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A graph G is a (K q , k) vertex stable graph if it contains a K q after deleting any subset of k vertices. We give a characterization of (K q , k) vertex stable graphs with minimum size for q = 3, 4, 5.

Introduction

For terms not defined here we refer to [START_REF] Bondy | Graph theory[END_REF]. As usual, the order of a graph G is the number of its vertices (denoted by |G|) and the size of G is the number of its edges (denoted by e(G)). A complete subgraph of order q of G is called a q-clique of G. The complete graph of order q is denoted by K q . When a graph G contains a q-clique as subgraph, we say "G contains a K q ". The union of p mutually disjoint copies of K q is denoted by pK q .

When A is a set of vertices we denote by G -A the subgraph induced by V (G) -A.

In [START_REF] Horváth | Extremal P 4 -stable graphs[END_REF][START_REF] Katona | Extremal stable graphs[END_REF] Horvárth and G.Y Katona consider the notion of (H, k) stable graph: given a simple graph H, an integer k and a graph G containing H as subgraph, G is a a (H, k) stable graph whenever the deletion of any set of k edges does not lead to a H-free graph. These authors consider (P n , k) stable graphs and prove a conjecture stated in [START_REF] Frankl | Extremal k-edge hamiltonian hypergraphs[END_REF] on the minimum size of a (P 4 , k) stable graph. In [START_REF] Dudek | H, k) stable graphs with minimum size[END_REF], Dudek, Szymański and Zwonek are interested in a vertex version of this notion and introduce the (H, k) vertex stable graphs. 1 The research of APW was partially sponsored by polish Ministry of Science and Higher Education.

Definition 1.1. [START_REF] Dudek | H, k) stable graphs with minimum size[END_REF] Let H be a graph. A graph is a (H, k) vertex stable graph if it contains a graph isomorphic to H after deleting any subset of k vertices. By Q(H, k) we denote the minimum size of a (H, k) vertex stable graph. If G is (H, k) vertex stable of size Q(H, k) we call it minimum (H, k) vertex stable.

In this paper, we are only interested by (H, k) vertex stable graphs and, since no confusion will be possible, a (H, k) vertex stable shall be simply called a (H, k) stable graph.

In [START_REF] Dudek | H, k) stable graphs with minimum size[END_REF], the authors give values of Q(H, k) when H is isomorphic to C 3 , C 4 or K 4 and provide upper bounds for some other cases while in [START_REF] Dudek | On vertex stability with regard to complete bipartite subgraphs[END_REF][START_REF] Dudek | H, k) stable bipartite graphs with minimum size[END_REF] the bipartite case is considered.

It must be pointed out that in some cases the value of Q(H, k) can be obtained without the description of extremal graphs, that is (H, k) vertex stable graphs whose size is precisely Q(H, k). In this paper we describe the extremal (H, k) stable graphs when H is isomorphic to K q , for q ∈ {3, 4, 5} while in [START_REF] Fouquet | On (Kq, k) stable graphs with small k[END_REF] we describe the extremal (K q , k) stable graphs when k is small with respect to q.

By considering (H, k) stable graph with minimum size, it must be clear that we can add some isolated vertices, the resulting graph remains to be a (H, k) stable graph with minimum size. From now on, the graphs considered have no isolated vertices. Proposition 1.2. [START_REF] Dudek | H, k) stable graphs with minimum size[END_REF] If G is a (H, k) stable graph with minimum size then every vertex as well as every edge is contained in a subgraph isomorphic to H. Remark 1.3. Proposition 1.2 implies, in particular, that when H ≡ K q then the minimum degree of a (H, k) stable graph with minimum size is at least q -1.

Lemma 1.4. [2] Let k ≥ 1. If G is (H, k) stable then for any vertex v, G -{v} is (H, k -1) stable.
Definition 1.5. Let H be a non complete graph on q + p + 1 (p ≥ 0) vertices and u be one vertex. Let N be the neighbourhood of u and R = V (H)u -N . We shall say that H is a near complete graph (R,N,u) on q + p + 1 vertices (see Figure 1) when

• H -{u} is complete, • d H (u) = q + ǫ (ǫ ∈ {-1, 0, 1}). d H (u) = q. u N R K q+p Figure 1: A near complete graph (R,N,u) on q + p + 1 vertices

Preliminary results

Proposition 2.1. If G is a (K q , k) stable graph with minimum size (q ≥ 3) then G has no component isomorphic to a near complete graph (R,N,u) on q + p + 1 vertices.

Proof. Suppose, by contradiction, that there exists such a component H = (R, N, u) on q + p + 1 vertices with d H (u) = q + ǫ (ǫ ∈ {-1, 0, 1}). Since G is a (K q , k)-stable graph with minimum size, G -{u} is not (K q , k)-stable. There exists a set S with at most k vertices such that S intersects every K q of G -{u}. There exists a K q in G -S and clearly such a K q contains u. Since N is a K q+ǫ and N -S contains no K q , |S ∩N | ≥ ǫ+1

(trivial for ǫ = -1). If |S ∩ N | ≥ ǫ + 2 then |N -S| ≤ q -2
, and hence S intersects every

K q containing u, a contradiction. Thus, |S ∩ N | = ǫ + 1 and |N -S| = q -1. If there exists v in R -S then (N -S) + {v} is a K q in G -{u}, a contradiction. Thus, R ⊂ S. Let a ∈ R and b ∈ N -S, and set S ′ = S -{a} + {b}. We have | S ′ |≤ k and G -S ′ contains no K q , a contradiction.
Lemma 2.2. Let q ≥ 3 and k ≥ 1 and let G be a minimum (K q , k) stable graph.If u is a vertex of degree q -1 then one of the following statements is true

• ∀v ∈ N (u) d(v) ≥ q + 1, • Q(K q , k -1) + 3(q -2) ≤ Q(K q , k).
Proof. Since d(u) = q -1, {u} + N (u) induces a complete graph on q vertices. Assume that some vertex w ∈ N (u) has degree q + a (a = -1 or a = 0) and let v ∈ N (u) distinct from w. Then Gv is a (K q , k -1) stable graph (Lemma 1.4). Since the degree of u in G -{v} is q -2, no edge incident with u can be contained in a K q . We can thus delete these q -2 edges and the resulting graph (say G ′ ) is still a (K q , k -1) stable graph.

In G ′ , the degree of w is now q + a -2. Hence, no edge incident with w in G ′ can be contained in a K q . Deleting these q + a -2 edges from G ′ leads to a graph G " which remains to be a (K q , k -1) stable graph.

By deleting v, we have e(G -{v}) ≤ e(G) -(q -1) and hence

e(G ′ ) ≤ e(G) -(q -1) -(q -2)
We get thus

Q(K q , k -1) ≤ e(G ′′ ) ≤ e(G) -(q -1) -(q -2) -(q + a -2)
Since e(G) = Q(K q , k), the result follows.

Proposition 2.3. If G is a minimum (K q , 1) stable graph (q ≥ 4) then it is isomorphic to K q+1 .

Proof.

Let G be a minimum (K q , 1) stable graph. Since K q+1 is (K q , 1) stable, clearly e(G) ≤ q+1 2 . We can assume that G is connected. Otherwise, each component contains a K q , but q+1 2 < 2 q 2 as soon as q ≥ 4, a contradiction. Let u be a vertex of G and Q be a subgraph of G -{u} isomorphic to K q . Assume that there exists a vertex v outside Q and distinct from u. Note that v can be a neighbour of u. Since

d(u) ≥ q -1 and d(v) ≥ q -1, e(G) ≥ e(Q) + 2(q -1) -1 = q 2 + 2q -3 = q+1 2 + q -3.
Thus, e(G) > e(K q+1 ), a contradiction. Hence,

V (G) = V (Q) ∪ {u} with d(u) ≥ q -1.
Since for any edge e K q+1 -{e} is not (K q , 1) stable, we see that

d(u) = q, that is G is isomorphic to K q+1 .
Remark 2.4. It is easy to see that the minimum (K 3 , 1) stable graphs are 2K 3 and K 4 .

Proposition 2.5. If G is a minimum (K q , 2) stable graph (q ≥ 4) then it is isomorphic to K q+2 .

Proof.

Since K q+2 is a (K q , 2) stable graph, we can suppose that G has at most q+2 2

edges. We can suppose, moreover, that G is not complete, otherwise G is obviously reduced to K q+2 . Let u be a vertex of minimum degree (recall that the minimum degree is at least q -1) and let v be one of its neighbours.

Assume that d G (u) = q -1. G -{v} is a (K q , 1) stable graph, but it is not minimum, since none of the remaining edge incident with u can be contained in a complete graph on q vertices. By deleting the q -2 edges incident with u, we get thus a (K q , 1) stable graph.

If d(v) ≥ q + 1, this graph has at most q+2 2 -(2q -1) edges. Since this number of edges must be greater than q+1 2 by Proposition 2.3, we have (q + 2)(q + 1) -4q + 2 ≥ (q + 1)q That leads to q ≤ 2, a contradiction. If d(v) ≤ q, by Lemma 2.2, we have Q(K q , 1) + 3q -6 ≤ Q(K q , 2) and hence q(q + 1) + 6q -12 ≤ (q + 1)(q + 2)

Which gives q ≤ 3, a contradiction.

We can thus assume that the minimum degree of G is at least q. Let u and v be two non adjacent vertices of G. Since G -{u, v} contains a K q (say Q), let a and b be two distinct vertices of Q. Since G -{a, b} must contain also a K q , there is certainly a vertex w distinct from v and u, outside Q, inducing with q -1 other vertices of G -{a, b} a K q .

Hence G contains three vertices (u, v and w) at least in G -Q and we have:

q + 2 2 ≥ e(G) ≥ q 2 + 3q -2
Which gives q < 3, a contradiction. Hence G is complete and the proposition follows.

Lemma 2.6. Let G be a minimum (K q , 3) stable graph, q ≥ 5. Let u be a vertex of minimum degree in G and suppose that d G (u) = q + l, where -1 ≤ l ≤ 1. Then for every

neighbour v of u we have d G (v) ≥ q + l + 2.
Proof. Suppose, contrary to our claim, that d G (v) ≤ q + l + 1 for a neighbour v of u.

Since, by Proposition 1.2, the edge uv is contained in a clique of order q and q ≥ 5, there is a set A of vertices of G such that |A| = l + 2 and the vertices of the set A ∪ {u, v} are mutually adjacent. The graph

G ′ = G -A is (K q , 3 -(l + 2)) stable. We have d G ′ (u) = q + l -(l + 2) = q -2, hence also G ′′ = G ′ -{u} is (K q , 1 -l) stable. But in G ′′ the degree of the vertex v is at most q -2 and therefore G ′′′ = G ′′ -{v} is (K q , 1 -l)
stable. Since every vertex of the set A ∪ {u, v} has at least q -3 neighbours outside this set, we have

q + 1 -l 2 ≤ e(G ′′′ ) ≤ q + 3 2 -(l + 4)(q -3) - l + 4 2 which contradicts q ≥ 5. Proposition 2.7. If G is a minimum (K q , 3) stable graph (q ≥ 5) then it is isomorphic to K q+3 .
Proof.

Note first that to prove the proposition it is sufficient to prove that every vertex of G has the degree at least q + 2.

Let u be a vertex of the minimum degree in G and suppose, contrary to our claim, that

d G (u) ≤ q + l, where -1 ≤ l ≤ 1. Let v 1 , v 2 , ..., v l+2 be such vertices of G that the set {u, v 1 , v 2 , ..., v l+2 } induce a clique
in G (such vertices exist since u is contained in a clique of order q by Proposition 1.2 and q ≥ 5). By Lemma 2.6, we have

d G (v i ) ≥ q + l + 2 for i = 1, 2, ..., l + 2. Set G ′ = G -{v 1 , v 2 , ..., v l+2 }. The graph G ′ is clearly (K q , 1 -l) stable. Moreover, since d G ′ (u) = q -2, the graph G ′′ = G ′ -{u} is also (K q , 1 -l) stable and we have q + 1 -l 2 ≤ e(G ′′ ) ≤ q + 3 2 -(l + 2)(q -1) -(q -2) - l + 3 2
which contradicts q ≥ 5.

3. A characterization of (K 3 , k) stable graph with minimum size

Dudek, Szymański and Zwonek in [START_REF] Dudek | H, k) stable graphs with minimum size[END_REF] have shown that Q(K 3 , k) = 3k + 3 for every nonnegative integer k. In this section we characterize all that (K 3 , k) stable graphs with minimum size.

Clearly, K 3 is the unique minimum (K 3 , 0) stable graph.

The following theorem characterize all graphs which are (K 3 , k) stable with minimum size.

Theorem 3.1. Let G = (V, E) be a (K 3 , k) stable graph with minimum size. G is isomorphic to pK 4 +qK 3 , where p and q are such nonnegative integers that 2p+q = k +1.

Proof.

By Remark 2.4, K 3 is the unique minimum (K 3 , 0) stable graph, and the minimum (K 3 , 1) stable graphs are 2K 3 and K 4 . Clearly, the graph (k + 1)K 3 is a (K 3 , k) stable graph and has 3k + 3 edges. Let k 0 ≥ 1 and suppose that for every k < k 0 every minimum (K 3 , k) stable graph is a union of p copies of K 4 and q copies K 3 with

2p + q = k + 1. Let G be a (K 3 , k 0 ) stable graph of minimum size. Since G -{v} is (K 3 , k 0 -1) stable for every vertex v, we have 3k 0 ≤ e(G -{v}) ≤ e(G) -d G (v) ≤ 3k 0 + 3 -d G (v), that is d G (v) ≤ 3.
If every vertex of G has degree equal to 2, then G is a union of k 0 + 1 copies of K 3 , and the theorem is proved. So we may suppose that there is a vertex v 0 of degree

3. But then G -{v 0 } is (K 3 , k 0 -1) stable and e(G -{v 0 }) = 3k o , that is G -{v 0 } is minimum (K 3 , k 0 -1) stable. By the induction hypothesis, G -{v 0 } is isomorphic to p ′ K 4 + q ′ K 3 , where 2p ′ + q ′ = k 0 .
It is clear that all the neighbours of v 0 are in the same component of G, (otherwise one of the edges incident with v 0 is not contained in any triangle, contrary to Proposition 1.2). Now it is easy to see that G is isomorphic to

(p ′ + 1)K 4 + (q ′ -1)K 3 and 2(p ′ + 1) + (q ′ -1) = k 0 + 1 (otherwise there is a set A of cardinality k 0 which is transversal of all cliques of order 3 in G).
4. A characterization of (K 4 , k) stable graph with minimum size

In [START_REF] Dudek | H, k) stable graphs with minimum size[END_REF] the minimum number of edges of a (K 4 , k) stable graph is given. H is not isomorphic to a K 5 minus one edge, hence there must exist some new vertex w ′ adjacent to w. Since each vertex in {u 1 , u 2 , u 3 , w} has degree 4, we cannot find a K 4 using the edge ww ′ , a contradiction with Proposition 1.2.

Theorem 4.1. [2] If G is a (K 4 , k) stable graph with minimum size (k ≥ 1) then • Q(K 4 , 0) = 6, • Q(K 4 , k) = 5k + 5 when k ≥ 1. Proposition 4.2. If G is a (K 4 ,
Theorem 4.5. If G is (K 4 , k) stable (k ≥ 1)
with minimum size then it is isomorphic to pK 5 + qK 6 , where p and q are nonnegative integers such that 2p + 3q = k + 1.

Proof. The proof is by induction on k. By Proposition 2.3, the only minimum (K 4 , 1)

stable graph with minimum size is K 5 . Let k 0 ≥ 2 and suppose that for every integer k, such that 1 ≤ k < k 0 every (K 4 , k) stable graph with minimum size is isomorphic to pK 5 + qK 6 , where p and q are nonnegative integers such that 2p + 3q = k + 1.

Let G be a (K 4 , k 0 ) stable graph with minimum size. By Theorem 4. 

A characterization of (K 5 , k) stable graph with minimum size

In this section we provide the value of Q(K 5 , k) for k ≥ 5, as well as a description of the corresponding minimum stable graphs.

Lemma 5.1. Let G be a (K 5 , k) stable graph containing a component isomorphic to K p with p ≥ 9. Then the graph G ′ obtained from G by deleting two vertices v and v ′ in this K p and adding a disjoint K 6 is a (K 5 , k) stable graph such that

• if p ≥ 10 then e(G ′ ) < e(G),
• if p = 9 then e(G ′ ) = e(G).

Proof.

Let A be the set of vertices created by the adjunction of the new K 6 . Let S be a set of vertices with

|S| ≤ k in G ′ . If |S ∩ A| ≤ 1, G -S obviously contains a K 5 . If |S ∩ A| ≥ 2 then S ′ = S -A + {v, v ′ } is a subset of G with at most k vertices. Hence G -S ′ contains a K 5 which still exists in G ′ -S.
If p ≥ 10 then at least 17 edges are deleted and 15 edges are created, thus e(G ′ ) < e(G)

. If p = 9, 15 edges are deleted while 15 edges are created so e(G) = e(G ′ ).

Lemma 5.2. Let G be a (K 5 , k) stable graph with minimum size. Then G does not contain 2 components isomorphic to a K p with 5 ≤ p ≤ 6.

Proof.

If we have two components (say K and L) isomorphic to a complete graph with 5 vertices then the graph G ′ obtained from G by deleting these two components and adding a complete graph on 6 vertices is still a (K 5 , k) stable graph. Indeed, let S ′ be any subset of

V (G ′ ) with |S ′ | ≤ k. If G ′ -S ′
does not contain any K 5 then S ′ must contain at least 2 vertices v and w of the new K 6 . Let S = S ′ -{v, w} + {a, b}, where a ∈ K and b ∈ L, then G -S does not contain any K 5 , a contradiction.

When we have a K 5 and a K 6 , we get the same kind of contradiction when replacing these two complete graphs with a K 7 as well as when we have two K 6 s replaced by a K 8 .

Lemma Therefore, we have to consider only the case when G is the vertex disjoint union of complete graphs isomorphic to K 7 or K 8 and at most one K 5 or one K 6 . Replacing a K 5 and a K 7 by one K 8 leads to a (K 5 , k) stable graph with a number of edges less than the number of edges of G, a contradiction. Replacing a K 6 and a K 8 by two K 7 leads to a (K 5 , k) stable graph with a number of edges less than the number of edges of G, a contradiction.

It remains to consider the case where the components are all isomorphic to a K 7 with the exception of one K 6 or all isomorphic to a K 8 with the exception of one K 5 . When we have at least two K 7 and a K 6 , these three complete graphs can be replaced by two K 8 , the resulting graph is still a (K 5 , k) stable graph, but the number of edges is less than the number of edges of G, a contradiction. When we have at least two K 8 and a K 5 , these three complete graphs can be replaced by three K 7 , the resulting graph is still a (K 5 , k) stable graph, but the number of edges is less than the number of edges of G, a contradiction.

When G is reduced to a K 8 and a K 5 or to a K 7 and a K 6 , we must have k ≤ 4, which is impossible.

Lemma 5.4. Let G be a (K 5 , k) stable graph with minimum size and maximum degree 6. Assume that some component contains a K 6 . Then either the component is equal to this K 6 or to K 7 .

Proof.

Let A = {v 1 . . . v 6 } be the set of vertices of the K 6 . If d(v i ) = 5 for each vertex in A the proof is complete. Assume that the vertex v 1 has degree 6 and let w be its neighbour outside A. Since v 1 w must be contained in a K 5 by 1.2, w must be adjacent to 3 other vertices in V (say v 2 , v 3 and v 4 ). In the same way, if v 5 or v 6 has a neighbour outside A, this vertex must be adjacent to 4 vertices of A, which is impossible if this vertex is distinct from w.

Let w ′ ∈ A be a neighbour of w (if any). Since ww ′ must be contained in a K Proof. Let H be a connected component containing vertices of degree 5 or 6 only. By Proposition 1.2, every edge is contained in a K 5 . Let U = {u 1 , u 2 , u 3 , u 4 , u 5 } be a set of vertices inducing a K 5 in H.

case 1 : ∃ i 1 ≤ i ≤ 5 d H (u i ) = 6.
Without loss of generality we may assume that i = 1. Let w and w ′ the two neighbours of u 1 outside U . Since u 1 w must be contained in a K 5 and since this K 5 contains 4 neighbours of u 1 , w must be adjacent to at least two vertices in U -{u 1 }. Without loss of generality, assume that wu 2 ∈ E(G) and wu 3 ∈ E(G). Let us remark that w is not joined to the two vertices u 4 and u 5 , otherwise, H contains a K 6 and H is thus isomorphic to a complete graph by Lemma 5.4. For the same reason, w ′ is not joined to all the vertices in U .

subcase 1.1 : If w or w ′ has no other neighbour in U , say w, we must have

ww ′ ∈ E(G), w ′ u 2 ∈ E(G) and w ′ u 5 ∈ E(G).
One of u 4 or u 5 , say u 4 , is not adjacent to w ′ , and there must be a vertex w ′′ adjacent to u 4 (d H (u 4 ) ≥ 5), but the edge u 4 w ′′ cannot be on any K 5 , which is impossible.

subcase 1.2 : If w has an other neighbour (say u 5 ) in U . When w ′ is not adjacent to w, w ′ must be adjacent to precisely 3 vertices in {u 2 , u 3 , u 4 , u 5 }. If u 4 w ′ is an edge, there must be an edge incident with w ′ (d H (w ′ ) ≥ 5), but this edge cannot be contained in any K 5 , a contradiction. If u 4 w ′ is not an edge, there must be an edge incident with u 4 and this edge cannot be contained in any K 5 , which is impossible. Thus, w and w ′ are adjacent and there must be 2 vertices in {u 2 , u 3 , u 5 } adjacent to w ′ , say u 2 and u 3 . But now, there is an additionnal edge incident with u 4 and this edge is u 4 w ′ otherwise it is not contained in any K 5 . It is a routine matter to check that there is no additionnal vertex nor edge in H. Hence H is isomorphic to the graph depicted in Figure 2, a contradiction with Lemma 5.5.

case 2 : ∀ i 1 ≤ i ≤ 5 d H (u i ) = 5.
Let w be the last neighbour of u 1 outside U . Since wu 1 must be contained in a K 5 , w must be adjacent to u 2 , u 3 and u 4 , without loss of generality. Hence, wu 5 ∈ E(G) or H is complete. Since d H (u 5 ) = 5, let w ′ = w be the last neighbour of u 5 outside U . Then u 5 w ′ is not contained in a K 5 , which is impossible.

Lemma 5.7. Q(K 5 , 4) = 36.

Proof. Since K 9 and K 6 + K 7 are (K 5 , 4) stable graphs, we certainly have Q(K 5 , 4) ≤

36.

Assume that some graph G with e(G) ≤ 35 is a (K We can thus assume that the maximum degree of G is at most 6. If some vertex u has degree 4, let v be one of its neighbours. We know, by Lemma 2.6 that d(v) = 6.

By deleting v, we get a graph Gv which is a (K 5 , 3) stable graph. In that graph, the edges incident with u are not contained in a K 5 since the degree of u is now 3. We can thus delete these edges and we obtain a (K 5 , 3) stable graph with at most 27 edges, a contradiction with Proposition 2.7.

Hence every vertex must have degree 5 or 6. By Lemma 5. We can thus assume that the maximum degree of G is at most 7. If some vertex u has degree 4, let v be one of its neighbours. We know, by Lemma 2.2 that d(v) ≥ 6.

By deleting v, we get a graph G -{v} which is a (K 5 , 3) stable graph. In that graph, the edges incident with u are not contained in a K 5 since the degree of u is now 3.

We can thus delete these edges and we obtain a (K 5 , 3) stable graph with 27 edges, a contradiction with Proposition 2.7.

Hence the degree of each vertex is 5, 6 or 7.

In the following Claims Q 1 and Q 2 denote any two induced K 5 of G.

Claim 5.8.1. such that x ∈ V (Q 1 ) and y ∈ V (Q 2 ). Then we can find a vertex x ′ ∈ V (Q 1 ) and a vertex

|V (Q 1 ) ∩ V (Q 2 )| = 1. Proof Assume that |V (Q 1 ) ∩ V (Q 2 )| =
y ′ ∈ V (Q 2 ) such that {x, x ′ , y, y ′ } is contained in an induced K 5 of G. Moreover the 5 th vertex of this K 5 must be contained in V (Q 1 ) ∪ V (Q 2 ).

Proof

Since G is a minimum (K 5 , 4) stable graph, the edge xy must be contained in a K 5 (say Q). By Claim 5.8.1 Q contains at least one vertex more in Q 1 (say x ′ ) and one vertex more in Q 2 (say y ′ ). Let a be the 5 th vertex of Q and assume that a ∈

V (Q 1 ) ∪ V (Q 2 ).
G -{a} is a (K 5 , 3) stable graph but it is not minimum since the edges between {x, x ′ } and {y, y ′ } cannot be contained in a K 5 . By deleting these 4 edges in G -{a} we get a Claim 5.8.4. 

|V (Q 1 ) ∩ V (Q 2 )| = 3 or G is isomorphic to K 7 + K 6 . Proof Assume that |V (Q 1 ) ∩ V (Q 2 )| = {x,
= G - (V (Q 1 ) ∪ V (Q 2 )) is a (K 5 , 1) stable graph. If w ∈ V (Q 1 ) ∪ V (Q 2 )
is adjacent to some vertex w ′ in G 2 then a K 5 using that edge forces 4 more edges more between these two subgraphs, a contradiction since G would have at least 37 edges (by Proposition 2.3 G 2 has at least 15 edges).

If some edge is missing between {u 1 , u 2 } and {v 1 , v 2 } (say

u 1 v 1 ∈ E(G)), then G 3 = G -{u 2 , v 2 } is a (K 5 , 2 
) stable graph where x, y, z, u 1 , v 1 are not contained in any K 5 .

The graph G 3 is still (K 5 , 2) stable. Hence, by Proposition 2.5 G must have at least 38 edges, a contradiction.

We can thus suppose that

V (Q 1 ) ∪ V (Q 2 ) induces a K 7 .
The remaining part of G is the (K 5 , 1) stable graph G 2 described above. This graph must have exactly 15 edges.

Hence, G 2 is isomorphic to K 6 by Proposition 2.3. That means that G is isomorphic to

K 7 + K 6 . Claim 5.8.5. |V (Q 1 ) ∩ V (Q 2 )| = 4 or G is isomorphic to K 7 + K 6 .
Proof Assume on the contrary that |V (Q 1 ) ∩ V (Q 2 )| = {x, y, z, t} and G is not isomorphic to K 7 + K 6 . Let u and v be the remaining vertices of Q 1 and Q 2 respectively.

Let r be a neighbour of u, if any, outside Proof. We can check that the property holds for k = 5 (G is the vertex disjoint union of two K 7 s by Lemma 5.10). Assume that the property holds for any k (5 ≤ k < k 0 ) and let us consider a (K 5 , k 0 ) stable graph G with minimum size. Assume that G has at most 7k 0 +6 edges and let v be a vertex of maximum degree. Since G-v is a (K 5 , k 0 -1) stable graph, it must have 7k 0 edges, which means that d(v) ≤ 6. Moreover, by Proposition 1.2, we certainly have d(v) ≥ 4.

V (Q 1 ) ∪ V (Q 2 ). Let Q 3 be a K 5 containing the edge ur. Then V (Q 1 ) ∩ V (Q 3 )
Let z be a vertex of degree 4 in some component of G. If z has a neighbour v whose degree is 6 then Gv has exactly 7k 0 edges. Hence Gv is a (K 5 , k 0 -1) stable graph with minimum size. Since the degree of z is 3 in Gv, any edge incident with z in Gv is not contained in a K 5 , a contradiction.

If z has a neighbour v whose degree is 5 then Gv has exactly 7k 0 + 1 edges. Gv is a (K 5 , k 0 -1) stable graph. This graph does not have minimum size since the 3 remaining edges incident with z are not contained in a K 5 . If we delete these 3 edges, we still have a (K 5 , k 0 -1) stable graph, but the number of edges is then 7k 0 -2, which is impossible by the induction hypothesis.

Hence the neighbours of z have also degree 4, that means that the component containing a vertex of degree 4 is a 4 regular graph containing a K 5 . That is, this component is a K 5 .

Since each component containing only vertices of degree 5 or 6 are complete by Lemma 5.6, we have thus that all the connected components of G are complete. By Lemma 5.3, each component has 7 vertices or 8 vertices (recall that k 0 ≥ 5). Assume that we have p components isomorphic to a K 7 and q isomorphic to a K 8 , then k 0 ≤ 3p + 4q -1 and G

  [START_REF] Bondy | Graph theory[END_REF] we have e(G) = 5k 0 +5. Note that it is sufficient to prove that every component of G is isomorphic either to K 5 or to K 6 .ByProposition 4.3, we have 3 ≤ d G (v) ≤ 5 for every vertex v of G. Since by Proposition 1.2, every edge of G is contained in a K 4 , all the neighbours of a vertex v are in the same component of G -{v}.Suppose first that there is a vertexv in G such that d G (v) = 5. Then G -{v} is (K 4 , k 0 -1) stable and moreover, since e(Gv) = 5k 0 , G -{v} is minimum (K 4 , k 0 -1)stable. Hence every component of G -{v} is either isomorphic to K 5 or to K 6 . If v is connected in G to a K 6 , then the component of G which contains v is a near complete graph, contradicting Proposition 2.1. So v is connected to a K 5 and G is a union of graphs isomorphic to K 5 or K 6 , as desired.Assume now that no component has a vertex of degree 5. Then, by Proposition 4.4, each component is a 4-regular subgraph.Let v be any vertex and let N (v) = {u 1 , u 2 , u 3 , u 4 } be its neighbourhood. Since v is contained in a K 4 by Proposition 1.2, we can suppose, without restriction of generality, that u 1 u 2 , u 1 u 3 and u 2 u 3 are edges of G. Since vu 4 must be contained in a K 4 by Proposition 1.2, u 4 must be adjacent to at least 2 vertices of N (say, without loss of generality, u 2 and u 3 ).

case 1 :

 1 u 1 u 4 ∈ E(G). Then the component containing v is a K 5 . case 2: u 1 u 4 ∈ E(G).Let w be a new vertex adjacent to u 1 (this new vertex must exist since the component of v is 4-regular). Then u 1 w cannot be contained in a K 4 , a contradiction.
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 1245255 Figure 2: Forbidden component of a (K 5 , k) stable graph with minimum size.

case 1 :

 1 contains 4 vertices (Claims 5.8.1 and 5.8.3) butV (Q 2 ) ∩ V (Q 3 ) contains 3 vertices, a contradiction. Since d(u) ≥ 5, we must have uv ∈ E(G) (and, moreover, d(u) = d(v) = 5). There are neighbours of {x, y, z, t} outside V (Q 1 ) ∪ V (Q 2 ).Let s be such a neighbour of x,. The edge xs being contained in a K 5 , this K 5 must have 4 common vertices with Q 1 and 4 common vertices with Q 2 (Claims 5.8.1, 5.8.3 and 5.8.4). Hence, s must be adjacent to the 4 vertices of V (Q 1 ) ∩ V (Q 2 ) and {x, y, z, t, s} induces a K 5 with 4 common vertices with Q 1 and 4 common vertices with Q 2 . By the If G has a vertex u of degree 4, let v be one of its neighbours. By deleting v we get a (K 5 , 4) stable graph where the edges incident with the vertex u are not contained in any K 5 since the degree of u in that graph is 3. By deleting these edges we get a (K 5 , 4) stable graph with at most 35 edges, a contradiction with Lemma 5.7.Hence every vertex has 5 or 6. By Lemma 5.6, the connected components of G are complete. It is an easy task to see that the only convenient graph G is isomorphic to K 7 + K 7 , as claimed. Theorem 5.11. If G is (K 5 , k) stable (k ≥ 5) with minimum size then |E(G)| = 7k + 7.

  k) stable graph with minimum size (k ≥ 1) then it has no connected component isomorphic to K 4 . contains some vertex v with degree 3. Let N (v) = {u 1 , u 2 , u 3 } be its neighbourhood. By Proposition 1.2, N (v) is complete. Since H is not isomorphic to K 4 by Proposition 4.2, assume that, without loss of generality, u 1 is joined to some new vertex w. Since u 1 w must be contained in a K 4 by Proposition 1.2, the vertices of this K 4 are in {u 1 , u 2 , u 3 , w, v}, thus w must be adjacent to u 2 and u 3 . By Proposition 2.1,

	Proof.	By Proposition 4.3 the vertices of G have degree 3 or 4. Assume to the
	contrary that H

Proof. Let us consider k ≥ 2. Assume that some component H of G is isomorphic to a K 4 with the vertices of H being a, b, c, d. Then G -H has 5k -1 edges. Since G -H is not a (K 4 , k -1) stable graph, there is a set S with at most k -1 vertices intersecting each K 4 of G -H. Then S + {a} intersects each K 4 of G while S has at most k -1 vertices, a contradiction. When k = 1, G must have 10 edges by Theorem 4.1. Since for each vertex v the graph Gv contains a K 4 , v is joined to this K 4 by 4 edges. Hence G is a K 5 and the result holds. Proposition 4.3. If G is a (K 4 , k) stable graph with minimum size (k ≥ 1) then every vertex of G has degree 3, 4 or 5.

Proof.

By Proposition 1.2 every vertex is contained in a K 4 , hence its degree is at least 3. Assume that G has a vertex v with d(v) ≥ 6. Then, by Lemma 1.4, Gv is a (K 4 , k -1) stable graph and therefore has at least 5k edges, which is impossible since G has exactly 5k + 5 edges, by Theorem 4.1.

Proposition 4.4. Let G = (V, E) be a (K 4 , k) stable graph with minimum size (k ≥ 1).

If H is a component containing no vertex of degree 5, then each vertex of H has degree 4.

  5.3. Let k ≥ 5 and let G be a (K 5 , k) stable graph with minimum size which is the vertex disjoint union of complete graphs. Then each component is a K 7 or a K 8 .

Proof. By Lemma 5.1, we can consider that each component is a K p with 5 ≤ p ≤ 9. By Lemma 5.2, at most one component is a K 5 or a K 6 . If some component is isomorphic to a K 9 then let us replace this component by a K 6 and a K 7 By Lemma 5.1 the resulting graph is still a (K 5 , k) stable graph with minimum size. It is clear that no component is isomorphic to a K 9 now. Indeed, applying once more the operation described above leads to a (K 5 , k) stable graph with minimum size having two K 6 s, a contradiction with Lemma 5.2.

  5 , 4) stable graph with minimum size. Let v be a vertex with maximum degree. If d(v) ≥ 8 then Gv is a (K 5 , 3) stable graph with at most 27 edges, a contradiction with Proposition 2.7. If d(v) = 7then G -{v} is a (K 5 , 3) stable graph with at most 28 edges. Hence we must have e(G -{v}) = 28 and G is a (K 5 , 3) stable graph with minimum size. By Proposition 2.7, G -{v} is a K 8 and G is a K 9 minus one edge, a contradiction with Proposition 2.1.

  6, the components of G are complete graphs. It can be easily checked that the only convenient graphs are K 9 and K 6 + K 7 , a contradiction with e(G) ≤ 35.Lemma 5.8. K 6 + K 7 and K 9 are the unique (K 5 , 4) stable graph with minimum size.Proof. By Lemma 5.7, let G be a (K 5 , 4) stable graph with 36 edges.If G has a vertex of degree at least 8 then G -{v} is a (K 5 , 4) stable graph with at most 28 edges. Hence G -{v} must have exactly 28 edges and d(v) = 8. Since, by Proposition 2.7 G -{v} is a K 8 , G itself is a K 9 .

  1 then the vertex in the intersection must have degree at least 8, which is impossible.

Claim 5.8.2. Assume that Q 1 and Q 2 are vertex disjoint and let xy ∈ E(G) (if any)

  y, z}. Let {u 1 , u 2 } and {v 1 , v 2 } be the sets of remaining vertices of Q 1 and Q 2 respectively.Then G 1 = G -{x, y, z} is a (K 5 , 1) stable graph in which the vertices u 1 , u 2 , v 1 , v 2 are not contained in any K 5 by Claims 5.8.1 and 5.8.3. That means that G 2
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Claim 5.8.3.

Proof Assume that V (Q 1 ) ∩ V (Q 2 ) = {x, y}. Let us remark that these two vertices have degree 7. Let {u 1 , u 2 , u 3 } and {v 1 , v 2 , v 3 } be the sets of remaining vertices of Q 1 and Q 2 respectively.

Assume that some edge is missing between {u 1 , u 2 , u 3 } and {v 1 , v 2 , v 3 } (say u 1 v 1 ∈ E(G)). Then G 1 = G -{u 2 , v 2 , v 3 } is a (K 5 , 1) stable graph in which the vertices x and y are not contained in any K 5 . Hence G 2 = G 1 -{x, y} is a (K 5 , 1) stable graph. Since

contains 19 edges, we need to find two more edges. By Claim 5.8.2 no edge can connect V (Q 1 ) ∪ V (Q 2 ) to G 4 . Whatever is the place of these edges, G -{x, y} is a (K 5 , 2) stable graph, where no vertex in {u 1 , u 2 , u 3 } nor That means that u 1 and u 3 have 3 neighbours outside V (Q 1 ) ∪ V (Q 2 ). In the same way, we can consider that u 2 has also three such neighbours (take G 1 = G-{u 3 , v 2 , v 3 }) as well as v 1 , v 2 and v 3 by symmetry. Hence G 3 contains the 19 edges of V (Q 1 )∪V (Q 2 ) and 18 edges connecting {u 1 , u 2 , u 3 } and {v 1 , v 2 , v 3 } to the vertices outside, a contradiction.

We can thus suppose that every vertex in {u 1 , u 2 , u 3 } is joined to every vertex in

in this graph are not contained in any K 5 , we can delete them and the (K 5 , 2) stable graph obtained in this way must have 21 edges exactly. This component is a K 7 by Proposition 2.5, a contradiction.

To end our proof, it is sufficient to say that any two induced K 5 of G must be disjoint Claims 5.8.1, 5.8.3, 5.8.4 and 5.8.5. That means that each component of G is a K 5 , which is impossible since G must have 36 edges. Lemma 5.9. Q(K 5 , 5) = 42.

Proof.

Since K 7 + K 7 is a (K 5 , 5) stable graphs, we certainly have Q(K 5 , 5) ≤ 42.

Let G be a (K 5 , 5) stable graph with minimum size and assume that e(G) ≤ 41. Let us remark that the size of G is certainly greater than Q(K 5 , 4).

If G has a vertex of degree at least 6 then G-v is a (K 5 , 4) stable graph with at most 35 edges, a contradiction with Lemma 5.7. If G has a vertex of degree 4 then, since the degree of every neighbour is at most 5, we must have, by Lemma 2.2, Q(K 5 , 5) ≥ Q(K 5 , 4) + 9, a contradiction.

Hence, every vertex must have degree 5 and by Lemma 5.6, the connected component of G are isomorphic to K 6 . It is easy to see that no such graph can exist.

Lemma 5.10. K 7 + K 7 is the unique (K 5 , 5) stable graph with minimum size.

Proof. By Lemma 5.9, let G be a (K 5 , 5) stable graph with 42 edges.

If G has a vertex of degree at least 7 then Gv is a (K 5 , 4) stable graph with at most 35 edges, a contradiction with Lemma 5.7.

has 21p + 28q edges. If k 0 = 3p + 4q -1, we have 21p + 28q = 7k 0 + 7, a contradiction. If k 0 < 3p + 4q -1 then deleting one vertex in some component leaves the graph (K 5 , k 0 ) stable, which is impossible.

Dudek, Szymański and Zwonek proposed the following conjecture.

Conjecture 5.12. [START_REF] Dudek | H, k) stable graphs with minimum size[END_REF] For every integer q ≥ 5 there is an integer k(q) such that

Theorem 5.11 proves this conjecture for q = 5 with k(q) = 5.

• each connected component is isomorphic to a complete graph with 7 or 8 vertices,

• there are p components isomorphic to K 7 and q components isomorphic to K 8 for any choice of p and q with 3p + 4q = k + 1.

Proof. By Theorem 5.11, the first claim is true. We can check that the property of the second claim holds for k = 5 (G is the vertex disjoint union of two K 7 s). Assume that the property holds for any k (5 ≤ k < k 0 ) and let us consider a (K 5 , k 0 ) stable graph G with minimum size.

If G has a vertex v of degree at least 8, then Gv has at most 7k 0 -1 edges and cannot be a (K 5 , k 0 -1) stable graph, a contradiction. Thus the maximum degree of G is at most 7.

In that case, It is now a routine matter to check that the third claim holds.