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Abstract

In the experiments in which the response to a treatment can be affected by other treat-
ments, the interference model with neighbor effects is usually applied. It is known, that
circular neighbor balanced designs (CNBD) are universally optimal under this model.
However, such designs cannot exist for each combination of design parameters. If in the
class of block designs with a given number of blocks there exists CNBD, then such a design
cannot exist in the class with one block less or more. The aim of this paper is to identify
the E-optimal complete block designs under the interference model with neighbor effects
over such classes of designs. The results are based on algebraic properties of information
matrix.
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1 Introduction

In the theory of experimental designs, the problem of determining optimal designs is often

considered. If in an experiment the response to a treatment is affected by other treatments (for

example in agricultural and horticultural experiments), then the optimality of designs under an

interference model is studied. Recently some results on universal optimality of binary designs

under this model were published. These results concern mainly optimality of circular neighbor

balanced designs (CNBD) and orthogonal arrays of type I under the fixed and mixed interference

models, where the observations are correlated or not (see e.g. Druilhet, 1999, Filipiak and

Markiewicz, 2003, 2004, 2005, 2007). It is known, however, that for some combinations of

design parameters the universally optimal designs cannot exist. In such a case efficiency of

some designs or optimality with respect to the specified criteria are considered. The efficiency

of some cyclic designs under a fixed interference model was studied in Filipiak and Różański,

2004.

In this paper we are interested in determining E-optimal designs under an interference

model. This criterion is based on the eigenvalues of the information matrices of designs. In

the literature this problem has not been discussed yet. Only the problem of determining

E-optimal designs under the model with block effects as the only nuisance parameters over the

class of designs is partially solved, see e.g. Constantine, 1981, Jacroux, 1982, 1983, Srivastav and

Shankar, 2003. However, there is no characterization of E-optimal designs under an interference

model.

It is known, that in the class of block designs with the same number of treatments, t, as

block sizes, k, CNBD cannot exist for the number of blocks b = t− 2 and b = t. Thus, for such

design parameters we determine the structure of left-neighboring matrix of E-optimal design

under the interference model with left-neighbor effects and we give some examples of such

designs.

It is worth observing that designs with t = k are often used in practice. For example

in UPOV (The International Union for the Protection of New Varieties of Plants) research,

complete block designs are recommended in experiments when the number of treatments is less

than 16. The designs with the same number of blocks as number of treatments and units are

also applied in clinical trials.

This paper is organized as follows. First we present some general definitions and notation.

In Section 3 we characterize the structure of the left-neighboring matrix of E-optimal design

with t = k = b. In Section 4 we determine the structure of the left-neighboring matrix of

E-optimal design with t = k = b + 2. In the last section we give the method of construction of

E-optimal designs and some examples.
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2 Definitions and notations

Let Dt,b,k be the set of designs with t treatments, b blocks and k experimental units per block.

An interference model with left-neighbor effects associated with the design d ∈ Dt,b,k can be

written as

y = Tdτ + Ldλ + (Ib ⊗ 1k)β + ε, (1)

where τ , λ and β are the vectors of treatment effects, left-neighbor effects and block effects,

respectively. Here ε is a vector of random errors with E(ε) = 0 and Cov(ε) = σ2Ibk, where

σ2 is an unknown constant. The matrix Ib denotes the identity matrix of order b, 1k is the

k-vector of ones and ⊗ denotes the Kronecker product.

Let Tdu be the design matrix of treatment effects in block u, 1 ≤ u ≤ b. Further, define

Td = (T′
d1 : · · · : T′

db)
′ as the design matrix of treatment effects. For each u we define

Ldu = HkTdu, where Hk is a k × k matrix of the form

Hk =

(
0′k−1 1

Ik−1 0k−1

)
. (2)

Then, Ld = (Ib ⊗Hk)Td is the design matrix of left-neighbor effects. This form of the matrix

Hk follows from the assumption that each treatment has a left neighbor. This situation may

occur if each block of a design has the form of a circle. If plots in blocks are arranged in linear

forms, we can obtain the effect of circularity by adding border plots at the beginning of each

block, where the treatment at the border plot is the same as the treatment at the opposite end

of the block (for more details see e.g. Druilhet, 1999, Filipiak and Różański, 2005). Border

plots are not used for measuring the response variables.

Under the interference model (1), the information matrix for estimating the treatment

effects, Cd, can be expressed as

Cd = T′
dQIb⊗1k

Td −T′
dQIb⊗1k

Ld(L′dQIb⊗1k
Ld)−L′dQIb⊗1k

Td, (3)

where QIb⊗1k
is the orthogonal projector onto the orthocomplement of the column span of

Ib ⊗ 1k and A− denotes a generalized inverse of A. It is easy to see that QIb⊗1k
= Ib ⊗ Ek,

where Ek = Ik − 1
k
1k1

′
k. Because of the form of Ek and since Hk is orthogonal, it can be seen

that T′
dQIb⊗1k

Td = L′dQIb⊗1k
Ld.

We are interested in determining E-optimal design, i.e. such design, that the maximal

variance among all best linear unbiased estimators of normalized linear contrasts is minimal

under this design. The condition of E-optimality can be expressed in terms of eigenvalues of

the information matrix as follows.

For a design d ∈ Dt,b,k let λmax(Cd) = λ1(Cd) ≥ λ2(Cd) ≥ · · · ≥ λt−1(Cd) ≥ λt(Cd) = 0 be the

eigenvalues of its information matrix Cd. A design d∗ ∈ Dt,b,k is called E-optimal over Dt,b,k if

λt−1(Cd∗) ≥ λt−1(Cd) for all designs d ∈ Dt,b,k (cf. Constantine, 1981).

3
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Observe, that in formula (3) it is involved a generalized inverse of a matrix, which depends

on a design, i.e. which changes itself with the arrangement of treatments on experimental units.

It makes the determination of E-optimal design difficult. Therefore in this paper we consider

experiments with t = k (t > 2). The class of designs with t = k, in which each treatment occurs

at most once in each block (the class of complete binary designs) we will denote by Bt,b,t. In

such a case the information matrix has the form

Cd = bEt −
1

b
KdK

′
d,

where Kd = T′
dQIb⊗1t

Ld. Since the vectors Td1t and Ld1t are in the column space of Ib ⊗ 1t,

the matrix Kd has zero row and column sums, i.e. Kd1t = K′
d1t = 0t, where 0t is a t-vector of

zeros.

Observe that the matrix Et is symmetric, idempotent and t− 1 of its eigenvalues are equal

to 1. Moreover, Et1t = 0t and KdK
′
d1t = 0t. Thus, under the class Bt,b,t, the E-optimality

condition can be rewritten as follows

λ1(Kd∗K
′
d∗) ≤ λ1(KdK

′
d) for all d ∈ Bt,b,t. (4)

Since for a nonnegative-definite matrix A,
√

λ1(AA′) = σ1(A), where σ1(A) denotes the

spectral norm of A, to determine E-optimal design d∗ we have to find the matrix Kd∗ with

minimal spectral norm over matrices Kd, d ∈ Bt,b,t. We use some special properties of Kd.

Using the form of QIb⊗1t
, the matrix Kd can be expressed as T′

dLd− b
t
1t1

′
t. The (i, j)th entry

of T′
dLd denotes the number of occurrences of treatment i with treatment j as left neighbor

in a design d ∈ Bt,b,t. Therefore we will call this matrix a left-neighboring matrix and we will

denote it by Sd with entries sij, i, j = 1, 2, . . . , t. It is easy to observe, that in the class Bt,b,t, the

diagonal entries of Sd are equal to 0 and the off-diagonal entries belong to the set {0, 1, . . . , b}.
Moreover, Sd1t = S′d1t = b1t. Thus, the set of all matrices Kd for d ∈ Bt,b,t can be defined as

Kb =

{
Kd = (kij)1≤i,j≤t : Kd1t = K′

d1t = 0t, kij ∈
{
−b

t
, 1− b

t
, . . . , b− b

t

}
, kii = −b

t

}
.

Let Pt be the set of all permutation matrices of order t and let P t ⊂ Pt be the set of

permutation matrices with zero diagonal (the set of derangement matrices). We show that the

matrix Kd∗ with minimal spectral norm over Kb belongs to the set

K̃t =
{
Kd ∈ Kt : Kd = Pd − It, Pd ∈ P t

}
if b = t

and

K̂t−2 =

{
Kd ∈ Kt−2 : Kd =

2

t
1t1

′
t − It −Pd, Pd ∈ P t

}
if b = t− 2.

We prove that design d∗ which is E-optimal over Bt,b,t, i.e. design for which Kd∗ has minimal

spectral norm over Kb, is also E-optimal over Dt,b,t.

4
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In the paper reducibility of matrices, will play an important role. Reducibility is defined as

follows.

Definition 2.1 (Horn and Johnson, 1985). An n×n matrix A is said to be reducible if either

of the following conditions is satisfied

1. n = 1 and A = 0,

2. n ≥ 2 and there is a permutation matrix P ∈ Pn and an integer r with 1 ≤ r ≤ n − 1

such that P′AP =

[
B C

Θ D

]
, where B ∈ Cr×r, D ∈ C(n−r)×(n−r), C ∈ Cr×(n−r) and

Θ ∈ C(n−r)×r is a zero matrix.

A matrix is called irreducible if it is not reducible.

The matrix P′AP, where P ∈ Pn, is called the matrix permutationally similar to A. Recall,

that the eigenvalues of A and a matrix permutationally similar to A are the same.

Observe, that every irreducible derangement matrix is permutationally similar to the matrix

Ht, defined in (2). Moreover, all reducible derangement matrices are permutationally similar to

the block diagonal matrices with derangement matrices on the diagonal. It is worth to note, that

the eigenvalues of each matrix permutationally similar to Ht are equal to ωk, k = 0, 1, . . . , t−1,

where ωk are tth roots of unity. It follows from circularity of Ht (for more details see e.g. Horn

and Johnson, 1985, John, 1987).

In this paper we consider b = t− 2 and b = t, because for the remaining numbers of blocks

determining the spectral norm of Kd requires the spectral norm of two (or more) different

permutation matrices, which is very difficult to solve in general.

3 E-optimal designs over Dt,t,t

In this section we determine the structure of the left-neighboring matrix of E-optimal design

over Dt,t,t. First we determine, which structure of Kd from K̃t gives the minimal spectral norm

over Kt. Then we show the structure of the left-neighboring matrix of E-optimal design over

the class of binary designs Bt,t,t and, finally, over the class of all designs Dt,t,t.

Observe that a matrix Kd ∈ K̃t is reducible if and only if it is permutationally similar to the

block-diagonal matrix diag(Ht1 ,Ht2 , . . . ,Htn)− It, where
∑n

j=1 tj = t and n 6= 1. It is obvious

that for n = 1 we obtain an irreducible matrix.

Since the sets of eigenvalues of permutationally similar matrices are the same, the problem

of finding the matrix from K̃t with minimal spectral norm can be reduced to studying the

spectral norms of Ht − It or diag(Ht1 ,Ht2 , . . . ,Htn)− It.

Consider a matrix Kd = Ht − It. Then KdK
′
d = 2It − (Ht + H′

t) = 2It − (Ht + H−1
t )

is circular and its eigenvalues are equal to 2 − ωk − ω−1
k = 2 − 2 cos 2kπ

t
, k = 0, 1, . . . , t − 1

5
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(cf. John, 1987). It is easy to see that λmax(KdK
′
d) is obtained for k = t

2
for even t and k = t±1

2

for odd t and

λmax(KdK
′
d) =

{
2− 2 cos π = 4 for even t

2− 2 cos (t±1)π
t

= 2 + 2 cos π
t

for odd t.
(5)

Moreover, it is easy to see that for odd t

lim
t→∞

cos
π

t
= 1, (6)

and λmax(KdK
′
d) → 4− if t →∞.

Since σ1(Kd) =
√

λmax(KdK
′
d), for Kd = Ht − It we get σ1(Kd) = 2 for even t and

σ1(Kd) → 2− if t is odd and t →∞.

Recall, that the spectrum of the block-diagonal matrix is the sum of the spectra of diagonal

blocks (see e.g. Marcus and Minc, 1964). From the block-diagonal form of the reducible

matrices from K̃t it is easy to see that the matrix KdK
′
d is also block-diagonal and we can

prove the following theorem.

Theorem 3.1 The matrix Kd∗ which minimizes the spectral norm over Kt is permutationally

similar to the matrix:

(i) Ht − It if t = 2, 7;

(ii) I2 ⊗H2 − I4 or H4 − I4 if t = 4;

(iii) Im ⊗H3 − It if t = 3m, m ∈ N;

(iv) diag(Ii ⊗H3, Ij ⊗H5)− It if t = 5 or t ≥ 8 and t 6= 3m, m ∈ N,

where t = 3i + 5j for some i ∈ N ∪ {0}, j ∈ N.

Moreover, in case (iii) there is σ1(Kd∗) =
√

3 and the spectrum of Kd∗K
′
d∗ has the form

{0, 0, . . . , 0︸ ︷︷ ︸
m times

, 3, 3, . . . , 3︸ ︷︷ ︸
2m times

}, and in case (iv) the spectral norm of Kd∗ is σ1(Kd∗) =
√

5+
√

5
2

.

Proof.

Let Kd ∈ K̃t. From (5) it is easy to see that the matrix with minimal spectral norm, Kd∗ , has

to be permutationally similar to the block-diagonal matrix with diagonal blocks of odd order

as small as possible. Hence we obtain immediately case (iii) and respective form of Kd∗ for

t = 7. For t = 2 and t = 4 such a situation is impossible. Thus, we obtain respective forms of

Kd∗ . For case (iv) it is enough to observe that considered t’s can be expressed as 3i+ 5j, where

i ∈ N ∪ {0}, j ∈ N. Again from (5) and (6) condition (4) is satisfied for Kd∗ in a given form.

Let Kd ∈ Kt\K̃t. It is known that the spectral norm of the nonnegative-definite matrix

is not smaller than the maximal diagonal entry of this matrix (see e.g. Marshall and Olkin,

1979). We will show, that the maximal diagonal entry is not smaller than the upper bound of

6
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the spectral norm of the matrix from K̃t (obtained from the triangle inequality).

For simplicity we denote the entries of KdK
′
d by k̃ij, i, j = 1, 2, . . . , t. We obtain

λ1(KdK
′
d) ≥ max

i
k̃ii

and it can be observed that max
1≤i≤t

k̃ii ≥ 4. Hence σ1(Kd) ≥ 2.

Observing σ1(Kd∗) = σ1(Pd∗ − It) ≤ σ1(Pd∗) + σ1(It) = 2 we obtain the thesis.

The second part of the theorem is obtained directly from the spectral norm of (H3−I3)(H
′
3−

I3) and H5 − I5, respectively.

According to the Theorem 3.1 we can formulate the following corollary, which gives the

structure of the left-neighboring matrix of E-optimal design.

Corollary 3.1 If there exists design d∗ with the left-neighboring matrix Sd∗ permutationally

similar to the matrix

(i) 1t1
′
t − It + Ht for t = 2, 7;

(ii) 141
′
4 − I4 + I2 ⊗H2 for t = 4;

(iii) 1t1
′
t − It + Im ⊗H3 for t = 3m, m ∈ N;

(iv) 1t1
′
t − It + diag(Ii ⊗H3, Ij ⊗H5), for t = 5 or t ≥ 8 and t 6= 3m, m ∈ N,

up to the order of diagonal blocks, where t = 3i + 5j for some i ∈ N ∪ {0} and j ∈ N,

then d∗ is E-optimal over Bt,t,t.

Note, that in case (ii) of Corollary 3.1 there is only one form of the left-neighboring matrix,

while in Theorem 3.1 there are two forms of Kd∗ . It follows from the fact, that the design with

the left-neighboring matrix Sd∗ = H4 − I4 + 141
′
4 does not exist (cf. Azäıs et al., 1993).

Now we prove, that the designs with left-neighboring matrices given in Corollary 3.1 are

E-optimal over the class of all designs Dt,t,t. For d ∈ Dt,b,k, the information matrix Cd is of the

form (3). Since Cd is nonnegative-definite, the following inequality is satisfied:

λt−1(Cd) ≤ λt−1(T
′
dQIb⊗1k

Td). (7)

Observe, that for d ∈ Dt,b,t

T′
dQIt⊗1t

Td = L′dQIt⊗1t
Ld = T′

dTd −
1

t

b∑
j=1

rdjr
′
dj = Rd −

1

t

b∑
j=1

rdjr
′
dj, (8)

where rj is the t-vector of replications of treatments in the jth block and Rd is the diagonal

matrix with the number of replications of the ith treatment in the design on the diagonal, i.e.

Rd = diag(rd1, . . . , rdt). We can prove the following.

7
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Theorem 3.2 If design d∗ satisfies conditions of Corollary 3.1, then d∗ is E-optimal over Dt,t,t.

Proof. Let d∗ satisfies conditions of Corollary 3.1 and let d ∈ Dt,t,t\Bt,t,t. We prove the theorem

in two steps. First we show the thesis for equireplicated designs and then for designs which are

not equireplicated.

(i) If d is equireplicated, then Rd = tIt in (8) and

λt−1(T
′
dQIt⊗1t

Td) = t− 1

t
λmax

(
t∑

j=1

rdjr
′
dj

)
.

Using the fact that the diagonal elements of a nonnegative-definite matrix are majorized by

the characteristic roots, we have

t− 1

t
λmax

(
t∑

j=1

rdjr
′
dj

)
≤ t− 1

t
max
1≤i≤t

(
t∑

j=1

r2
dij

)
,

where rdij is the number of occurrences of the ith treatment in the jth block in the design d.

Since design d is not binary, we get

max
1≤i≤t

(
t∑

j=1

r2
dij

)
> 4.

According to (7) and (5) we obtain λt−1(Cd) ≤ t− 4
t
≤ t− 1

t
λmax(Kd∗K

′
d∗) = λt−1(Cd∗).

(ii) If d is not equireplicated, then minimal diagonal element in Rd given in (8) is not greater

than t− 1. From Constantine (1981)

λt−1(T
′
dQIt⊗1t

Td) ≤ (k − 1)t

k(t− 1)
min
1≤i≤t

rdi, (9)

and thus in our case

λt−1(Cd) ≤ min
1≤i≤t

rdi ≤ t− 1 ≤ t− 4

t
≤ λt−1(Cd∗)

for t ≥ 4. For t = 2, 3 the thesis is obtained by direct calculations.

4 E-optimal designs over Dt,t−2,t

In this section we determine the structure of the left-neighboring matrix of E-optimal design

overDt,t−2,t. Similarly as in previous section first we determine, which structure of Kd from K̂t−2

gives the minimal spectral norm over Kt−2. Then we show the structure of the left-neighboring

matrix of E-optimal design over the class of binary designs Bt,t−2,t and, finally, over the class

of all designs Dt,t−2,t.

8
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Theorem 4.1 The matrix Kd∗ which minimizes the spectral norm over Kt−2 is permutationally

similar to the matrix 2
t
1t1

′
t − It −Ht.

Proof.

Let Kd ∈ K̂t−2. Then KdK
′
d = 2It − 4

t
1t1

′
t + (Pd + P′

d), Pd ∈ P t. Observe, that for Pd∗ = Ht

the unordered eigenvalues of Kd∗K
′
d∗ are of the form

µi(Kd∗K
′
d∗) =

{
0 for i = 0

2 + 2 cos 2iπ
t

for i = 1, 2, . . . , t− 1

and we obtain the maximal eigenvalue of Kd∗K
′
d∗ for i = 1 or i− t− 1, i.e.

λmax(Kd∗K
′
d∗) = 2 + 2 cos

2π

t
= 4 cos2 π

t
. (10)

Let Pd = diag(Ht1 , . . . ,Htn), t1 + · · · + tn = t. Then the unordered, nonzero eigenvalues of

KdK
′
d are

µm(KdK
′
d) = 2 + 2 cos

2iπ

tj
for

m = 1, 2, . . . , t− 1,

i = 1, 2, . . . , t1 − 1, 0, 1, . . . , t2 − 1, . . . , 0, 1, . . . , tn − 1,

j = 1, . . . , n,

and we get λmax(KdK
′
d) for i = 0 and finally

λmax(KdK
′
d) = 4 > 4 cos2 π

t
= λmax(Kd∗K

′
d∗).

Let Kd ∈ Kt−2\K̂t−2. It is known, that the spectral norm of a matrix is not smaller than

the spectral norm of any submatrix of this matrix (cf. Horn and Johnson, 1991). We use a

2× 2 submatrix of KdK
′
d.

Observe, that in the class Kt−2\K̂t−2 the matrix Kd has at least two entries equals to 2− t−2
t

,

and these two entries are in different rows, say in positions (i1, j1) and (i2, j2), i1 6= i2, j1 6= j2

(it follows from zero row and column sum of Kd). In such a situation two diagonal entries of

KdK
′
d are equal to 4− 4

t
and the (i1, j2)th entry of KdK

′
d is equal to −4

t
or 1− 4

t
or 3− 4

t
. Let

A be the symmetric submatrix of KdK
′
d of order 2, which contains entries (i1, j1) and (i2, j2)

on the diagonal and (i1, j2) as off-diagonal entries. Then

σ1(Kd) ≥
√

λmax(A) =


√

3 for t = 2, 3, 4,√
5− 8

t
for t = 5, 6, 7,

2 for t ≥ 8.

It is easy to calculate that the above spectral norm of Kd is not smaller than the spectral norm

σ1(Kd∗) = 2 cos π
t

obtained from (10). The proof is complete.
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Corollary 4.1 If there exists design d∗ with the left-neighboring matrix Sd∗ permutationally

similar to the matrix 1t1
′
t − It −Ht, then d∗ is E-optimal over Bt,t−2,t.

Now we prove, that the designs with left-neighboring matrices given in the above corollary

are E-optimal over the class of all designs Dt,t−2,t.

Theorem 4.2 If design d∗ satisfies conditions of Corollary 4.1, then d∗ is E-optimal over

Dt,t−2,t.

Proof. Let d∗ be an E-optimal design over Bt,t−2,t and let d ∈ Dt,t−2,t\Bt,t−2,t. We prove the

theorem in two steps. First we consider equireplicated designs and in second step we study the

class of not equireplicated designs.

(i) If d is equireplicated, then Rd = (t− 2)It in (8) and

λt−1(T
′
dQIt⊗1t

Td) = t− 2− 1

t
λmax

(
t−2∑
j=1

rdjr
′
dj

)
.

Using the fact that the diagonal elements of a nonnegative-definite matrix are majorized by

the characteristic roots, we get

t− 2− 1

t
λmax

(
t−2∑
j=1

rdjr
′
dj

)
≤ t− 2− 1

t
max
1≤i≤t

(
t−2∑
j=1

r2
dij

)
,

where rdij is the number of occurrences of the ith treatment in the jth block in the design d.

Since design d is not binary, we obtain

max
1≤i≤t

(
t−2∑
j=1

r2
dij

)
> 4 + t− 4 = t.

According to (7) and (10) we have

λt−1(Cd) ≤ t− 3 ≤ t− 2− 1

t− 2
· 4 cos2 π

t
= λt−1(Cd∗).

(ii) If d is not equireplicated, then minimal diagonal element in Rd given in (8) is not greater

than t− 3. Using (9) we obtain

λt−1(Cd) ≤ min
1≤i≤t

rdi ≤ t− 3 ≤ t− 2− 1

t− 2
· 4 cos2 π

t
= λt−1(Cd∗).

10
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5 Construction of E-optimal designs

In accordance to Corollary 3.1 and 4.1 we can identify the left-neighboring matrix Sd∗ of an

E-optimal design. In this section we give the method of construction of E-optimal designs over

Dt,t,t and Dt,t−2,t.

From the form of the matrix Td we can observe that each block of complete binary design

can be written as a one-cycle permutation matrix. Thus, if we decompose the left-neighboring

matrix to the sum of b one-cycle permutation matrices, we can construct a design. Recall, that

each permutation is a cycle or a product of disjoint cycles (see e.g. Birkhoff and Mac Lane,

1954). For example, the matrix H′
3 is a one-cycle permutation matrix, which presents the cycle:

1 → 2, 2 → 3, 3 → 1 (indexes of elements of H′
3 that equal 1). Observe that, if we write this

cycle in the form [123], we can regard it as a treatment sequence in a single block of design.

Consider the class Dt,t,t. From Corollary 3.1. it follows that the left-neighboring matrix

of an E-optimal design has zero diagonal, exactly one off-diagonal element equal to 2 in each

row and column, and the remaining off-diagonal elements are equal to 1. This implies that

an E-optimal design has two classes of ordered pairs of neighboring treatments: t(t − 2) pairs

which occur exactly once in a design and t ordered pairs which occur exactly twice in a design.

The main problem in the construction of E-optimal designs is determining which pairs occur

once in a design and which twice.

Since for different t we have different forms of Sd∗ , the methods of construction of E-optimal

designs are different.

Observe that the left-neighboring matrix of circular neighbor balanced design (CNBD),

SCNBD, is of the form SCNBD = 1t1
′
t − It. From Corollary 3.1 it can be noticed that for

t = 3, 5, 7 the matrix Sd∗ is obtained by adding one-cycle permutation matrix to SCNBD. Thus,

in such a case E-optimal designs can be constructed from CNBD by repeating one arbitrary

block.

Example. Let t = 3, 5 or 7. The following designs are E-optimal over Dt,t,t:

for t = 3 : for t = 5 : for t = 7 :

d∗ =

 1 3 2

1 2 3

1 3 2

 , d∗ =


1 5 4 3 2

1 2 3 4 5

1 3 5 2 4

1 4 2 5 3

1 5 4 3 2

 , d∗ =



1 7 6 5 4 3 2

1 6 4 2 7 5 3

1 5 2 6 3 7 4

1 4 7 3 6 2 5

1 3 5 7 2 4 6

1 2 3 4 5 6 7

1 7 6 5 4 3 2


.
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For the remaining t observe, that if we express Sd∗ as the sum SCNBD + Pt, then Pt is

not one-cycle permutation matrix (Pt can not be the left-neighboring matrix of any block of a

design). Thus, E-optimal designs can not to be constructed from CNBD. Some hints how to

construct such designs (how to decompose Sd∗) are given in Filipiak and Różański, 2005. In

this paper we give only some examples.

Example. The following designs are E-optimal over Dt,t,t:

for t = 4 : for t = 6 :

d∗ =


1 4 3 2

1 2 3 4

1 2 4 3

1 3 4 2

 , d∗ =



1 2 3 4 5 6

1 2 4 6 5 3

1 3 2 5 6 4

1 4 5 2 6 3

1 5 4 3 6 2

1 6 4 2 3 5


,

for t = 8: d∗ =



1 2 3 4 5 6 7 8

1 2 4 6 8 7 5 3

1 3 2 5 4 7 8 6

1 4 2 3 8 5 6 7

1 5 7 4 8 2 6 3

1 6 2 7 3 5 8 4

1 7 2 8 3 6 4 5

1 8 4 3 7 6 5 2


.

Consider the class Dt,t−2,t. Let design d∗ has the left-neighboring matrix Sd∗ given in

Corollary 4.1. Observe, that the matrix 1t1
′
t−It in Sd∗ is the left-neighboring matrix of circular

neighbor balanced design (CNBD). Thus, subtracting a matrix permutationally similar to Ht

(which is full-cycle permutation matrix) is equivalent to abridging one arbitrary block from

CNBD. Thus, design d∗ can be construct from CNBD by abridging one arbitrary block. the

cataogue of CNBDs can be found in Azäıs et al., 1993.

Example. The following designs are E-optimal over Dt,t−2,t:

for t = 5 : for t = 8 :

d∗ =

 1 5 4 3 2

1 2 3 4 5

1 3 5 2 4

 , d∗ =



1 2 6 3 5 4 8 7

1 4 6 5 8 2 7 3

1 7 6 8 3 4 2 5

1 8 4 7 5 3 6 2

1 3 2 8 5 6 7 4

1 5 7 2 4 3 8 6


.
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