise, each component

q+1

contains a K4, but ( 5

) < 2(%) as soon as g > 4, a contradiction. Let u be a vertex
of G and @ be a subgraph of G — {u} isomorphic to K,. Assume that there exists a
vertex v outside @) and distinct from u. Note that v can be a neighbour of u. Since
diu) >q¢—1landd(v) >q¢—1,e(G) > e(@Q)+2(qg—1)—1= (g)+2q73: (q;1)+q73.
Thus, e(G) > e(K4+1), a contradiction. Hence, V(G) = V(Q) U {u} with d(u) > ¢ — 1.
Since for any edge e K441 — {e} is not (K, 1) stable, we see that d(u) = ¢, that is G is

isomorphic to Kg1. O



Remark 2.4. Tt is easy to see that the minimum (K3, 1) stable graphs are 2K3 and Kjy.

Proposition 2.5. If G is a minimum (K4,2) stable graph (q > 4) then it is isomorphic
to Kq+2.

Proof. Since K442 is a (Ky,2) stable graph, we can suppose that G has at most
(qu) edges. We can suppose, moreover, that G is not complete, otherwise G is obviously
reduced to Kg19. Let u be a vertex of minimum degree (recall that the minimum degree
is at least ¢ — 1) and let v be one of its neighbours.

Assume that dg(u) = ¢—1. G—{v} is a (K, 1) stable graph, but it is not minimum,
since none of the remaining edge incident with u can be contained in a complete graph
on g vertices. By deleting the ¢ — 2 edges incident with u, we get thus a (K, 1) stable
graph.

If d(v) > g + 1, this graph has at most (q;?) — (2¢ — 1) edges. Since this number of
edges must be greater than (q-;l) by Proposition E, we have

(q+2)(g+1)—4g+2>(g+1)g

That leads to ¢ < 2, a contradiction. If d(v) < ¢, by Lemma @, we have Q(Kg, 1) +
3¢ — 6 < Q(Ky,2) and hence

qg+1)+6¢g—12< (g+1)(g+2)

Which gives ¢ < 3, a contradiction.

We can thus assume that the minimum degree of G is at least ¢. Let v and v be two
non adjacent vertices of G. Since G — {u, v} contains a K, (say @), let a and b be two
distinct vertices of ). Since G — {a, b} must contain also a K, there is certainly a vertex
w distinct from v and u, outside @, inducing with ¢ — 1 other vertices of G — {a,b} a K.

Hence G contains three vertices (u,v and w) at least in G — @ and we have:

(q;Q) > e(G) > (;’)+3q—2

Which gives g < 3, a contradiction. Hence G is complete and the proposition follows. [J

Lemma 2.6. Let G be a minimum (Ky,3) stable graph, ¢ > 5. Let u be a vertex of
minimum degree in G and suppose that dg(u) = q+1, where —1 <1< 1. Then for every

neighbour v of u we have dg(v) > q+1+ 2.
)



Proof. Suppose, contrary to our claim, that dg(v) < g+ 1+ 1 for a neighbour v of w.
Since, by Proposition 1.2, the edge uv is contained in a clique of order ¢ and g > 5, there
is a set A of vertices of G such that |A| = [ + 2 and the vertices of the set A U {u,v}
are mutually adjacent. The graph G’ = G — A is (K,,3 — (I + 2)) stable. We have
de'(u) =q+1—(14+2)=qg—2, hence also G = G' — {u} is (K, 1 — 1) stable. But in
G" the degree of the vertex v is at most ¢ — 2 and therefore G = G” — {v} is (K4, 1—1)

stable. Since every vertex of the set AU {u, v} has at least ¢ — 3 neighbours outside this

(7,7 << (15°) ~aroa-n- ()

which contradicts ¢ > 5. (|

set, we have

Proposition 2.7. If G is a minimum (K, 3) stable graph (q > 5) then it is isomorphic
to Kq+3.

Proof. Note first that to prove the proposition it is sufficient to prove that every
vertex of G has the degree at least ¢ + 2.

Let u be a vertex of the minimum degree in G and suppose, contrary to our claim, that
de(u) < q¢+1, where =1 <1 < 1.

Let v1,va,...,v142 be such vertices of G that the set {u,v1,ve,...,v;42} induce a clique
in G (such vertices exist since u is contained in a clique of order ¢ by Proposition @
and ¢ > 5). By Lemma E, we have dg(v;) > ¢+ 142 for i = 1,2,...,1 + 2. Set
G = G — {v1,v2,...,v142}. The graph G’ is clearly (K,,1 — ) stable. Moreover, since
dar(u) = ¢ — 2, the graph G” = G’ — {u} is also (K, 1 — ) stable and we have

<q+21l> <e(G") < (q;3> _(l+2)(q_1)_(q_2)_<l;3)

which contradicts g > 5.



3. A characterization of (K3, k) stable graph with minimum size

Dudek, Szymanski and Zwonek in [P] have shown that Q(K3,k) = 3k + 3 for every
nonnegative integer k. In this section we characterize all that (K3, k) stable graphs with
minimum size.

Clearly, K3 is the unique minimum (K3,0) stable graph.

The following theorem characterize all graphs which are (K3, k) stable with minimum

size.

Theorem 3.1. Let G = (V,E) be a (Ks,k) stable graph with minimum size. G s

isomorphic to pK4+qKs, where p and q are such nonnegative integers that 2p+q = k+1.

Proof. By Remark R4, K3 is the unique minimum (K3, 0) stable graph, and the
minimum (K3, 1) stable graphs are 2K5 and K4. Clearly, the graph (k + 1)K3 is a
(K3, k) stable graph and has 3k + 3 edges. Let ky > 1 and suppose that for every k < ko
every minimum (K3, k) stable graph is a union of p copies of K4 and ¢ copies K3 with
W+q=k+1.

Let G be a (K3, ko) stable graph of minimum size. Since G —{v} is (K3, ko — 1) stable
for every vertex v, we have 3kg < e(G — {v}) < e(G) — dg(v) < 3ko + 3 — dg(v), that is
de(v) < 3. If every vertex of G has degree equal to 2, then G is a union of kg + 1 copies
of K3, and the theorem is proved. So we may suppose that there is a vertex vy of degree
3. But then G — {wg} is (K3, ko — 1) stable and e(G — {vo}) = 3k,, that is G — {vo} is
minimum (K3, ky — 1) stable. By the induction hypothesis, G — {vg} is isomorphic to
p' K4 + ¢' K3, where 2p’ + ¢’ = kg. It is clear that all the neighbours of vy are in the
same component of G, (otherwise one of the edges incident with vy is not contained in
any triangle, contrary to Proposition D) Now it is easy to see that G is isomorphic to
P +1D)Ks+ (¢ —1)Ksand 2(p' + 1)+ (¢ — 1) = ko + 1 (otherwise there is a set A of

cardinality ko which is transversal of all cliques of order 3 in G). ([

4. A characterization of (K4, k) stable graph with minimum size

In [ the minimum number of edges of a (K4, k) stable graph is given.
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Theorem 4.1. [}/ If G is a (K4, k) stable graph with minimum size (k > 1) then
L4 Q(K4a O) = 67
o Q(Ky4,k) =5k+5 when k > 1.

Proposition 4.2. If G is a (K4,k) stable graph with minimum size (k > 1) then it has

no connected component isomorphic to Ky.

Proof. Let us consider k£ > 2. Assume that some component H of G is isomorphic to
a K, with the vertices of H being a,b,c,d. Then G — H has 5k — 1 edges. Since G — H
is not a (K4, k — 1) stable graph, there is a set S with at most k — 1 vertices intersecting
each Ky of G — H. Then S + {a} intersects each K4 of G while S has at most k — 1
vertices, a contradiction.

When k£ = 1, G must have 10 edges by Theorem @ Since for each vertex v the
graph G — v contains a Ky, v is joined to this K4 by 4 edges. Hence G is a K5 and the
result holds. (|

Proposition 4.3. If G is a (K4, k) stable graph with minimum size (k > 1) then every
vertex of G has degree 3,4 or 5.

Proof. By Proposition every vertex is contained in a K4, hence its degree is at
least 3. Assume that G has a vertex v with d(v) > 6. Then, by Lemma E, G—-visa
(K4, k — 1) stable graph and therefore has at least 5k edges, which is impossible since G
has exactly 5k + 5 edges, by Theorem . (I

Proposition 4.4. Let G = (V, E) be a (K4, k) stable graph with minimum size (k > 1).
If H is a component containing no vertex of degree 5, then each vertex of H has degree

4.

Proof. By Proposition the vertices of G have degree 3 or 4. Assume to the
contrary that H contains some vertex v with degree 3. Let N(v) = {u1, ua,us} be its
neighbourhood. By Proposition , N(v) is complete. Since H is not isomorphic to

K4 by Proposition @, assume that, without loss of generality, u; is joined to some new
8



vertex w. Since ujw must be contained in a K4 by Proposition , the vertices of this
K, are in {u1,us2,us, w,v}, thus w must be adjacent to us and us. By Proposition @,
H is not isomorphic to a K5 minus one edge, hence there must exist some new vertex
w’ adjacent to w. Since each vertex in {uq, uz2, us, w} has degree 4, we cannot find a K,

using the edge ww’, a contradiction with Proposition . (I

Theorem 4.5. If G is (K4, k) stable (k > 1) with minimum size then it is isomorphic

to pKs + qKg, where p and q are nonnegative integers such that 2p+3q =k + 1.

Proof. The proof is by induction on k. By Proposition @, the only minimum (K4, 1)
stable graph with minimum size is K5. Let kg > 2 and suppose that for every integer
k, such that 1 < k < kg every (K4, k) stable graph with minimum size is isomorphic to
pKs + qKg, where p and g are nonnegative integers such that 2p + 3¢ = k + 1.

Let G be a (K4,ko) stable graph with minimum size. By Theorem @ we have
e(@) = 5ko+5. Note that it is sufficient to prove that every component of G is isomorphic
either to K5 or to Kg.

By Proposition @, we have 3 < dg(v) < 5 for every vertex v of G. Since by
Proposition 1.2, every edge of G is contained in a Ky, all the neighbours of a vertex v
are in the same component of G — {v}.

Suppose first that there is a vertex v in G such that dg(v) = 5. Then G — {v} is
(K4, ko — 1) stable and moreover, since e(G —v) = 5ko, G — {v} is minimum (K4, ko — 1)
stable. Hence every component of G — {v} is either isomorphic to K5 or to Kg. If v is
connected in G to a Kg, then the component of G which contains v is a near complete
graph, contradicting Proposition . So v is connected to a K5 and G is a union of
graphs isomorphic to K5 or Kg, as desired.

Assume now that no component has a vertex of degree 5. Then, by Proposition @,
each component is a 4-regular subgraph.

Let v be any vertex and let N(v) = {uy, u2, us, us} be its neighbourhood. Since v is
contained in a K4 by Proposition B, we can suppose, without restriction of generality,
that ujus, uius and ugus are edges of G. Since vuy must be contained in a K4 by
Proposition D, ug must be adjacent to at least 2 vertices of N (say, without loss of

generality, us and ug).



case 1: ujuy € E(G). Then the component containing v is a K.

case 2: ujus ¢ F(G). Let w be a new vertex adjacent to w; (this new vertex must
exist since the component of v is 4-regular). Then ujw cannot be contained in a Ky, a
contradiction.

O

5. A characterization of (K3, k) stable graph with minimum size

In this section we provide the value of Q(K3, k) for k > 5, as well as a description of

the corresponding minimum stable graphs.

Lemma 5.1. Let G be a (Ks, k) stable graph containing a component isomorphic to K,
with p > 9. Then the graph G’ obtained from G by deleting two vertices v and v’ in this
K, and adding a disjoint K¢ is a (K5, k) stable graph such that

e if p > 10 then e(G’) < e(G),
o if p=9 then e(G') = e(G).

Proof. Let A be the set of vertices created by the adjunction of the new Kg. Let S
be a set of vertices with |S| <k in G'. If |[SN A| < 1, G — S obviously contains a Ks. If
SN A| > 2then S =S — A+ {v,v'} is a subset of G with at most k vertices. Hence
G — S’ contains a K5 which still exists in G — S.

If p > 10 then at least 17 edges are deleted and 15 edges are created, thus e(G’) < e(G)
. If p=9, 15 edges are deleted while 15 edges are created so e(G) = e(G"). O

Lemma 5.2. Let G be a (Ks,k) stable graph with minimum size. Then G does not

contain 2 components isomorphic to a K, with 5 <p < 6.

Proof. If we have two components (say K and L) isomorphic to a complete graph

with 5 vertices then the graph G’ obtained from G by deleting these two components

and adding a complete graph on 6 vertices is still a (K5, k) stable graph. Indeed, let S’

be any subset of V(G') with |S’| < k. If G — S’ does not contain any K3 then S’ must
10



contain at least 2 vertices v and w of the new Kg. Let S = 5" — {v,w} + {a, b}, where
a € K and b € L, then G — S does not contain any Kj, a contradiction.

When we have a K5 and a Kg, we get the same kind of contradiction when replacing
these two complete graphs with a K7 as well as when we have two Kgs replaced by a Kg.

O

Lemma 5.3. Let k > 5 and let G be a (K5, k) stable graph with minimum size which is

the vertex disjoint union of complete graphs. Then each component is a K7 or a Kg.

Proof. By Lemma @, we can consider that each component is a K, with 5 <p < 9.
By Lemma @, at most one component is a K5 or a Kg. If some component is isomorphic
to a Kg then let us replace this component by a K¢ and a K. By Lemma p.1fthe resulting
graph is still a (K5, k) stable graph with minimum size. It is clear that no component
is isomorphic to a K9 now. Indeed, applying once more the operation described above
leads to a (K3, k) stable graph with minimum size having two Kgs, a contradiction with
Lemma @

Therefore, we have to consider only the case when G is the vertex disjoint union of
complete graphs isomorphic to K7 or Kg and at most one K5 or one Kg. Replacing a
K5 and a K; by one Kg leads to a (K5, k) stable graph with a number of edges less than
the number of edges of G, a contradiction. Replacing a K and a Kg by two K7 leads
to a (K5, k) stable graph with a number of edges less than the number of edges of G, a
contradiction.

It remains to consider the case where the components are all isomorphic to a K7 with
the exception of one Kg or all isomorphic to a Kg with the exception of one K5. When
we have at least two K7 and a Kg, these three complete graphs can be replaced by two
Ksg, the resulting graph is still a (K5, k) stable graph, but the number of edges is less
than the number of edges of GG, a contradiction. When we have at least two Kg and a
K5, these three complete graphs can be replaced by three K7, the resulting graph is still
a (K3, k) stable graph, but the number of edges is less than the number of edges of G, a
contradiction.

When G is reduced to a Kg and a K5 or to a K7 and a Kg , we must have k < 4,

which is impossible.
11



Lemma 5.4. Let G be a (K5, k) stable graph with minimum size and mazimum degree
6. Assume that some component contains a Kg. Then either the component is equal to

this Kg or to K7.

Proof. Let A = {v1...v6} be the set of vertices of the Kg. If d(v;) = 5 for each
vertex in A the proof is complete. Assume that the vertex v; has degree 6 and let w
be its neighbour outside A. Since v;w must be contained in a K5 by Proposition [L.2}, w
must be adjacent to 3 other vertices in V' (say vq,vs and vy). In the same way, if vs or
vg has a neighbour outside A, this vertex must be adjacent to 4 vertices of A, which is
impossible if this vertex is distinct from w.

Let w’ ¢ A be a neighbour of w (if any). Since ww’ must be contained in a Ky by
Proposition E, w’ must have at least 3 neighbours in A, which is impossible. Hence the
connected component containing the Ky contains at most one vertex more (the vertex
w). If w is not adjacent to at least one of vy or vg (say vs) then this component is a near
complete graph (R,N,u) on 7 vertices (withu =w, N = Aor N = A+{uvs}, R = {vs,v6}
or R = {vs} respectively), which is impossible by Proposition @ If w is adjacent to vy

and vs, the component containing the Kg is a K7 as claimed. (I
a b
d e
f g

Figure 2: Forbidden component of a (K35, k) stable graph with minimum size.
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Lemma 5.5. Let G be a (K5, k) stable graph with minimum size. Then no component

of G is isomorphic to the subgraph depicted in Figure @

Proof. Since G — {a} is not a (K5, k) stable graph, there exists a set S with |S| < k
which intersects each K5 in G — {a}. If S contains one of the the vertices in {c,d, e},
then S intersects each K5 in G, which is impossible. Since {c,d,e, f, g} induces a Kj,
S contains at least one vertex in {f,g}. When g € S, S intersects each K5 in G, which
is impossible. Assume that f € S then S = S — {f} + {c} intersects each K5 in G, a

contradiction since |S’| < k. O

Lemma 5.6. Let G be a (Ks,k) stable graph with minimum size. Assume that some
component contains vertices with degree 5 or 6 only. Then this component is a complete

graph with at least 5 vertices.

Proof. Let H be a connected component containing vertices of degree 5 or 6 only. By
Proposition E, every edge is contained in a Kj. Let U = {uq, ug, us, ug, us} be a set of
vertices inducing a K5 in H.
casel:3 ¢ 1<i<5 dy(u;)=6.

Without loss of generality we may assume that 7 = 1. Let w and w’ the two neighbours
of uy outside U. Since ui;w must be contained in a K5 and since this K5 contains 4
neighbours of w;, w must be adjacent to at least two vertices in U — {uy}. Without
loss of generality, assume that wus € E(G) and wug € E(G). Let us remark that w
is not joined to the two vertices u4 and us, otherwise, H contains a K¢ and H is thus
isomorphic to a complete graph by Lemma @ For the same reason, w’ is not joined to
all the vertices in U.

subcase 1.1 : If w or w’ has no other neighbour in U, say w, we must have ww’ €
E(G), w'usy € E(G) and w'us € E(G). One of uy or us, say ug, is not adjacent to w’,
and there must be a vertex w” adjacent to ug (dg(ug) > 5), but the edge ugw” cannot
be on any K5, which is impossible.

subcase 1.2 : If w has an other neighbour (say us) in U. When w’ is not adjacent
to w, w’ must be adjacent to precisely 3 vertices in {uz, us, ug, us}. If ugw’ is an edge,
there must be an edge incident with w’ (dg(w’) > 5), but this edge cannot be contained
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in any K3, a contradiction. If usw’ is not an edge, there must be an edge incident with
u4 and this edge cannot be contained in any K5, which is impossible. Thus, w and w’ are
adjacent and there must be 2 vertices in {us,us, us} adjacent to w’, say us and us. But
now, there is an additionnal edge incident with u4 and this edge is uqw’ otherwise it is not
contained in any Kjy. It is a routine matter to check that there is no additionnal vertex
nor edge in H. Hence H is isomorphic to the graph depicted in Figure E, a contradiction
with Lemma @

case 2:V i 1<i<5 dy(u;)=>5.

Let w be the last neighbour of u; outside U. Since wu; must be contained in a K5, w
must be adjacent to us,us and u4, without loss of generality. Hence, wus ¢ E(G) or H
is complete. Since dg(us) = 5, let w’ # w be the last neighbour of us outside U. Then
usw’ is not contained in a K&, which is impossible.

O

Lemma 5.7. Q(K5,4) = 36.

Proof. Since K9 and K¢+ K7 are (K5,4) stable graphs, we certainly have Q(K3,4) <
36.

Assume that some graph G with e(G) < 35 is a (K5,4) stable graph with minimum
size. Let v be a vertex with maximum degree. If d(v) > 8 then G — v is a (K5,3)
stable graph with at most 27 edges, a contradiction with Proposition @ If div) =7
then G — {v} is a (K5,3) stable graph with at most 28 edges. Hence we must have
e(G —{v}) = 28 and G is a (K5, 3) stable graph with minimum size. By Proposition .7,
G —{v} is a Kg and G is a Ko minus one edge, a contradiction with Proposition P.1.

We can thus assume that the maximum degree of G is at most 6. If some vertex u
has degree 4, let v be one of its neighbours. We know, by Lemma R.§ that d(v) = 6.
By deleting v, we get a graph G — v which is a (K3, 3) stable graph. In that graph, the
edges incident with u are not contained in a Kj since the degree of u is now 3. We can
thus delete these edges and we obtain a (K35,3) stable graph with at most 27 edges, a
contradiction with Proposition @

Hence every vertex must have degree 5 or 6. By Lemma @, the components of G

are complete graphs. It can be easily checked that the only convenient graphs are Ky
14



and Kg + K7, a contradiction with e(G) < 35. O

Lemma 5.8. K¢+ K7 and Kg are the unique (Ks,4) stable graph with minimum size.

Proof. By Lemma @, let G be a (K5,4) stable graph with 36 edges.

If G has a vertex of degree at least 8 then G — {v} is a (K5,4) stable graph with
at most 28 edges. Hence G — {v} must have exactly 28 edges and d(v) = 8. Since, by
Proposition .4 G — {v} is a Ks, G itself is a K.

We can thus assume that the maximum degree of G is at most 7. If some vertex u
has degree 4, let v be one of its neighbours. We know, by Lemma R.9 that d(v) > 6.
By deleting v, we get a graph G — {v} which is a (K3, 3) stable graph. In that graph,
the edges incident with u are not contained in a K5 since the degree of u is now 3.
We can thus delete these edges and we obtain a (K35, 3) stable graph with 27 edges, a
contradiction with Proposition @

Hence the degree of each vertex is 5, 6 or 7.

In the following Claims ()1 and @2 denote any two induced K5 of G.
Claim 5.8.1. [V(Q1) NV (Q2)| # 1.

Proof Assume that |[V(Q1) NV (Q2)| = 1 then the vertex in the intersection must

have degree at least 8, which is impossible. m

Claim 5.8.2. Assume that Q1 and Qo are vertex disjoint and let xy € E(G) (if any)
such that x € V(Q1) and y € V(Q2). Then we can find a vertex ' € V(Q1) and a vertex
y' € V(Q2) such that {x,z',y,y'} is contained in an induced K5 of G. Moreover the 5"
vertex of this K5 must be contained in V(Q1) UV (Q2).

Proof

Since G is a minimum (K5, 4) stable graph, the edge xy must be contained in a Kj
(say Q). By Claim @ contains at least one vertex more in Q1 (say z’) and one vertex
more in Qs (say y'). Let a be the 5! vertex of Q and assume that a € V(Q1) U V(Q2).
G — {a} is a (K5, 3) stable graph but it is not minimum since the edges between {z,z’}

and {y,y'} cannot be contained in a K5. By deleting these 4 edges in G — {a} we get a
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(K,3) stable with 28 edges. By Proposition P.7, G’ — {a} is isomorphic to Kg, which is

impossible. O

Claim 5.8.3. |V(Q1) N V(Q2)| # 2.

Proof Assume that V(Q1) NV (Q2) = {z,y}. Let us remark that these two vertices
have degree 7. Let {u1,uz2,us} and {v1,vs,v3} be the sets of remaining vertices of @
and Qo respectively.

Assume that some edge is missing between {u1,us,us} and {v1,ve,v3} (say ujv1 ¢
E(G)). Then G1 = G — {ug,v2,v3} is a (K5,1) stable graph in which the vertices z and
y are not contained in any Ks. Hence Go = G1 — {z,y} is a (K5, 1) stable graph. Since
dg(v1) < 7, the degree of v1 in G4 is at most 3. Hence v; is not contained in any Kjx
and Gz = G2 — {v1} is (K35, 1) stable graph.

case 1 : The edge uius is not contained in a Ks.

Then G4 = G3 \ {u1,u3} is a (K3,1) stable graph. By Proposition .3, G4 contains
at least 15 edges. Since V(Q1) U V(Q2) contains 19 edges, we need to find two more
edges. By Claim no edge can connect V(Q1) UV (Qz) to G4. Whatever is the place
of these edges, G — {z,y} is a (K5, 2) stable graph, where no vertex in {us, uz,us} nor
in {v1,v2,v3} can be contained in a K5. Hence G — (V(Q1) UV (Q2)) is a (K5, 2) stable
graph and must contain at least 21 edges by Proposition @ That is G must contain at
least 40 edges, a contradiction.

case 2 : The edge uius is contained in a Ks.

That means that u; and ug have 3 neighbours outside V(Q1) U V(Q2). In the same
way, we can consider that us has also three such neighbours (take G; = G—{us, v2,v3}) as
well as vy, vy and vs by symmetry. Hence G3 contains the 19 edges of V(Q1)UV (Q2) and
18 edges connecting {u,us, us} and {v1,ve,v3} to the vertices outside, a contradiction.

We can thus suppose that every vertex in {uj,ue,us} is joined to every vertex in
{v1, v2,v3}. That means that V(Q1)UV (Q2) is a connected component of G and induces a
Kg. No connected component distinct from this Kg can contain a K5, which is impossible.

0
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Claim 5.8.4. |V(Q1) NV (Q2)| # 3 or G is isomorphic to K7 + K.

Proof Assume that |[V(Q1) NV(Q2)| = {z,y,2}. Let {ur,ua} and {v1,v2} be the
sets of remaining vertices of ()1 and )2 respectively.

Then G; = G — {z,y, 2} is a (K5, 1) stable graph in which the vertices uy,ug, v1, vo
are not contained in any Ky by Claims and . That means that G, = G —
(V(Q1)UV(Q2)) is a (K5,1) stable graph. If w € V(Q1) U V(Q2) is adjacent to some
vertex w' in Gy then a Kj using that edge forces 4 more edges more between these two
subgraphs, a contradiction since G would have at least 37 edges (by Proposition @ Gs
has at least 15 edges).

If some edge is missing between {uy, us} and {vi,v2} (say uivy & E(G)), then Gs =
G — {ug,v2} is a (K3,2) stable graph where z,y, 2, u1,v1 are not contained in any Ks.
The graph Gs is still (K35, 2) stable. Hence, by Proposition E G must have at least 38
edges, a contradiction.

We can thus suppose that V(Q1) U V(Q2) induces a K7. The remaining part of G
is the (K3, 1) stable graph Go described above. This graph must have exactly 15 edges.
Hence, G5 is isomorphic to Kg by Proposition @ That means that G is isomorphic to
K7 + K. O

Claim 5.8.5. |V(Q1) NV (Q2)| # 4 or G is isomorphic to K7 + K.

Proof Assume on the contrary that |[V(Q1) N V(Q2)| = {z,y,2,t} and G is not
isomorphic to K7+ Kg. Let u and v be the remaining vertices of Q1 and Q2 respectively.

Let r be a neighbour of w, if any, outside V(Q1) UV (Q2). Let @3 be a K5 containing
the edge wr. Then V(Q1) N V(Q3) contains 4 vertices (Claims and f.8.3) but
V(Q2) NV (Q3) contains 3 vertices, a contradiction.

Since d(u) > 5, we must have uwv € E(G) (and, moreover, d(u) = d(v) = 5).

case 1 : There are neighbours of {x,y, z,t} outside V(Q1) UV (Q2).

Let s be such a neighbour of x,. The edge xs being contained in a Kj, this K5 must
have 4 common vertices with Q1 and 4 common vertices with Q2 (Claims , and
F.8.4). Hence, s must be adjacent to the 4 vertices of V(Q1) NV (Q2) and {z,y, 2,1, s}
induces a K5 with 4 common vertices with Q1 and 4 common vertices with Q2. By the
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above remark, we have us € F(G) as well as vs € E(G) and V(Q1) U V(Q2) induces a
K7. By deleting 3 vertices of this component, the resulting graph is (K3, 1) stable with
15 edges, and hence is isomorphic to K.

case 2 : There are no neighbours of {x,y, z,t} outside V(Q1) UV (Q2).

Hence, V(Q1) U V(Q2) is a connected component of G inducing a Kg. By deleting
2 vertices in this component, the resulting graph is (K3, 2) stable. Since the remaining
vertices of V(Q1) U V(Q2) in this graph are not contained in any K5, we can delete
them and the (K3, 2) stable graph obtained in this way must have 21 edges exactly. This

component is a K7 by Proposition E, a contradiction. O

To end our proof, it is sufficient to say that any two induced K5 of G must be disjoint

by Claims p.8.1], .8.9, p.8.4 and [5.8.5. That means that each component of G is a Ks,

which is impossible since G must have 36 edges.

O

Lemma 5.9. Q(K5,5) = 42.

Proof. Since K7 + K7 is a (K3,5) stable graphs, we certainly have Q(K5,5) < 42.
Let G be a (K5, 5) stable graph with minimum size and assume that e(G) < 41. Let us
remark that the size of G is certainly greater than Q(K5,4).

If G has a vertex of degree at least 6 then G—v is a (K5, 4) stable graph with at most 35
edges, a contradiction with Lemma @ If G has a vertex of degree 4 then, since the degree
of every neighbour is at most 5, we must have, by Lemma @, Q(K5,5) > Q(K5,4) + 9,
a contradiction.

Hence, every vertex must have degree 5 and by Lemma @, the connected component

of G are isomorphic to Kg. It is easy to see that no such graph can exist. O

Lemma 5.10. K7+ K7 is the unique (K35,5) stable graph with minimum size.

Proof. By Lemma @, let G be a (K5,5) stable graph with 42 edges.
If G has a vertex of degree at least 7 then G — v is a (K3,4) stable graph with at

most 35 edges, a contradiction with Lemma m
18



If G has a vertex u of degree 4, let v be one of its neighbours. By deleting v we get
a (K5,4) stable graph where the edges incident with the vertex w are not contained in
any K since the degree of u in that graph is 3. By deleting these edges we get a (K5,4)
stable graph with at most 35 edges, a contradiction with Lemma E

Hence every vertex has degree 5 or 6. By Lemma @, the connected components of
G are complete. It is an easy task to see that the only convenient graph G is isomorphic

to K7 + K7, as claimed. (I

Theorem 5.11. If G is (K5, k) stable (k > 5) with minimum size then |E(G)| = 7k+7.

Proof. We can check that the property holds for £k =5 (G is the vertex disjoint union
of two K7s by Lemma ) Assume that the property holds for any & (5 < k < k) and
let us consider a (K5, ko) stable graph G with minimum size. Assume that G has at most
Tko+6 edges and let v be a vertex of maximum degree. Since G—v is a (K5, ko—1) stable
graph, it must have Tky edges, which means that d(v) < 6. Moreover, by Proposition
[, we certainly have d(v) > 4.

Let z be a vertex of degree 4 in some component of G. If z has a neighbour v whose
degree is 6 then G — v has exactly 7ko edges. Hence G — v is a (K5, kg — 1) stable graph
with minimum size. Since the degree of z is 3 in G — v, any edge incident with z in G —v
is not contained in a K5, a contradiction.

If z has a neighbour v whose degree is 5 then G —v has exactly Tko+1 edges. G —v is
a (K5, ko—1) stable graph. This graph does not have minimum size since the 3 remaining
edges incident with z are not contained in a K5. If we delete these 3 edges, we still have
a (K5, ko — 1) stable graph, but the number of edges is then 7ky — 2, which is impossible
by the induction hypothesis.

Hence the neighbours of z have also degree 4, that means that the component con-
taining a vertex of degree 4 is a 4 regular graph containing a K. That is, this component
is a K5.

Since each component containing only vertices of degree 5 or 6 are complete by Lemma
@, we have thus that all the connected components of G are complete. By Lemma @,
each component has 7 vertices or 8 vertices (recall that kg > 5). Assume that we have p

components isomorphic to a K7 and ¢ isomorphic to a Kg, then kg < 3p+4¢g—1and G
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has 21p+ 28q edges. If kg = 3p+4q— 1, we have 21p+ 28¢ = Tko + 7, a contradiction. If
ko < 3p+ 4q — 1 then deleting one vertex in some component leaves the graph (Kj, ko)

stable, which is impossible. (I

Dudek, Szymanski and Zwonek proposed the following conjecture.

Conjecture 5.12. [}/ For every integer ¢ > 5 there is an integer k(q) such that
QUK. k) = (2 = 3)(E +1) for k> K(q).

Theorem proves this conjecture for ¢ = 5 with k(q) = 5.
Theorem 5.13. If G is (K5, k) stable (k > 5) with minimum size then
e |[E(G)|=T7k+7,
e cach connected component is isomorphic to a complete graph with 7 or 8 wvertices,

e there are p components isomorphic to K7 and q components isomorphic to Kg for

any choice of p and q with 3p+4qg =k + 1.

Proof. By Theorem , the first claim is true. We can check that the property of the
second claim holds for k£ = 5 (G is the vertex disjoint union of two K7s). Assume that
the property holds for any &k (5 < k < ko) and let us consider a (K5, ko) stable graph G
with minimum size.

If G has a vertex v of degree at least 8, then G — v has at most 7ky — 1 edges and
cannot be a (Kj, kg — 1) stable graph, a contradiction. Thus the maximum degree of G
is at most 7.
case1:3 veV(G) du(v)=T.

In that case, G —v is (K35, kg — 1) stable graph with minimum size. By the induction
hypothesis, each connected component of G — v is isomorphic to a complete graph with 7
or 8 vertices. Going back to G by adding the vertex v leads to join v to a whole connected
component of G — v, otherwise, some edge incident with v cannot be contained in a Kjp,
a contradiction with Proposition [L.3 The vertex v cannot be connected to 7 vertices of
a Kg, otherwise we would have a near complete graph, a contradiction. Hence v is joined

to the 7 vertices of a K7 and the connected component of G containing v is a K.
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case 2 : If some connected component of G contains vertices of degree 5 or 6 only, then,

by Lemma @, this component is a complete graph on at least 7 or 8 vertices (Lemma

B.3), since ko > 5.

case 3 : If some connected component of G contains a vertex v of degree 4 then, no
neighbour w of v may have a degree at least 5. Otherwise, G —w is a (K5, ko — 1) stable
graph with at most 7ko+ 2 edges. Since the degree of v is 3 in G —w, the 3 edges incident
with v are not contained in any K5. We can thus delete these 3 edges from G —w, getting
a (K5, ko — 1) stable graph with at most 7kg — 1 edges, which is impossible by Theorem
. Hence this component is 4—regular. That is, this component is reduced to a Kj, a
contradiction with Lemma [5.9 since ko > 5.

It is now a routine matter to check that the third claim holds. [
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