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Abstract This paper provides a study of the stable and unstable regions around the

smaller primary in the framework of the spatial elliptic restricted three-body prob-

lem. The definitions and methods used to determine stable and unstable regions are

extended to three dimensions. New results concerning the stable and unstable regions

around Mercury are obtained in the SunMercury system.
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1 Introduction

The capture of small bodies by major planets is an important phenomenon in planetary

systems. The phenomenon has applications to the study of comets, asteroids, irregular

satellites of the giant planets and different types of low energy planetary transfers, as

well. Ballistic capture (or weak capture) is analytically defined for the n-body problem,

and it monitors the sign of the Kepler energy with respect to a massive primary. In fact,
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this is a capture where the Kepler energy of the small body is non-positive with respect

to the primary and its motion is stable. Such captures are generally temporary. In the

framework of the circular restricted three-body problem (CRTBP) weak capture occurs

in special regions of the phase space, namely around one of the two primaries (e.g. the

Moon in the case of the Earth–Moon system), which are referred to as the Weak

Stability Boundaries (WSB). These regions are the boundary of the stable regions,

delimiting stable and unstable orbits. WSB was first introduced in 1986 to design low

energy transfers to the Moon (Belbruno and Miller 1993) and it is rigorously defined

in (Belbruno 2004).

Recently, WSB transfers have been more and more often considered within the

framework of the treatment of trajectories lying on a manifold-shaped surface. These

transfers represent special solutions of the CRTBP (see Romagnoli and Circi 2009;

Belbruno 2004). The “Space Manifold Dynamics” (SMD) is the common term for the

different kinds of applications to mission design, which was proposed in (Perozzi and

Ferraz-Mello 2009; Garćıa and Gómez 2007).

By using the model of the planar CRTBP, Topputo and Belbruno computed the

WSB in the case of the Sun-Jupiter system (Topputo and Belbruno 2009). They com-

pared their results with the WSB of Earth-Moon system. Nagler constructed orbit type

diagrams presenting detailed information about the extent and position of bounded,

unbounded, and crash orbits in the framework of the planar CRTBP (Nagler 2005).

The model of the CRTBP is not adequate if the two primaries revolve on elongated

orbits. In this case the Elliptic Restricted Three-Body Problem (ERTBP), where the

primaries are supposed to revolve on ellipses, gives us more realistic results. In the last

years, this model has been investigated from different viewpoints. Recently, within the

framework of the ERTBP, Érdi et al. have determined the size of stable regions around

the Lagrangian point L4, applying numerical integrations (Érdi et al. 2009). Szenkovits

and Makó gave a new method to investigate the Hill stability of extrasolar planets in

stellar binary systems, by using the three dimensional ERTBP (Szenkovits and Makó

2008). The planet Mercury is a good example to illustrate why is important to use

the ERTBP approximation instead of the CRTBP approximation when we investigate

such a celestial system. With a value slightly larger than 0.2, the Mercury’s orbital

eccentricity is more than twice as big as that of any other planets in the solar system

(Yeomans 2007). It follows that the computation of Mercury’s WSB inevitably requires

the ERTBP dynamics. Indeed, the ESAs BepiColombo mission intends to utilize solar

perturbation to achieve the Mercurial capture of the spacecraft (Jehn et al. 2004). At

the end of the transfer, a gravitational capture at the WSB of Mercury is planned to

be performed by exploiting the gravity of the Sun (Jehn et al. 2008).

In this paper we give an algorithmic definition of the WSB in the three-dimensional

case. This is a generalization of the definition given by Romagnoli and Circi in 2009.

Then, by using the capture effect, we show that WSBs are subsets of the regions

where the variation of the capture effect is chaotic. In the last part we investigate the

properties of the stable and unstable regions in the Sun-Mercury system for different

values of the orbital inclination and initial true anomaly. We use for this the spatial

ERTBP.
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Fig. 1 The non-rotating (P2xyz) and the rotating-pulsating (Oξ̃η̃ζ̃) frames

1.1 The spatial elliptic restricted three-body problem

In the ERTBP two massive primaries P1 and P2, with masses m1 and m2 revolve on

elliptical orbits under their mutual gravitational attraction and the motion of a third,

massless body is investigated. The variation of the mutual distance R = ‖P1P2‖ with

respect to the true anomaly f is governed by

R =
a
�
1 − e2

�
1 + e cos f

, (1)

where a and e are the semimajor axis and the eccentricity of the elliptical orbit of P2

around P1.

To obtain a relatively simple set of equations, we use a nonuniform rotating and

pulsating coordinate system (Szebehely 1967). The origin O of this system is considered

to be the center of mass of the two massive primaries, the ξ̃ axis is directed towards

P2, and the ξ̃η̃ coordinate-plane rotate with variable angular velocity, in such a way,

that the two massive primaries are always on the ξ̃ axis, and the period of the rotation

is 2π. Besides the rotation, the system also pulsates, to keep the primaries in fixed

positions (ξ̃1 = −µ, η̃1 = ζ̃1 = 0, ξ̃2 = 1−µ, η̃2 = ζ̃2 = 0). In this system the equations

of motion of the third massless particle are:

ξ̃
′′ − 2η̃

′ =
∂ω

∂ξ̃
, η̃

′′ + 2ξ̃
′ =

∂ω

∂η̃
, ζ̃

′′ =
∂ω

∂ζ̃
, (2)
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where the derivatives are taken with respect to the true anomaly f , and

ω = (1 + e cos f)−1
Ω,

with

Ω
�
ξ̃, η̃, ζ̃, f

�
=

1

2

�
ξ̃
2 + η̃

2 − eζ̃
2 cos f

�
+

1 − µr�
ξ̃ + µ

�2
+ η̃2 + ζ̃2

+
µr�

ξ̃ − 1 + µ
�2

+ η̃2 + ζ̃2

+
1

2
µ (1 − µ) .

As a generalization of the Jacobi integral existing in the planar ERTBP (Szebehely

1967), in this case we can deduce an invariant relation of the form:

v
2 = 2ω − e

fZ
f0

ζ̃2 sin f

1 + e cos f
df − 2e

fZ
f0

Ω sin f

(1 + e cos f)2
df − C0, (3)

where v is the velocity of the third massless particle, with

v
2 =

�
dξ̃

df

�2

+

�
dη̃

df

�2

+

�
dζ̃

df

�2

.

For a given set of initial conditions (ξ̃0, η̃0, ζ̃0, v0, f0) we have

C0 =
2Ω

�
ξ̃0, η̃0, ζ̃0, f0

�
1 + e cos f0

− v
2
0 .

The zero velocity surfaces (ZVS) in the ERTBP corresponding to initial conditions

(ξ̃0, η̃0, ζ̃0, v0, f0) are given by the equation 2Ω
�
ξ̃, η̃, ζ̃, f

�
= C (f), that is�

ξ̃
2 + η̃

2 − eζ̃
2 cos f

�
+

2 (1 − µ)

r1
+

2µ

r2
+ µ (1 − µ) = C (f) , (4)

where

C (f) = (1 + e cos f)

0B�C0 + e

fZ
f0

ζ̃2 sin f

1 + e cos f
df + 2e

fZ
f0

Ω sin f

(1 + e cos f)2
df

1CA , (5)

and r1 =

r�
ξ̃ + µ

�2
+ η̃2 + ζ̃2, r2 =

r�
ξ̃ − 1 + µ

�2
+ η̃2 + ζ̃2. These surfaces delimit

the Hill-regions, in which the motion of the third particle is possible.

With the variation of the true anomaly f, these ZVS (4) change continuously over

time. They change their topological type, and size as well. This fluctuation is due to

the variation of C (f) and to the presence of the variable term −eζ̃2 cos f (see Figure

2).

As known in the case of the restricted three-body problem, for C > C2 = Ccr,

where C2 corresponds to the interior collinear Lagrangian point L2, ZVS have two

closed ellipsoidal components around the two primaries and a third component, with

variable topological type (ellipsoidal for e cos f < 0, cylindric for e cos f = 0 and
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Fig. 2 Variable ZVS in the ERTBP

hyperboloidal for e cos f > 0). When C > C2, P3 can move either around P1 or P2, in

the two inner regions, or around both of these bodies in the outer region, but it cannot

move from one region into the other. This can occur only when there exists f ∈ R such

that C (f) ≤ C2. When C decreases, P3 becomes more energetic, and the size of the

region where P3 can move becomes larger and larger.

In the case of the ERTBP the measure of the Hill stability of the small particle

with respect to P2 is

S (f) =
C (f) − Ccr

Ccr
. (6)

Szenkovits and Makó proved that S (f) presents local extremums for f = kπ (k ∈ Z),

which increase if f ∈ ∪k∈Z[2kπ, (2k+1)π] and decrease if f ∈ ∪k∈Z[(2k+1)π, (2k+2)π]

(Szenkovits and Makó 2008).

The variation of C (f) correlated with the variation of S (f) shows that the ZVS (4)

present a rhythmical (2π periodic) variation, a ”pulsation”. If the value of C (f) does

not cross certain critical values, these surfaces only pulsate (with variable amplitude)

preserving their topological type. If the value of C(f) passes through critical values,

then the ZVS change their topological type (see Figure 2).

Let

γ(f) = (ξ̃(f), η̃(f), ζ̃ (f) , ξ̃
′(f), η̃′(f), ζ̃′ (f)),

or

γ(t) = (x(t), y(t), z (t) , ẋ(t), ẏ(t), ż (t)),

t, f ∈ R, denote the flows of the differential equations (2) describing the motion of P3

in the model of the ERTBP.
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1.2 The Kepler-energy

To investigate the capture of the test particle P3 by the primary P2, we need a new,

”fixed” (non-rotating) system of coordinates P2xyz. Positions given it these two refer-

ence frame are connected through the next equations:24 ξ̃

η̃

ζ̃

35 =

24 cos f sin f 0

− sin f cos f 0

0 0 1

3524 x
R
y
R
z
R

35+

24 1 − µ

0

0

35 , (7)24x

y

z

35 = R

24 cos f − sin f 0

sin f cos f 0

0 0 1

3524 ξ̃ − 1 + µ

η̃

ζ̃

35 . (8)

The components of the velocities are transformed with:24 ξ̃′

η̃′

ζ̃′

35 =
1

R

24 cos f sin f 0

− sin f cos f 0

0 0 1

350� 1
df
dt∗

24 ẋ

ẏ

ż

35 (9)

+
a
�
1 − e2

�
(1 + e cos f)2

24 −e sin f e cos f + 1 0

−e cos f − 1 −e sin f 0

0 0 −e sin f

3524 x
R
y
R
z
R

351A24 ẋ

ẏ

ż

35 =
df

dt∗

0�R

24 cos f − sin f 0

sin f cos f 0

0 0 1

35 ·

24 ξ̃′

η̃′

ζ̃′

35 (10)

+
a
�
1 − e2

�
(1 + e cos f)2

24 − sin f −e − cos f 0

e + cos f − sin f 0

0 0 e sin f

35 ·

24 ξ̃ − 1 + µ

η̃

ζ̃

351A ,

where
df

dt∗
=

1

(1 − e2)
3/2

(1 + e cos f)2 ,

the period P = 2π, and R is given in (1).

The velocity of the test particle P3 with respect to the non-rotating reference frame

P2xyz is

ẋ
2 + ẏ

2 + ż
2 =

a2

1 − e2

h
(1 + e cos f)2

�
ξ̃
′2 + η̃

′2 + ζ̃
′2
�

(11)

+
�
(1 + e cos f)2 + e

2 sin2
f
���

ξ̃ + µ − 1
�2

+ η̃
2 + ζ̃

2
�

− (1 + e cos f)2 ζ̃
2

+2e sin f (1 + e cos f)
��

ξ̃ + µ − 1
�

ξ̃
′ + η̃η̃

′ + ζ̃ ζ̃
′
�

+2 (1 + e cos f)2
��

ξ̃ + µ − 1
�

η̃
′ − η̃ξ̃

′
�i

.
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Let r2 and v2 denote the magnitude of the distance and the velocity of the massless

particle P3 with respect to the primary P2 in the non-rotating system. The Kepler

energy of P3 with respect to P2 is

H2 =
v2
2

2
−

µ

r2
, (12)

where r2
2 = x2 + y2 + z2 = R2

��
ξ̃ + µ − 1

�2
+ η̃2 + ζ̃2

�
, and v2

2 expressed in the

P2-centered non-rotating coordinates is v2
2 = ẋ2 + ẏ2 + ż2. In the non-rotating system

we consider the normalized units a (1 − e) = 1 and 2π
P = 1. Thus, the Kepler-energy

of the small particle with respect to P2 is

H2 (γ (f)) =
1

2 (1 + e)

h
(1 + e cos f)2

�
ξ̃
′2 + η̃

′2 + ζ̃
′2
�

+
�
(1 + e cos f)2 + e

2 sin2
f
���

ξ̃ + µ − 1
�2

+ η̃
2 + ζ̃

2
�

− (1 + e cos f)2 ζ̃
2

+2e sin f (1 + e cos f)
��

ξ̃ + µ − 1
�

ξ̃
′ + η̃η̃

′ + ζ̃ ζ̃
′
�

+2 (1 + e cos f)2
��

ξ̃ + µ − 1
�

η̃
′ − η̃ξ̃

′
�

−
2µ (1 + e cos f)r�

ξ̃ + µ − 1
�2

+ η̃2 + ζ̃2

3775 .

2 Stable and unstable orbits in the spatial elliptic restricted three-body

problem

The concept of the WSB was introduced by Belbruno and Miller (1993) and refined

later by Garćıa and Gómez (2007), Belbruno et al. (2008), Topputo and Belbruno

(2009), and Romagnoli and Circi (2009). Here we extend the definition of the WSB

to three dimensions. For this, we consider trajectories of P3 with the following initial

conditions:

(i) For a fixed value of the true anomaly f = f0 we consider the plane Π (i, f) with

inclination i ∈ [0, 900] to the orbital plane of the primaries. The intersection of the

orbital plane Π (i, f) with the plane Π (i, f) is the line P1P2 (Π (i, f) marked light

gray in Figure 3.a).

(ii) The initial position of the trajectory is on the half-line l(α, i, f) lying in the plane

Π (i, f) starting from P2 and making an angle α ∈ [0, 3600) with the P1P2 axis

(Figure 3.a). The massless particle P3 is assumed to start from the periapsis of

an osculating ellipse around P2, whose semi-major axis lies on l(α, i, f) and whose

eccentricity e3 is held fixed along l(α, i, f). In this case the initial distance between

P2 and P3 relative to the P2xyz reference frame is r0 = a3 (1 − e3), where a3 is

the semi-major axis of the osculating ellipse.



8

Fig. 3 Stable and unstable trajectories relative to P2

(iii) The initial velocity of the trajectory is perpendicular to the line l(α, i, f), making

an angle β with the plane Π (i, f). The angle β ∈ [0, 3600) is measured in the

counterclockwise direction if we look from P2 towards P3 (Figure 3.b). In this case

the initial velocity relative to the P2-centered reference frame is v0 =
q

µ(1+e3)
a3(1−e3)

.

If β = 1800 then P3 lies at the periapsis of a prograde orbit, and if β = 00 then P3

lies at the periapsis of a retrograde orbit.

The initial conditions of the trajectory with respect to the non-rotating system of

coordinates P2xyz are:

x0 = r0 (cos α cos f0 − sin α cos i sin f0) , (13)

y0 = r0 (cos α sin f0 + sin α cos i cos f0) ,

z0 = r0 sin α sin i,

ẋ0 = v0 (cos β sin α cos f0 + cos β cos α cos i sin f0 + sin β sin i sin f0) ,

ẏ0 = v0 (cos β sin α sin f0 − cos β cos α cos i cos f0 − sin β sin i cos f0) ,

ż0 = v0 (− cos β cos α sin i + sin β cos i) .

To give the initial conditions of the corresponding flow under the dynamical system

(2), we transform (x0, y0, z0, ẋ0, ẏ0, ż0) into (ξ̃0, η̃0, ζ̃0, ξ̃′

0, η̃′

0, ζ̃′

0) by using formulas
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Fig. 4 The variation of the capture effect ∆ϕ (expressed in radian) in the case of the Sun-
Mercury system, with i = 00, β = 1800 and α = 00 (first and second picture) or α = 1800

(third and fourth picture). The second and fourth plot present details of the first and third
plot around of the discontinuity points.

(7) and (9). For fixed values of the parameters f, e3, i, β, and α, the motion depends

only on the distance r0.

If the initial velocity lies in the plane Π (i, f), i.e. β ∈ {00, 1800}, to circumvent

having multiple identical combinations of i and β (i.e. (β = 00, i) represents the

same case as (β = 1800, 1800 − i) for all i ∈ [0, 1800]), we introduce the auxiliary

variable

I :=
iβ

180
+

(180 − β) (180 − i)

180
. (14)

In this case, for prograde motions we have β = 1800 and i < 900, or β = 00 and

i > 900, and for retrograde ones β = 1800 and i > 900, or β = 00 and i < 900. It is

obvious that for I < 900 the motion is prograde, and for I > 900 the motion will

be retrograde.

(iv) We consider the plane ∆ normal to the initial velocity, and including the line

l(α, i, f). Let lp be the line in ∆ perpendicular to l(α, i, f) which contains P2. We

denote by ∆lp the semi-plane of the ∆, bounded by the line lp and including P3,

the initial position of the trajectory (∆lp marked dark gray in Figure 3.c).

(v) In our study the radius of the planet P2 is considered to be RP2
> 0. The motion

and the corresponding initial state are said to be stable (identical to 1-stable), if

the massless particle P3 leaving l(α, i, f) makes a complete turn around the planet

P2, without collision, and returns at a point of the semi-plane ∆lp with negative

Kepler energy relative to P2, without making a complete turn around P1 along

his trajectory. This definition can be further generalized. It is possible to consider

motions and their initial states which are n-stable (n complete revolutions around

P2), introduced by Garćıa and Gómez in 2007. If the massless particle collides with

the planet P2 (r2 = RP2
) before it could make a complete turn around the planet

P2 with negative Kepler energy relative to P2, then we have a collisional motion

and its initial point is called a collisional point. In other cases, the motion and the

corresponding initial state are said to be unstable (Figure 3.d).

(vi) The weak stability boundary (WSB) is the boundary of the regions of the stable

points.

To investigate the return map to ∆lp we can use the capture effect (Szenkovits et

al. 2002). The capture effect △ϕ (x0, y0, z0, ẋ0, ẏ0, ż0) of the planet P2 to the captured

body P3 with the initial conditions (x0, y0, z0, ẋ0, ẏ0, ż0) and the flow γ(f) is the total

variation of the central angle △ϕ with respect to P2 in the rotating frame during the

capture, as long as H
2
(γ (f)) ≤ 0.

Performing numerical investigations concerning the capture effect in the Sun-Mercury

system, in the framework of the ERTBP, we observe that:
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(i) For fixed values of f, e3, i, β and α there exist l∗k (k ≥ 0) such that the variation

of the capture effect depends smoothly on r0 if r0 ∈
�
l∗2k, l∗2k+1

�
and depends

chaotic if r0 ∈
�
l∗2k+1, l∗2k+2

�
. Figure 4 shows this property applied to the Sun-

Mercury system, where the orbital characteristics of Mercury are: a = 46001210

km, e = 0.2053, µ = 0.00000016601. The chaotic behavior is in the discontinuity

interval, where the capture effect changes its value from greater than 2π to less

than 2π.

(ii) If a point is stable, then the capture effect relative to this initial condition is greater

than 2π. Therefore, the WSB is a subset of the region where the capture effect

changes its value from greater than 2π to less than 2π, i.e. where the variation of

the capture effect is chaotic (Figure 4).

The results presented above are in concordance with the results of Garćıa and

Gómez (2007). The variation of the capture effect illustrates that the boundary between

the stable and unstable regions has a chaotic structure.

3 Stable and unstable orbits in the Sun-Mercury system

First, we have investigated the structure of the weak stability region around the planet

Mercury, when the inclination i ∈
h
00, 900

i
and the true anomaly f0 ∈

h
00, 1800

i
are variated. The value of the eccentricity e3 = 0 is fixed. We consider the two cases

when P3 leaves the line l(α, i, f0) in prograde direction (β = 1800) or in retrograde

direction (β = 00). In this study α varies between 00 and 3600, and r0 belongs to the

[RM , 1.5RH ] interval, where RM = RP2
= 2439.7 km is the radius of planet Mercury

and

RH ≈ a (1 − e) 3

r
µ

3 (1 − µ)
= 139308km

is the radius of the Hill sphere (in this case the distance between P2, the mass center

of Mercury and L2, the Lagrangian point between the Sun and Mercury).

By using numerical investigations we determined the stability, instability and col-

lision regions, consisting of the initial positions corresponding to stable, unstable and

collision orbits, for different values of the initial inclination i ∈
h
0, 900

i
, with prograde

(β = 1800) and retrograde (β = 00) circular initial conditions (e3 = 0). We have dis-

cretized the angular parameter α by using 360 equidistant values of
h
00, 3600

�
and

the distance r0 along l(α, i, f0) with equidistant increments of 500 km between RM

and 1.5RH . When we detected collision with Mercury, in fact crash on the surface of

Mercury (i.e. r2 = RM , RM the radius of planet Mercury) we stopped the integration.

In this way we avoided the necessity of using regularization, and we put in evidence an

approximation of the real set of collisional orbits. Our set of collisional points contains

all the initial positions corresponding to trajectories which pass through the singular-

ity point where the center of the planet Mercury is located, but in addition, this set

contains all the initial positions which lead to an impact with the surface of the planet

Mercury. The results are presented in Figure 5, Figure 6 and Figure 7. The integration

of the system (2) of the spatial ERTBP has been done by using a variable step size
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Fig. 5 Stability regions for different values of the initial inclination and for initial true anom-
alies f0 ∈

�
00, 1800

	
. The first and third columns state for the prograde (i.e. β = 1800), the

second and fourth columns for the retrograde motions (i.e. β = 00). The black points cor-
respond to initial positions of collision orbits with planet Mercury, the dark gray points are
initial positions of unstable motions, and the light gray points correspond to initial positions
of stable motions.

Adams fourth-order predictor corrector scheme. The assumed local truncation error

was less than 10−9.

In continuation of our study, we compared the stable and unstable regions for

different values of the inclination i and for the true anomaly f0 ∈
n

00, 1800
o

. To

perform this, we used the relative frequency of the stable, unstable, and collision points

(i.e. the rate of number of the stable/unstable/collision points with respect to the total

number of points) in the sections presented in Figure 5. The results are presented in

Figure 8. Here we used the auxiliary variable I, given in (14), to illustrate the successive
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Fig. 6 Stability regions for different values of the initial true anomaly, for prograde motions
(β = 1800 ) with an initial inclination of i = 00. The black points are initial positions of
collision orbits with the planet Mercury, the dark gray points are initial positions of unstable
motions, and the light gray points correspond to initial positions of stable motions.

extension of the variation of the relative frequencies related to the prograde (I < 900)

and retrograde (I > 900) motions.

Investigating our results presented in Figure 5, Figure 6, Figure 7 and Figure 8 we

can make some remarks.

(i) The relative frequency of the stable points is maximal when I = 1800, i.e. when

the motions are retrograde and the inclination i = 00(first picture of Figure 8).

(ii) Figure 6 and Figure 7 show that the stability regions change their shape and spread

with respect to the variation of f0. They expand when f0 varies from 00 to 1800,

and then they contract when f0 varies from 1800 to 3600. As we mentioned in

the Section 1.1, the variation of the ZVS is correlated with the variation of the

Hill stability S(f). The measure of the Hill Stability S(f) also increases when f

varies from 00 to 1800 and then decreases as the spread of the stability regions
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Fig. 7 Stability regions for different values of the initial true anomaly, for an initial inclination
of i = 1800, in case of retrograde motions (β = 00). The black points are initial positions of
collision orbits with the planet Mercury; the dark gray points are initial positions of unstable
motions, and the light gray points correspond to initial positions of stable motions.

does. Therefore, the variation of the stability regions has the same rhythm as the

pulsation of the ZVS (Figure 2). When the true anomaly f increases from 00 to

1800, then the distance R = ‖P1P2‖ between the two primaries also increases, and

then decreases when f increases from 1800 to 3600 trough formula (1). This implies

that the gravitational perturbing effect of P1 to the initial states of P3 around P2

decreases. Accordingly, the stable regions are maximal for f0 = 1800 and minimal

for f0 = 00.

(iii) The collision regions are in the boundary of the stable regions, i.e. the collision

regions are subsets of WSBs.

(iv) The relative frequency of the collision points is maximal in the case when the orbits

are not inclined, i.e. i = 00, β = 00 or β = 1800 (see the second picture of Figure

8).
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Fig. 8 The variation of the relative frequency of stable, collision and unstable initial points
with respect to the I for f0 = 00 (dashed line) and for f0 = 1800 (solid line), where I :=
iβ

180
+

(180−β)(180−i)
180

, i ∈

�
00, 900

�
and β ∈

�
00, 1800

	
.

(v) The crash orbits of the small body onto the primary P2 are relatively frequent.

This result is in concordance with the result obtained by Nagler in the framework

of the planar CRTBP (Nagler 2005).

(vi) The stable regions present a central symmetry with respect to P2. In the next we

discuss this property in detail.

In the non-rotating system of coordinates P2xyz the initial conditions are given

by the formula (13). We observe that for β = 00 or β = 1800 these initial conditions

are opposite for α and α + 1800. We use Monte Carlo simulations to investigate the

following property: if an initial condition (x, y, z, ẋ, ẏ, ż) gives stable motion, then

(−x, −y, −z, −ẋ, −ẏ, −ż) also gives stable motion.

We analyze this property for the fixed value of e3 = 0 and β = 00, or β = 1800. We

use 100 000 initial positions with random values of f0 ∈
h
00, 3600

�
, α ∈

h
00, 3600

�
,

i ∈
h
00, 900

i
and r0 ∈ [RM , 1.5RH ]. For each random vector (f0, α, i, r0) we construct

two motions: the first one corresponding to the initial condition (13) with α and the

second one with α + 1800. Then, we compare the stability types of these trajectories.

We reached the conclusion that in the Sun-Mercury system the rate of coincidences for

the stability region (the rate of symmetry of the stable region) is of 95% for prograde,

and of 92% for retrograde motions.

4 Conclusions

The structure of the stable, unstable and collision regions around Mercury has been

investigated by using the three-dimensional ERTBP model. For different values of the
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initial inclination and initial true anomaly, numerical simulations proved that the rela-

tive frequency of the stable points increases with the inclination and is maximal when

orbits are retrograde and not inclined. Figures 5, 6 and 7 illustrate that the boundaries

of the stable regions also contain the initial points of collisional orbit to the planet Mer-

cury. We can also deduce that the stable, unstable and collision regions pulsate with

the revolution of the two primaries. This pulsation means that these regions slightly

change their shape and spread with the variation of the true anomaly. This can be

illustrated with short animations constructed by using the sections presented in Fig-

ure 6 or Figure 7. Finally, by using Monte Carlo simulations we put in evidence that

the rate of symmetry of the stable regions for the Sun-Mercury system is of 95% for

prograde, and 92% for retrograde motions.
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7. R. Jehn, V. Companys, C. Corral, D. Garćıa Yárnoz, C. Sánchez, Navigaing BepiColombo
during the weak-stability capture at Mercury, Adv. Space Res., 42, 1364-1369 (2008).

8. J. Nagler, Crash test for the restricted three-body problem, Phys. Rev. E 71, 026227(2005).
9. E. Perozzi , S. Ferraz-Mello (eds.), Space Manifold Dynamics, Springer, New York (2009).

10. D. Romagnoli, C. Circi, Earth-Moon weak stability boundaries in the restricted three and
four body problem, Celest. Mech. Dyn. Astron., 103, 79-104 (2009).

11. V. Szebehely, Theory of orbits, Academic Press, New-York, 1967.
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