Evaluating volume flexibility instruments by design-of-experiments methods

Matthias Walter, Thomas Sommer-Dittrich, Jurgen Zimmermann

To cite this version:

Matthias Walter, Thomas Sommer-Dittrich, Jurgen Zimmermann. Evaluating volume flexibility instruments by design-of-experiments methods. International Journal of Production Research, 2010, pp.1. 10.1080/00207541003604869 . hal-00586126

HAL Id: hal-00586126

https://hal.science/hal-00586126

Submitted on 15 Apr 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Evaluating volume flexibility instruments by design-ofexperiments methods

Journal:	International Journal of Production Research
Manuscript ID:	TPRS-2009-IJPR-0733.R2
Manuscript Type:	Original Manuscript
Date Submitted by the	22-Dec-2009
Complete List of Authors:	Walter, Matthias; Clausthal University of Technology, Department for Operations Research Sommer-Dittrich, Thomas; Daimler AG, Group Research and Advanced Engineering, Production Management Team Zimmermann, Jurgen; Clausthal University of Technology, Department for Operations Research
Keywords:	AGGREGATE PLANNING, DESIGN OF EXPERIMENTS
Keywords (user):	volume flexibility

RESEARCH ARTICLE
 Evaluating volume flexibility instruments by design-of-experiments methods

Matthias Walter ${ }^{a *}$, Thomas Sommer-Dittrich ${ }^{b}$ and Jürgen Zimmermann ${ }^{a}$
${ }^{a}$ Department for Operations Research, Clausthal University of Technology, Germany; ${ }^{b}$ Research Centre Ulm, Daimler AG, Germany
(Received 00 Month 200x; final version received 00 Month 200x)

Volume flexibility enables firms to cope with demand fluctuations but being flexible incurs costs. Hence, firms are challenged to choose economically adequate volume flexibility instruments. To tackle this challenge we present a three-step approach comprising a preliminary analysis and a model of a production system that takes into account different volume flexibility instruments. The model is solved minimizing production costs. For a multidimensional sensitivity analysis we use design-of-experiments methods in the third step to assess the impact of the instruments and their interactions. In a case study we apply our approach to a real life NP-hard production planning problem of a car manufacturer that is solved by approximate dynamic programming. Using design-of-experiments methods we gain managerial insights into the value of different combinations of volume flexibility instruments.

Keywords: volume flexibility; design-of-experiments methods; aggregate production planning

1. Introduction

Demand fluctuations are a concern for manufacturing firms as they - no matter whether they are certain or random fluctuations - severely impede smooth production and distribution execution. Volume flexibility is one answer to the challenge imposed on a firm by demand variability. Browne et al. (1984, p. 115) define volume flexibility as the capability to operate profitably at different output levels. Similarly, Gerwin (1987, p. 39) relates volume flexibility to the ability to smoothly change the aggregate output of production. Volume flexibility instruments are options of a firm's management to adjust the output level within the planning horizon. Examples for such instruments are additional shifts on Saturdays, hiring as well as firing temporary workers, short time, and changing param-

[^0]eters of the production system, e.g. altering the cycle time in assembly line production systems.

After having investigated three manufacturing firms in a case study approach and having conducted a field survey Jack and Raturi (2002) concluded 'that volume flexibility has a positive impact on both delivery and financial performance.' Since it is known for long that flexibility is not a free good (cf. Stigler 1939, p. 311) the result of Jack and Raturi poses the following question to a firm: Which volume flexibility instruments should be selected and implemented? This question may be broken down into three research questions:

1. How large is the financial benefit of a volume flexibility instrument?
2. In which way do several volume flexibility instruments interact?
3. How sensitive are volume flexibility instruments to different demand fluctuations?

Although flexibility in general and volume flexibility in particular have been emphasized in academic research for more than 80 years (cf. Kaluza and Blecker 2005, p. 6) a clear and comprehensive theoretical framework is still missing and insights have not been diffused widely into practice because of the 'fuzzy and multidimensional nature of flexibility as a construct' (de Treville et al. 2007, p. 335). It is the aim of this paper to provide guidance for firms selecting volume flexibility instruments.

Usually, a firm has some volume flexibility instruments at its disposal. Consider a firm that can choose between three different shift models so far. A shift model defines whether only an early shift or even a late or a night shift have to work and specifies at which days of the week and how many hours a shift has to work. The firm thinks about negotiating an additional shift model with the workers' union. Before engaging in the negotiation process and offering compensation the firm must have an good estimate of how much it will save if the fourth shift model can be used. Consequently, the heart of our method is a model that represents the production process and incorporates all the volume flexibility instruments, e.g. the shift models and the hours bank - also known as working time account - when dealing with volume flexibility at the plant level. The model accounts for the relevant cost arising when production is executed given a production plan which specifies a shift model, extra hours, employments and other options for each period. Note that there is no unique model, as a model depends on the considered firm and situation. We present an exemplary model in our case study.

Coming back to the firm considering to opt for a fourth shift model, the valuation of the fourth shift model works in principle as follows. We optimize the production plan with respect to the restrictions of the model two times in separate runs. In the first run we only take into account the three shift models available to the firm so far. In the second run we optimize the production plan under the assumption that the fourth shift model is available. The difference in cost between the two production plans obtained from optimization reflects the value of the additional shift model.

The firm might also wish to raise the limit of unpaid extra hours that can be accumulated in the hours bank in times of high demand. Instead of paying for overtime the hours bank enables the firm to compensate for extra hours by shorter working times in periods of low demand while a constant weekly wage is paid independently of the actual working time. There is a wide spectrum of possible values for the upper limit, e.g. 100, 150 or 200 hours. Furthermore, there may exist an interaction effect between the number of shift models and the limit on accumulated extra hours: The fourth shift model may feature long working hours and may hence only be of advantage when a high limit on accumulated extra hours is chosen. Our method applies design-of-experiment methods to handle
the myriad of possible specifications of a single volume flexibility instrument and the multitude of combinations of different instruments. The analysis is framed in a factorial design of experiment that allows us to scrutinize interactions between instruments.

As volume flexibility is one answer amongst others to cope with demand fluctuations we briefly discuss why volume flexibility is favourable in Section 2. In Section $\mathbf{3}$ we clarify the difference between measurement and valuation of volume flexibility and review related literature. In Section 4 we describe our method which we subsequently apply in Section 5 in a case study conducted with our industry partner, a major European car manufacturer. For an assembly line we present a model that accounts for five volume flexibility instruments which are valued by design-of-experiments-methods. While the case study is based on known demand fluctuations, an extension of our approach to uncertain demand forecasts is outlined in Section 6. A summary and an outlook conclude this paper in Section 7.

2. The need for volume flexibility

In order to cope with demand variability it is crucial to recall the reasons for and the patterns of this phenomenon. Quite often seasonal fluctuations in demand are a characteristic of a product. Think of scarves that are rather sold in autumn and winter than in hot summer months. A second major cause for variable demand for a product is the life cycle of the product itself, i.e. the typical rise and fall of the demand curve between product launch and market exit. Third, the business cycle causes fluctuations in aggregate demand for a product, and hence affects the number of orders arriving at every single producer. Impacts stemming from the three sources mentioned so far can be forecasted to some extent. However, there is a fourth reason for demand volatility that comprises short-term effects such as price shocks, tax cuts and hikes, devastating test reports or sales promotion efforts of competitors. Those effects do not reveal a typical pattern or occur on a regular basis and are therefore difficult to anticipate.

Bearing these causes in mind a firm may manage both certain and random demand variability in four different ways. At first, a firm might operate at a constant output level and meet excess demand by inventory or with delay when backlogs occur. Secondly, a firm could try to eliminate demand fluctuations by engaging in marketing activities applying pricing and promotion policies. This idea stems from the concept to reduce or even eliminate the need for flexibility by controlling the environment (cf. Simon 1977, pp. 25 et seqq.). However, both strategies have a limited scope and do not fulfil customer needs. Thirdly, a firm producing several products could balance its product portfolio in such a way that the demand fluctuations of the single commodities cause almost constant total capacity requirements. This strategy necessitates product mix flexibility, which is defined as the ability to produce different items at the same time and at changing ratios over time (cf. Gerwin 1987, p. 39, and Gottschalk et al. 2004). Though, if a firm manages its portfolio primary for the purpose of constant capacity usage it may ignore its strengths and fail to meet customer needs.

The fourth way to encounter demand fluctuations is to use volume flexibility instruments in order to adjust capacity to demand. Establishing volume flexibility instruments basically means to reduce fixed costs. Hence, if the firm adjusts its capacity upwards this action is reversible in short time without loss and if the firm decreases its capacity by say 10% the costs incurred so far will fall by almost 10%. Faißt (1992) analyses volume flexibility instruments that are related to workforce flexibility. Askar et al. (2007) state
examples for volume flexibility instruments applicable at the plant level.
The shortcomings of the three alternatives mentioned first make volume flexibility a favourable feature. Furthermore, the benefit of volume flexibility rose in recent years. Over the last decades demand became more and more volatile due to faster technological progress and quicker changing customer preferences as a consequence of globally interlinked societies. This development called for a higher degree of volume flexibility and was reflected in the outcomes of negotiations between employers and employees. Ozaki (1999) for example summarizes studies which cover countries across the whole world that give impressive evidence for the increasing flexibility in employment and working time. Already in the mid-eighties manufacturing companies made an effort to boost their capacity adjustment capabilities (cf. van Deelen 1989). Considering European plants of car manufactures Lehndorf (2001) gives empirical evidence for the increase of volume flexibility. This development is accompanied by a transition from build-to-stock to mass customization or even build-to-order production in some industry lines (cf. Feitzinger and Lee 1997, and Sharma and LaPlaca 2005, respectively). Holweg and Pil (2001) stress that a build-to-order strategy will fail without volume flexibility. Salvador et al. (2007) also claim that, besides mix flexibility, volume flexibility is a prerequisite for a successful build-to-order strategy. ${ }^{1}$

Altogether, the developments expose firms to the situation to choose and establish appropriate volume flexibility instruments. The choice should be based on a valuation of volume flexibility instruments. This task is not easy as 'flexibility is a complex, multidimensional, and hard-to-capture concept' (Sethi and Sethi 1990, p. 289). We shed light on the issues related to flexibility, its measurement and valuation in the next section.

3. Flexibility: measurement and valuation issues

In this section we clarify the difference between measurement and valuation of flexibility after some general notations on flexibility.

Due to the complex nature of flexibility a large body of related literature exists. Flexibility has been approached by disciplines as economics, decision science, strategical management, and manufacturing management (cf. Upton 1995, p. 207). The latter discipline comes close to our perspective. For surveys within the field of manufacturing management we refer to Gupta and Goyal (1989), Sethi and Sethi (1990), and De Toni and Tonchia (1998). Even within one discipline there is lack of an univocal nomenclature and a unitary model of flexibility (cf. Sethi and Sethi 1990, p. 289). Thus, it is no surprise that Slack (1987) who interviewed managers found out that a comprehensive understanding of flexibility is scarce. However, de Groote (1994) provided a framework which could integrate previous models of flexibility and which is applicable in our case, too, as we will demonstrate later on.

Slack (1987) distinguishes two dimensions of flexibility, namely response and range flexibility. Response flexibility accounts for the time (and cost) needed to adjust to change, e.g. to adjust the output level. Range flexibility describes the range of states a system can adopt or - with a slightly different meaning - the variety of available alternatives for the adaptaption of the system to changes. Koste and Malhotra (1999, p. 78) point out the necessity not only to consider the total range or the total number of states a

[^1]
Artikel

system can adopt but also the difference between the states. This difference has to be considered when flexibility is measured. In regard to valuing flexibility, this difference as well as the number of possible states may have no impact. Defining flexibility as the capability to adapt to change, measuring flexibility means to quantify this capability in terms of time, cost, and range. Valuing flexibility, in contrast, means to quantify the financial benefit of this capability, either ex post given historic data or ex ante given a set of realistic scenarios for the development of the firm's environment. To illustrate the distinction we consider a firm that exhibits some volume flexibility instruments. Measuring may certify the firm a high degree of volume flexibility when the instruments enable the firm to quickly adjust output levels over a wide range incurring only moderate costs. Nevertheless, this volume flexibility is not of any value to the firm if it operates in a stable environment where demand is almost constant. In the following we will have a closer look at measures and ways of valuation of volume flexibility.

There are different proposals for measuring volume flexibility (cf. Suarez et al. 1996). These proposals include the response as well as the range dimension and often refer to both dimensions (cf. Gerwin 1993, Koste and Malhotra 1999). Stigler (1939) introduced an ordinal measure to compare the volume flexibility of production systems: the flatter the average cost curve of a production system the more volume flexible the system is. Other measures were proposed by Azzone and Bertele (1987) and Son and Park (1987), for example. Gupta (1993) pointed out the difficulties in measuring flexibility and recommended the value of flexibility as a surrogate measure. A high value of flexibility for a firm indicates that its current flexibility is low and vice versa. Recently, Olivella et al. (2010) assessed working time flexibility, a component of volume flexibility, using three measures, one of them relating to the range dimension and another relating to the response dimension. As it seems there is no mutual consent in the literature. None of the measures proposed in literature including the synthetic ones leads the way. For our method we will take the response as well as the range dimension into account.

Gottschalk et al. (2004) propose the ratio of relative change in output to time needed for the change as a key figure to measure response flexibility on a time basis. A similar definition of a key figure can be given with respect to cost. The general definition of those key figures indicates the need for a detailed context-sensitive analysis. Such an analysis is a preliminary step of our method. Though, it is not our goal to get a precise measure. But the analysis helps us to incorporate the relevant aspects of an instrument into our model aimed at valuation.

In regard to valuing flexibility Kulatilaka and Marks (1988) distinguish the strategic value from the option value of flexibility. Whereas the former embodies power in negotiations the latter represents the benefit of adaptation to changing conditions which is the value we are interested in. Kulatilaka (1988) presented a stochastic dynamic programming model to maximize the expected net present value of uncertain cash flows. He applied the model to a system offering the flexibility instruments to postpone the initial investment, switch between two operating modes, and abandon the investment.

Wild (1995) evaluates in-plant agreements between employers and employees. The agreements differ from one another with respect to the characteristics of volume flexibility instruments, e.g. the number of shift models and the daily working times. He applies a stochastic dynamic programming model to solve a multi-objective optimization problem. One objective - termed volume flexibility - is to minimize the daily deviation of actual personnel capacity from required capacity to fulfil demand, another one is to minimize
labor costs accrued for fix period wages, shift allowances and extra hours. His model can be used to value volume flexibility instruments by setting an aspiration level for the deviation objective and minimizing labour costs.

Khouja (1998) takes on the measure of Stigler (1939) to determine the optimal investment in volume flexibility. He assumes a quadratic average cost curve. Different degrees of volume flexibility are represented by a single parameter C_{1}. The costs accrued for creating a degree of volume flexibility described by C_{1} are given by $g\left(C_{1}\right)$. An optimal C_{1}, i.e. an optimal degree of volume flexibility is determined using Monte Carlo simulation. Though, the method falls short of linking the variable C_{1} and the cost function $g\left(C_{1}\right)$ to volume flexibility instruments.

Recently Baykasoğlu (2009) proposed an abstract generic measure of flexibility that incorporates volume flexibility besides other types of flexibility related to a system. Since the measure accounts for uncertainty in the environment of the system it actually is a valuation. Applying this way of valuation asks for heavy aggregation which does not seem suitable for instruments that are repeatedly used over time.

A methodical way to value flexibility instruments under complex conditions was presented by Barad and Even Sapir (2003) who analysed a military logistics problem that comprised combat units located at different positions. They expressed the value of flexibility as the probability that no shortage occurred at combat units during a replenishment cycle. Increasing the number of linkages between combat units enabling shipments between them was one instrument that supported flexibility. For each instrument Barad and Even Sapir considered a low and a high level, e.g. zero and three linkages between combat units. They calculated the shortage probability for all the combinations of levels of the instruments. Though only a small number of levels was investigated, they could draw conclusions in regard to the effect of instruments and their interactions because the combinations were chosen systematically using design-of-experiments methods. In the next section we will refine this method and explain the power of systematically varying the availability of instruments for an efficient analysis. An additional contribution of our paper is that we combine this method with optimization techniques.

4. Methodology

In this section we outline our method that determines the impact of different volume flexibility instruments and their interactions. We apply design-of-experiments methods that are widely used in the fields of science and engineering when the impact of several input variables on a response variable has to be estimated. Design-of-experiments methods are characterized by purposefully altering the input variables to gain maximum insight with a small number of experiments (cf. Montgomery 2005, Box et al. 2005, or Kleppmann 2006, for an application in logistics cf. Barad and Even Sapir 2003, for an application to in-store sales promotion cf. Bell et al. 2009).

Our input variables, also called factors, are the volume flexibility instruments introduced in Section 1, e.g. extra hours. For each factor only a small set of levels is considered, e.g. $100\left(t_{1}\right)$ and $200\left(t_{2}\right)$ hours for the upper limit of the hours bank. The response variable is the minimum total cost (π) incurred by the production schedule which exploits the factor levels. Coming back to the framework of de Groote (1994) mentioned in Section 3 and using his notation the benefit of a higher upper limit for the hours bank can be expressed as the difference $\pi\left(t_{2}, e\right)-\pi\left(t_{1}, e\right)$ where e denotes a particular environment, in our case it represents a particular demand. Each environment e is characterized by its

Artikel

level of diversity.
As a rule it is not possible to conduct an empiric analysis to value several volume flexibility instruments because time series data of a production system represent only a few degrees of volume flexibility and exhibit many variables not controlled for. Therefore, we conduct an experimental analysis that allows us to systematically vary factor levels for an arbitrary set of instruments. Since the time horizon has to span at least one year due to seasonal effects and the damage potential of improper factor levels is tremendous, experiments cannot be carried out on real production systems. Hence, we carry them out on a mathematical model that incorporates the relevant characteristics of the production system.

Design-of-experiments methods are typically used when a model of the considered system does not exist. They allow to identify the relevant factors affecting a dependent stochastic response variable. The identified factors are included in a preliminary model. In contrast, our method requires a complete model of the system including potentially relevant factors. Furthermore, such a complete model may lack stochastic response variables and may hence be deterministic, i.e. the numerical value of the response variable can be calculated given values for the factors. Nevertheless, design-of-experiments methods are still necessary to identify relevant factors because the complexity of the model inhibits a thorough understanding of the consequences of changes in factor levels. These changes are model parameter changes that are usually examined applying sensitivity analysis. And that is just what design-of-experiments methods provide by purposefully altering the input variables. Hence, a model and the experiments are the crucial features of our method that comprises three steps.

Step 1: Preliminary analysis

A preliminary analysis is required to model the production system including the volume flexibility instruments properly. At the outset volume flexibility instruments deemed to be suitable in the broadest sense ought to be selected. This preliminary selection of instruments should not be too restrictive as it is for the experiments to find out the really suitable ones. The analysis of instruments must comprise the response aspect as well as the range aspect. In regard to response flexibility costs are crucial. Note that 'fixed' costs are incurred for creating and maintaining volume flexibility and 'variable' costs arise when a volume flexibility instrument is utilized (cf. Eversheim and Schaefer 1980 , pp. 246 et seq.). The range flexibility offered by a volume flexibility instrument can be expressed in product units and number of output levels and the step size. It has to be compared with the expected range of product demand and the expected levels of product demand, respectively. The analysis can enable us to judge whether a volume flexibility instrument should be taken into account or not. Though, an instrument should only be excluded if it is dominated by other instruments. This, however, is not easy to see due to the multitude of dimensions of flexibility and the complexity of single dimensions (e.g. of range flexibility). Hence, the main benefit of an detailed analysis is the basis it provides for the model needed for valuation.

Step 2: Model building and algorithm design

Next, a mathematical model has to be developed which captures the features of all the volume flexibility instruments. The decision variables of the model will fix the production
schedule and determine the number of hires and fires etc., i.e. the decision variables will describe the usage of the volume flexibility instruments. The objective function has to consider all relevant costs that arise due to the use of instruments, e.g. paid extra hours, shift allowances and costs for changing the production speed. Furthermore, the objective function has to account for relevant costs incurred for excess capacity or loss of demand. As real life production systems can differ considerably from one another, a model has to match the special features of the considered production system.

The model type and the problem size will affect the choice of an algorithm. In case of a mixed integer program a branch-and-bound procedure or a heuristic method could be applied. In case of non-linear restrictions dynamic programming can be adequate. The task of the algorithm is to determine a feasible production schedule that minimizes the objective function.

Step 3: Applying design-of-experiments methods

First, we consider the 'simple case' where we obtain a linear optimization problem \mathcal{P} and instrument levels are represented by right-hand sides b_{i} of restrictions $i \in\{1, \ldots, m\}$ (e.g. extra hours $\leq 100 \mathrm{~h}$). In such cases solving the dual problem $\overline{\mathcal{P}}$ may provide sufficient information. The optimal dual value corresponding to a restriction of \mathcal{P}, the so called shadow price, reflects the savings in production costs when the restrictions' right-hand side is increased by one unit (e.g. from 100h to 101h). For well-behaving linear problems the total effect of increasing two right-hand side values b_{i} is equal to the sum of the corresponding dual values because the second derivative of the dual objective function with respect to any combination of two b_{i} is equal to zero, i.e. interaction effects do not occur. For ill-behaving problems though, an interaction effect may exist for two instruments whose dual values are equal to zero. Furthermore, in regard to Lagrangian dual problems this approach does not work for a wide range of problems such as many mixed integer non-linear programs, where a duality gap exists.

For those cases we suggest a (fractional) factorial experiment. For this experiment we consider each instrument at two levels. The low level refers to the less flexible specification of an instrument. This specification can even represent the lack of the instrument. The high level refers to the more flexible state.

Experimental runs are conducted for different combinations of factor levels to determine the corresponding system response. In our case the experiment is conducted as a series of optimization runs. The minimum total cost of production obtained represents the response that is used to estimate factor effects. If the response is a stochastic variable due to stochastic input data such as an absenteeism rate, for each level combination several runs should be conducted to prevent erroneous conclusions. If the optimization problem is deterministic or the solution of replicated runs is too time-consuming only one response per level combination will be determined.

For the experiment we use the following notation: Let k be the number of factors and for each factor $i=1, \ldots, k$ a low level $(-)$ and a high level $(+)$ are specified.

An one-factor-at-a-time experiment starts with a baseline run where all k factors are at their low level. Then k runs are executed in which the factors one by one are set to their high level while the other $k-1$ factors stick to the low level. The main drawback of an one-factor-at-a-time experiment is that interactions between instruments cannot be captured. To remedy this shortcoming factorial designs can be applied. In full factorial designs runs for every level combination are executed. In fractional factorial designs only a fraction of the complete set of runs is conducted where the runs are systematically
chosen to yield as much information as possible. Full and fractional factorial designs facilitate a multidimensional sensitivity analysis.
As an example we consider an experiment with $k=3$ factors A, B, and C, each at two levels. A full factorial design for these factors is called a $2^{k}=2^{3}$ design that comprises eight runs for a single replicate as depicted in Table 1.
[Table 1 about here.]
The main effect of factor i is defined as the average difference in the response of runs with i at its high level and with i at its low level. When the run label represents the corresponding response value, the effect of factor A, denoted by A, is calculated as follows:

$$
A=\frac{a+a b+a c+a b c}{4}-\frac{(1)+b+c+b c}{4}
$$

If significant interaction occurs the experimenter cannot rely on the main effect as it strongly depends on the level of other factors. To calculate an interaction effect consider factor A and B. Their interaction effect, denoted by $A B$, measures the difference between the effect of A when B is at its high level and the effect of A when B is at its low level. Note that $A B$ also measures the difference between the effect of B when A is at its high level and the effect of B when A is at its low level.

$$
A B=\frac{\frac{(a b c-b c)+(a b-b)}{2}-\frac{(a c-c)+(a-(1))}{2}}{2}=\frac{\frac{(a b c-a c)+(a b-a)}{2}-\frac{(b c-c)+(b-(1))}{2}}{2}
$$

The interaction effect $A B C$ describes the average difference between the interaction effect $A B$ when C is at its high level and the effect $A B$ when C is at its low level. The signs of the responses required to calculate interaction effects are shown in the corresponding columns of Table 1.

The relation between response value y and level combinations $\left(x_{A}, x_{B}, x_{C}\right)$ can also be described by a multiple linear regression model, where $x_{i}=-1$ refers to the low level of factor i and $x_{i}=1$ to the high level of factor i :

$$
y=\beta_{0}+\beta_{1} x_{A}+\beta_{2} x_{B}+\beta_{3} x_{C}+\beta_{4} x_{A} x_{B}+\beta_{5} x_{A} x_{C}+\beta_{6} x_{B} x_{C}+\beta_{7} x_{A} x_{B} x_{C}+\epsilon
$$

For discrete factors x_{i} is restricted to the values 1 and -1 . For continuous factors it is bounded by these values assuming a linear relationship between the factor and the dependent variable y within the boundaries. The β-values have to be estimated from the observations y. β_{0} can best be estimated by the average response of all runs, $\beta_{1}, \ldots, \beta_{7}$ are best estimated by the half of the corresponding effect, e.g. $\beta_{4}=\frac{1}{2} A B$. In case of a stochastic response and replicated runs, ϵ represents the random error, i.e. the residual between the observed response and the response determined by the model. The residuals are also not equal to zero when high order interactions have been excluded from the model. This exclusion is common as interactions of more than two factors are very rare.

To identify significant effects we check if the hypothesis $\beta_{1}=\ldots=\beta_{7}=0$ can be rejected. To accomplish this we use analysis of variance techniques where the total sum of squares, i.e. the total squared deviation of single responses from the mean response value, is partitioned into deviations that derive from effects and random deviations. A
test value is defined by the ratio of the mean sum of squares related to effects to the mean sum of squares related to random error. The test value is compared to a quantile of the F distribution. If the mean deviation caused by an effect exceeds the mean random variability in responses to a certain degree, i.e. if the test value is greater than the quantile of the F distribution it can be concluded that this effect is significant.

As the number of runs required for a full factorial design grows exponentially in the number of factors it may be efficient to use fractional factorial designs. Having outlined our methodology we will apply it to volume flexibility instruments considered for a real life production system in the following section.

5. Case study

Our case study stems from the production system of a major European car manufacturer who assembles cars to fulfil orders and forecasted demand. We consider a paced assembly line with identical unit cycle time at every station. The model of the production system presented below is described in detail by Askar (2008). It is used for aggregate planning, i.e. for simultaneous planning of the workforce level and production volume in every period when demand is known or estimated in advance (cf. Nahmias 2005, pp. 108 et seqq.). Hence, we focus on the value of volume flexibility instruments with respect to predictable changes in demand. Afterwards we outline how the approach can be extended to the case of uncertain demand forecasts.

5.1. Preliminary analysis

To model the assembly process and to select volume flexibility instruments that may decrease production costs we have to identify the parameters that determine the output level and the related costs. Main parameters are the cycle time and the operating time. The latter is related to the workforce size as working time regulations have to be obeyed. We establish mathematical relations between the parameters and the output level on the one hand and between the parameters and the costs on the other hand. Each parameter is constrained by technical conditions or contracts that constitute the degree of volume flexibility (cf. Figure 1).
[Figure 1 about here.]
For the planning horizon of two years our industry partner considered two demand scenarios that reveal typical seasonal patterns of a car market (cf. Figure 2). The management identified five instruments A, \ldots, E promising a cheaper production plan:

A Additional cycle time: Instead of only one unit cycle time, instrument A offers the opportunity to switch to a smaller cycle time, i.e. to a higher production speed.
B Additional shift models: In the inflexible state two 2 -shift models and one 3 -shift model are available. In the flexible state two additional 2 -shift models and two additional 3 -shift models are available offering distinguished operating and working times.
C Allowing more extra hours: Instrument C increases the maximum number of accumulated extra hours from 100 to 200 hours.
D Longer balancing period: In the flexible state the period within which the hours bank has to be balanced is expanded from one year to two years.
E Allowing more temporary workers: The maximum share of temporary workers in the

$$
\text { total workforce is increased from } 10 \% \text { to } 15 \% \text {. }
$$

[Figure 2 about here.]
Instruments A and B enable the car manufacturer to reach more output levels. Implementing both options might be redundant. Instruments C and D allow the firm to choose shift models with high working times for a longer time period without hiring additional workers to facilitate shifts off. Instrument E is supposed to decrease costs in two ways: The substitution effect of the instrument allows to replace some permanent workers by less paid temporary workers, the adaptation effect allows to better adjust workforce size, especially in downturns because permanent workers are usually not laid off.

To assess these five instruments a model is required that determines production costs depending on the availability of the instruments. We present such a model in the next section.

5.2. Optimization model

The notation used in the optimization model is summarised in Table 2. We consider the production of a car on a single model assembly line. The demand for all periods $t \in \mathcal{T}$ is given by D_{t}. The quantity produced in period t is denoted by P_{t}, it may differ from D_{t} to allow for smoothing. However, the cumulated deviation is limited by an upper bound $U B_{t}$ and a lower bound $L B_{t}$ (cf. Constraints (3)). The production volume is limited by the available capacity which depends on the unit cycle time $c t_{t} \in \mathcal{C} \mathcal{T}$ and the operating time $T O_{t, s m_{t}}$ that takes into account calendar information and the shift model $s m_{t} \in \mathcal{S M}$ selected for period t (Constr. (4)). A shift model $s m$ defines which shift groups $S G \in \mathcal{S G}(s m)$ have to work. The set of shift groups comprises the early shift, the late shift, and the night shift. Additionally, a shift model specifies at which days and how many hours a shift group has to work and the required share of floaters, denoted by $S h F_{s m, S G}$, who replace workers during their breaks.

The required workforce level essentially depends on the number of stations necessary to assemble a car. Let $T A_{t}$ denote the assembly time of a representative car, the required net workforce level $W_{t, S G}^{n e t}$ for shift group $S G$ of shift model $s m_{t}$ can be calculated from Constr. (5). Additional workers are required to compensate for workers who are on sick leave and vacation. When the share of absent workers is expressed by $S h A_{t}$, we obtain the total staff demand per period $W_{t}^{t o t a l}$ from Constr. (6). The required number of workers in period t has to be met by permanent staff $W P_{t}$ and temporary staff $W T_{t}$ (Constr. (7)). Let the hirings and dismissals in period t be denoted by $\Delta W P_{t}$ for permanent workers and $\Delta W T_{t}$ for temporary workers. These decision variables allow to formulate flow Constr. (8) to link workforce levels of consecutive periods. For temporary workers the corresponding flow equations hold. Initial values for $t=0$ are known. Due to limited training capacity the number of employments per period must not exceed the level $W C a p_{t}$ (Constr. (9)). The share of temporary workers is limited to ensure a certain quality level and to comply with in-plant agreements reached with the staff association. Let $S h T_{t}$ denote the maximum share of temporary workers. Then Constr. (10) have to hold for every period.

The actual total working time $T W_{t}^{a c t}$ that is performed in period t is calculated from the actual working times of each shift group $S G$, denoted by $T W_{t, S G}^{a c t}$, taking into account the number of workers needed on the shop floor (Constr. (11)). Let $T H_{t}^{\text {contr }}$ be the number of hours a worker is supposed to work per period according to his labor contract or a collective agreement. The total sum of contracted hours $T W_{t}^{\text {contr }}$ in period t is calculated
in consideration of the whole workforce except for those workers who are on vacation or on sick leave (Constr. (12)). In general, the actual working time does not equal the contracted hours. The difference is recorded on an hours bank where overtime and shifts off are averaged over the workforce. The hours bank balance is denoted by $T H B_{t}$. Workers who are laid off at the beginning of period t are paid for their overtime. Consequently, their overtime is cancelled from the hours bank (Constr. (13)). Note that Constr. (13) are non-linear constraints. The recorded extra time must not exceed an upper limit $T H B_{t}^{U L}$ and after a certain period of time the hours bank has to be balanced, i.e. accumulated extra hours have to be compensated for by time off. Reducing overtime can be managed by hiring additional workers that allow shifts off for a part of the workforce. The upper limit as well as the regular balancing can be expressed by Constr. (14).

The costs C_{t} incurred in period t can be partitioned in variable production costs including costs for smoothing, $C_{t}^{\text {prod }}$, wages $C_{t}^{\text {wage }}$, allowances $C_{t}^{\text {allow }}$, e.g. for night and Saturday shifts, costs for compensating for overtime, $C_{t}^{\text {ovti }}$, and costs for changes $C^{\text {change }}$ (Constr. (15)). Apart from variable unit production costs c_{t}^{v} we consider costs for earliness, c_{t}^{e}, and tardiness, c_{t}^{t}, i.e. costs for storing and shortage costs (Constr. (16)). When the wages are calculated we account for wage differences between permanent and temporary workers who earn $W a g e P_{t}$ and $W a g e T_{t}$, respectively (Constr. (17)). To derive the costs for shift allowances we distinguish several shift types $S T \in \mathcal{S} \mathcal{T}\left(s m_{t}\right)$, namely early, late, night, and Saturday early shift. For each shift type $S T$ the actual working hours $T W_{t, S T}$ are determined. Again, we discriminate between permanent and temporary workers. The shift allowances $A P_{S T}$ and $A T_{S T}$ for permanent workers and temporary workers, respectively, depend on the shift type $S T$ (Constr. (18)). If the workforce level is reduced and extra hours were accumulated on the hours bank, the permanent and temporary workers who leave the company receive $W a g e P_{t}^{\text {ovti }}$ and Wage $T_{t}^{\text {ovti }}$, respectively, for every extra hour (Constr. (19)). Finally, we consider costs that arise whenever a variable changes from period to period. These change costs comprise costs for altering the unit cycle time, $C_{t}^{\text {change, } \text { ct }}$, the shift model, $C_{t}^{\text {change }, s m}$, the number of shift groups, $C_{t}^{\text {change }, S G}$, and a change in the workforce level, $C_{t}^{\text {change, } W}$ (Constr. (20)). The decision variables are constrained in Constr. (21). The overall aim stated in the objective function (1) is to minimize the total discounted cost of production, y, for the planning horizon. Denoting the cost of capital by i the discounted costs y are defined in Constr. (2).

Minimize y

subject to

$$
\begin{aligned}
& y=\sum_{t \in \mathcal{T}} C_{t}(1+i)^{-t} \\
& \sum_{\tau=1}^{t} D_{\tau}-L B_{t} \leq \sum_{\tau=1}^{t} P_{\tau} \leq \sum_{\tau=1}^{t} D_{\tau}+U B_{t} \\
& P_{t} \leq \frac{T O_{t, s m_{t}}}{c t_{t}} \\
& W_{t, S G}^{n e t}=\frac{T A_{t}}{c t_{t}}\left(1+S h F_{s m_{t}, S G}\right)
\end{aligned}
$$

$$
t \in \mathcal{T}
$$

$$
t \in \mathcal{T}
$$

$$
S G \in \mathcal{S G}\left(s m_{t}\right),
$$

$$
\begin{equation*}
t \in \mathcal{T} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& W_{t}^{\text {total }}=\sum_{S G \in \mathcal{S G}\left(s m_{t}\right)} \frac{W_{t, S G}^{n e t}}{\left(1-S h A_{t}\right)} \tag{6}\\
& W P_{t}+W T_{t} \geq W_{t}^{\text {total }} \quad t \in \mathcal{T} \tag{7}\\
& W P_{t}=W P_{t-1}+\Delta W P_{t}, \quad W T_{t}=W T_{t-1}+\Delta W T_{t} \quad t \in \mathcal{T} \tag{8}\\
& \Delta W P_{t}^{+}+\Delta W T_{t}^{+} \leq W C a p_{t} \quad t \in \mathcal{T} \tag{9}\\
& W T_{t} \leq W P_{t} \frac{S h T_{t}}{1-S h T_{t}} \quad t \in \mathcal{T} \tag{10}\\
& T W_{t}^{a c t}=\sum_{S G \in \mathcal{S G}\left(s m_{t}\right)} W_{t, S G}^{n e t} T W_{t, S G}^{a c t} \quad t \in \mathcal{T} \tag{11}\\
& T W_{t}^{\text {contr }}=T H_{t}^{\text {contr }}\left(W P_{t}+W T_{t}\right)\left(1-S h A_{t}\right) \quad t \in \mathcal{T} \tag{12}\\
& T H B_{t}=\frac{T W_{t}^{\text {act }}-T W_{t}^{\text {contr }}}{W P_{t}+W T_{t}} \\
& +\frac{T H B_{t-1} \min \left\{W P_{t-1}+W T_{t-1}, W P_{t}+W T_{t}\right\}}{W P_{t}+W T_{t}} \quad t \in \mathcal{T} \tag{13}\\
& T H B_{t} \leq T H B_{t}^{U L} \quad t \in \mathcal{T} \tag{14}\\
& C_{t}=C_{t}^{\text {prod }}+C_{t}^{\text {wage }}+C_{t}^{\text {allow }}+C_{t}^{\text {ooti }}+C_{t}^{\text {change }} \quad t \in \mathcal{T} \tag{15}\\
& C_{t}^{\text {prod }}=c_{t}^{v} P_{t}+c_{t}^{e}\left(\sum_{\tau=1}^{t} P_{\tau}-\sum_{\tau=1}^{t} D_{\tau}\right)^{+}+c_{t}^{t}\left(\sum_{\tau=1}^{t} D_{\tau}-\sum_{\tau=1}^{t} P_{\tau}\right)^{+} \quad t \in \mathcal{T} \tag{16}\\
& C_{t}^{\text {wage }}=\text { Wage }_{t} W P_{t}+\text { Wage }_{t} W T_{t} \quad t \in \mathcal{T} \tag{17}\\
& C_{t}^{\text {allow }}=\sum_{S T \in \mathcal{S T}\left(s m_{t}\right)} T W_{t, S T}^{a c t} W_{t, S G(S T)}^{n e t}\left(\frac{W P_{t} A P_{S T}+W T_{t} A T_{S T}}{W P_{t}+W T_{t}}\right) t \in \mathcal{T} \tag{18}\\
& C_{t}^{\text {ovti }}=T H B_{t-1}^{+}\left[\left(W P_{t-1}-W P_{t}\right)^{+} W a g e P_{t}^{\text {ovti }}\right. \\
& \left.+\left(W T_{t-1}-W T_{t}\right)^{+} \text {Wage }_{t}^{\text {ovti }}\right] \quad t \in \mathcal{T} \tag{19}\\
& C_{t}^{\text {change }}=C_{t}^{\text {change }, \text { ct }}+C_{t}^{\text {change,sm }}+C_{t}^{\text {change }, S G}+C_{t}^{\text {change }, W} \quad t \in \mathcal{T} \tag{20}\\
& s m_{t} \in \mathcal{S M}, \quad c t_{t} \in \mathcal{C T}, \quad \Delta W P_{t} \in \mathbb{Z}, \quad \Delta W T_{t} \in \mathbb{Z} \quad t \in \mathcal{T} \tag{21}
\end{align*}
$$

[Table 2 about here.]
Theorem 5.1: Problem (1)-(21) is NP-hard.
Proof: By restriction we demonstrate that the outlined problem contains a weightconstrained shortest path problem (WCSPP) which is known to be NP-hard (cf. Garey and Johnson 1979, p. 214). Let the states of the production system reachable in every period correspond to the set V of nodes of a directed graph $G(V, A, l, w)$. The states are characterized by the components $s m_{t}, c t_{t}, W P_{t}$, and $W T_{t}$ with $t \in \mathcal{T}=\{1, \ldots, T\}$.

Additionally, V contains a single source node s associated to $t=0$. Arcs $a \in A$ connect nodes of period t with nodes of period $t+1$ for $t=0, \ldots, T-1$. Hence, the graph is free of cycles. The arcs are associated with lengths l and weights w. The lengths l correspond to costs for wages, allowances etc. The weights w correspond to the change in accumulated overtime between any two states and can be negative. Let $T H B^{U L}$ be a constant upper bound on the total weight. Finding a feasible production plan with minimum total costs for our problem requires to determine a shortest path from s to each of the nodes reachable in period T with a total weight not greater than $T H B^{U L}$ in every period.

Hassin (1992) stated pseudo-polynomial algorithms based on dynamic programming to solve the WCSPP. To solve our problem we apply the dynamic programming approach described by Askar (2008) where the time periods t are associated with the stages. The state space is constituted by the variables $s m_{t}, c t_{t}, W P_{t}, W T_{t}$ and augmented by additional state variables $T H B_{t}$ and $\sum_{\tau=1}^{t}\left(P_{\tau}-D_{\tau}\right)$ required to record the accumulated overtime and the accumulated deviation of production from demand (cf. Bertsekas 2000, pp. 34 et seqq.). Further state variables assure that a certain number of periods elapses between consecutive changes of shift models and cycle times. The algorithm is not exact because discretization is used to reduce the number of states and decisions: The workforce level is discretized, for recorded extra hours and for the cumulated deviation of production from demand intervals are distinguished. The step size of discretization determines the trade-off between solution quality and solution time. Since our problem has not to be solved weekly a 'near-exact' algorithm that emphasizes solution quality seems suitable.

5.3. Design-of-Experiments analysis

With the experimental designs outlined in Section 4 we investigate the five instruments deemed suitable for the car manufacturer. Table 3 summarizes the characteristics of the instruments.
[Table 3 about here.]
For the full factorial design $2^{5}=32$ runs had to be conducted for each demand scenario. The design and the results of the runs for scenario 1 are depicted in Table 4.
[Table 4 about here.]
Since we consider a deterministic case a single replicate of the runs is exhaustive. However, a single replicate does not provide a random error which is required for an analysis of variance. To circumvent this problem, effects of high-order interactions can be pooled as an estimate of error because main effects and low-order interactions usually have a dominant impact on a system response. Table 5 shows the analysis of variance for a model that only accounts for main effects and 2 -factor interactions. The analysis indicates that the main effects A, B, D, and E as well as the interactions $A B$ and $B D$ are significant, while instrument C does not exhibit an effect on costs.
[Table 5 about here.]
Though, adopting this approach runs the risk of missing significant high-order interactions. Therefore, in the first step of our analysis we use a normal probability plot to
graphically identify the major effects. ${ }^{1}$ For this plot effects are ordered according to magnitude. Then each effect is plotted against its cumulative percentage. Negligible effects are supposed to be normally distributed with mean zero. Hence, they will fall along a straight line in the plot, whereas important effects have non-zero means and stand out from the straight line. Figure 3 depicts the normal probability plot for scenario 1 that does not exhibit significant high-order interactions.
[Figure 3 about here.]
In the next step the important effects $A, B, D, E, A B$, and $B D$ that stand out from the straight line in Figure 3 are considered in the regression model whereas negligible ones are pooled as an estimate of error. The estimated coefficients of the important effects are stated in Table 6.
[Table 6 about here.]
The factors A, B, D and E for themselves and interaction $B D$ decrease costs, their coefficient estimate is negative. Interaction $A B$ exhibits a small positive coefficient estimate as it marginally increases costs. The largest savings by far can be realized when instrument B, an additional cycle time, is available. On average, exploiting this option yields a saving of 7.2 million $€$ (twice the coefficient estimate). Dominant interaction effects would favor different levels for the corresponding factors. However, interactions do not play a major role here. The joint availability of instruments A and B exhibits low redundancy. Altogether factors A and B decrease costs. Hence, the high level can be chosen for both factors. Interaction effect $B D$ is also small: Cycle time changes are slightly supported by a longer balancing period as higher production speed allows the use of a 2 -shift model with long working hours instead of a 3-shift model with less working time for an individual worker. Similar results are obtained for demand scenario 2 . In both cases instruments B, E, and A facilitate large cost savings. If more than one scenario for future demand is likely decision makers can for example weight the results of each scenario or apply a minimax decision rule to minimize the maximum possible cost given a negotiation strategy or a budget for investing in additional flexibility instruments.

6. Extension to uncertain demand forecasts

So far, we have assumed for each scenario that the corresponding demand is known. However, for a long planning horizon demand is usually a random variable and uncertainty about demand is increasing in time. Hence demand forecasts are prone to errors. A manufacturing firm may not revise its production schedule each day where production deviates from demand. Yet, when a forecast is updated the production plan can be adjusted to new information using volume flexibility instruments. The quality of this adjustment depends on the available instruments and on their features. If the option to change the cycle time is available this option offers more flexibility in case the cycle time can be changed at short notice than if prior notice has to be given well in advance.

To value volume flexibility instruments in such a setting our approach can be adapted as follows. An experimental run for a combination of factor levels can be conducted as a simulation run into which the optimization procedure of Section 5.2 is embedded. The

[^2]simulation starts with a production plan that results from an optimization subject to the initial demand forecast. We randomly determine the number of forecast updates $N<|\mathcal{T}|$ and the periods $t_{n}^{f u}, n=1,2, \ldots, N$, where a forecast update is obtained. For each period $t_{n}^{f u}$ a reoptimization is executed taking into account that some variables are fixed for a certain number of subsequent periods since notice has to be given in advance. The revised production plan is executed until period $t_{n+1}^{f u}$. For each simulation run the total costs including costs for deviation of production volumes from the forecasted demand values are recorded as the response value y. Replicates for each level combination are easily obtained as stochastic simulation is used. Utilising the same random seed for each level combination and classifying stochastic forecast values as a random error, design analysis is straight forward.

Since we consider instruments that are used on a tactical planning level we propose to evaluate instruments with respect to demand forecast changes. However, short-term volume flexibility should be measured with respect to changes in actual demand.

7. Summary

In this work we put forward arguments why volume flexibility is of great advantage for many firms which are confronted with demand variability. Manager must select volume flexibility instruments for implementation which accrues costs because investments in technical equipment or compromises with unions are required. To support their decisions we propose a three-step method to value flexibility instruments. The method is based on a preliminary analysis and an optimization model of the considered production system and applies design-of-experiments techniques to identify the most useful instruments in an efficient way. A full or fractional factorial design allows to perceive interaction effects between instruments that may render a joint implementation of instruments either very valuable or redundant.

In a case study we applied the method to an assembly line of a major European car manufacturer. We assumed that demand changes were known in advance. Out of five instruments we found one very valuable instrument and one of no value. Furthermore, serious interactions did not occur in that case. We repeated the analysis for a slight variation of demand. The results were robust to this second demand scenario that represented another likely future market development.

Our method is also suited for unexpected changes in demand that can be integrated into our approach by simulation in combination with reoptimization (rescheduling). A stochastic input would provide replicates for each factor level combination and would favor fractional over full factorial designs. Comparing the relative value of a volume flexibility instrument for different firms would be an avenue for future research because our work suggests that the relative value is strongly related to firm specific parameters.

Acknowledgements

The authors are grateful to two anonymous referees for their helpful comments and suggestions.

References

Askar, G., 2008. Optimierte Flexibilitätsnutzung in Automobilwerken. Thesis (PhD). Clausthal University of Technology, Aachen: Shaker.
Askar, G., et al., 2007. Flexibility planning in automotive plants. In: H.O. Günther, D.C. Mattfeld and L. Suhl, eds. Management logistischer Netzwerke. Heidelberg: Physica, 235-255.
Azzone, G. and Bertele, U., 1987. Comparing manufacturing systems with different flexibility: A new approach. In: Proceedings, Boston, 690-693.
Barad, M. and Even Sapir, D., 2003. Flexibility in logistic systems - modeling and performance evaluation. International Journal of Production Economics, 85 (2), 155170.

Baykasoğlu, A., 2009. Quantifying machine flexibility. International Journal of Production Research, 47 (15), 4109-4123.
Bell, G.H., Ledolter, J., and Swersey, A.J., 2009. A Placket-Burmann experiment to increase supermarket sales of a national magazine. Interfaces, 39 (2), 145-158.
Bertsekas, D.P., 2000. Dynamic programming and optimal control Vol. I. 2nd ed. Belmont, Massachusetts: Athena Scientific.
Box, G.E.P., Hunter, W.G., and Hunter, J.S., 2005. Statistics for experimenters: design, innovation, and discovery. 2nd ed. Hoboken, New Jersey: John Whiley and Sons.
Browne, J., et al., 1984. Classification of flexible manufacturing systems. The FMS Magazine, 2 (2), 114-117.
de Groote, X., 1994. The flexibility of production processes: A general framework. Management Science, 40 (7), 933-945.
De Toni, A. and Tonchia, S., 1998. Manufacturing flexibility: A literature review. International Journal of Production Research, 36 (6), 1587-1617.
de Treville, S., Bendahan, S., and Vanderhaeghe, A., 2007. Manufacturing flexibility and performance: bridging the gap between theory and practice. International Journal of Flexible Manufacturing Systems, 19 (4), 334-357.
Eversheim, W. and Schaefer, F.W., 1980. Planung des Flexibilitätsbedarfs von Industrieunternehmen. Die Betriebswirtschaft (DBW), 40 (2), 229-248.
Faißt, J., 1992. Instrumente des Arbeitszeitmanagements. In: C. Schneeweiß, ed. Kapazitätsorientiertes Arbeitszeitmanagement. Heidelberg: Physica, 41-59.
Feitzinger, E. and Lee, H.L., 1997. Mass customization at Hewlett-Packard: The power of postponement. Harvard Business Review, 75 (1), 116-121.
Garey, M.R. and Johnson, D.S., 1979. Computers and intractability - A guide to the theory of NP-completeness. New York: Freeman.
Gerwin, D., 1987. An agenda for research on the flexibility of manufacturing processes. International Journal of Operations \& Production Management, 7 (1), 38-49.
Gerwin, D., 1993. Manufacturing flexibility: A strategic perspective. Management Science, 39 (4), 395-410.
Gottschalk, L., Iliev, N., and Günther, S., 2004. Manufacturing flexibility - A concept for visualization and analysis of adaptation strategies in manufacturing. In: Proceedings of the Global Project and Manufacturing Management Symposium, Siegen, Germany, May, 181-194.
Gupta, D., 1993. On measurement and valuation of manufacturing flexibility. International Journal of Production Research, 31 (12), 2947-2958.
Gupta, Y.P. and Goyal, S., 1989. Flexibility of manufacturing systems: Concepts and measurements. European Journal of Operational Research, 43 (2), 119-135.

Hassin, R., 1992. Approximation schemes for the restricted shortest path problem. Mathematics of Operations Research, 17 (1), 36-42.
Holweg, M. and Pil, F.K., 2001. Succesful build-to-order strategies start with the customer. MIT Sloan Management Review, 43 (1), 74-83.
Jack, E.P. and Raturi, A., 2002. Sources of volume flexibility and their impact on performance. Journal of Operations Management, 20 (5), 519-548.
Kaluza, B. and Blecker, T., 2005. Flexibilität - State of the Art und Entwicklungstrends. In: B. Kaluza and T. Blecker, eds. Erfolgsfaktor Flexibilität: Strategien und Konzepte für wandlungsfähige Unternehmen. Berlin: Erich Schmidt, 1-25.
Khouja, M., 1998. An aggregate production planning framework for the evaluation of volume flexibility. Production Planning \& Control, 9 (2), 127-137.
Kleppmann, W., 2006. Taschenbuch Versuchsplanung: Produkte und Prozesse optimieren. 4th ed. München: Carl Hanser.
Koste, L.L. and Malhotra, M.K., 1999. A theoretical framework for analyzing the dimensions of manufacturing flexibility. Journal of Operations Management, 18 (1), 75-93.
Kulatilaka, N., 1988. Valuing the flexibility of flexible manufacturing systems. IEEE Transactions on engineering management, 35 (4), 250-257.
Kulatilaka, N. and Marks, S.G., 1988. The strategic value of flexibility: Reducing the ability to compromise. The American Economic Review, 78 (3), 574-580.
Lehndorf, S., 2001. Fabriken mit langem Atem - Der Wandel der betrieblichen Arbeitszeitorganisation in der europäischen Automobilindustrie. WSI-Mitteilungen, (6), 373383.

Montgomery, D.C., 2005. Design and analysis of experiments. 6th ed. Hoboken, New Jersey: John Whiley and Sons.
Nahmias, S., 2005. Production and operations analysis. New York: McGraw-Hill/Irwin.
Olivella, J., Corominas, A., and Pastor, R., 2010. An entropy-based measurement of working time flexibility. European Journal of Operational Research, 200 (1), 253-260.
Ozaki, M., ed. , 1999. Negotiating flexibility: The role of the social partners and the State. Genf: International Labour Organization.
Salvador, F., et al., 2007. Mix flexibility and volume flexibility in a build-to-order environment - synergies and trade-offs. International Journal of Operations \& Production Management, 27 (11), 1173-1191.
Sethi, A.K. and Sethi, S.P., 1990. Flexibility in manufacturing: A survey. The International Journal of Flexible Manufacturing Systems, 2 (4), 289-328.
Sharma, A. and LaPlaca, P., 2005. Marketing in the emerging era of build-to-order manufacturing. Industrial Marketing Management, 34 (5), 476-486.
Simon, H.A., 1977. The new science of management decision. revised Englewood Cliffs, New Jersey: Prentice-Hall.
Slack, N., 1987. The flexibility of manufacturing systems. International Journal of Operations \& Production Management, 7 (4), 35-45.
Son, Y.K. and Park, C.S., 1987. Economic measure of productivity, quality and flexibility in advanced manufacturing systems. Journal of Manufacturing Systems, 6 (3), 193207.

Stigler, G., 1939. Production and distribution in the short run. The Journal of Political Economy, 47 (3), 305-327.
Suarez, F.F., Cusumano, M.A., and Fine, C.H., 1996. An empirical study of manufacturing flexibility in printed circuit board assembly. Operations Research, 44 (1), 223-240.
Upton, D.M., 1995. Flexibility as process mobility: The management of plant capabilities for quick response manufacturing. Journal of Operations Management, 12 (3-4), 205-
224.
van Deelen, H., 1989. Arbeitszeitmodelle bei der BMW AG. In: H.J. Warnecke and H.J. Bullinger, eds. Flexibilisierung der Arbeitszeiten in Produktionsbetrieben. Berlin: Springer, 182-200.
Wild, B., 1995. Die Flexibilität von Betriebsvereinbarungen zur Arbeitszeit. Thesis (PhD). University of Mannheim, Heidelberg: Physica.

Table 1. Design of a 2^{3} full factorial experiment with columns showing signs to calculate main and interaction effects

Run	Label/ Response	Factor/main effect			2-factor interaction			$\frac{3 \text {-factor interaction }}{A B C}$
		A	B	C	$A B$	$A C$	$B C$	
1	(1)	-	-	-	$+$	+	$+$	-
2	a	+	-	-	-	-	+	+
3	b	-	+	-	-	+	-	+
4	$a b$	+	+	-	+	-	-	-
5	c	-	-	+	+	-	-	-
6	$a c$	$+$	-	+	-	+	-	-
7	$b c$	-	$+$	$+$	-	-	+	+
8	$a b c$	$+$	$+$	$+$	+	+	+	+

Table 2. Glossary of symbols (alphabetically ordered in each subsection)

Symbol	Meaning	Symbol	Meaning
Sets (index in brackets)			
$\mathcal{C T}$, (ct)	Cycle times	$\mathcal{S T},(S T)$	Shift types
$\mathcal{S G},(S G)$	Shift groups	$\mathcal{T},(t)$	Periods
$\mathcal{S M},(s m)$	Shift models		
Parameters			
$A P_{S T}$	Shift allowance for perm. workers	ShT ${ }_{t}$	Maximum share of temp. workers
$A T_{S T}$	Shift allowance for temp. workers	$T A_{t}$	Assembly time per car
D_{t}	Demand	$T H_{t}^{\text {contr }}$	Contracted hours per worker
i	Cost of capital	$T O_{t, s m}$	Operating time
$L_{\text {L }}$	Limit for cumulated shortfall	$U B_{t}$	Limit on cumulated overproduction
P_{t}	Production volume	Wage ${ }_{t}^{\text {ovti }}$	Overtime pay of a perm. worker
ShAt	Share of absent workers	Wage $T_{t}^{\text {ovti }}$	Overtime pay of a temp. worker
ShF sm, $^{\text {, }}$ G	Share of required floaters	WCapt	Capacity for training new workers
Auxiliary variables			
c_{t}^{e}	Unit earliness cost	THB ${ }_{\text {t }}$	Hours bank balance
c_{t}^{t}	Unit tardiness cost	$T H B_{t}^{U L}$	Limit on the hours bank balance
c_{t}^{v}	Variable unit production cost	$T W_{t}^{\text {act }}$	Actual total working time
C_{t}	Total period costs	$T W_{t, S G}^{a c t}$	Actual working time of a shift group
$C_{t}^{\text {allow }}$	Total period costs for allowances	$T W_{t, S T}^{\text {act }}$	Actual working time of a shift type
$C_{t}^{\text {change }}$	Total period costs for changes	$T W_{t}^{\text {contr }}$	Total number of contracted hours
	Costs for change in cycle time	$W_{t, S G}^{\text {net }}$	Required net workforce
$C_{t}^{\text {change, }, S G}$	Costs for change of shift groups	$W_{t}^{\text {total }}$	Required total workforce
	Costs for changing the shift model	Wage ${ }_{t}$	Wage for a perm. worker
$C_{t}^{\text {change, }, W}$	Costs for change in workforce size	Wage_{t}	Wage for a temp. worker
$C_{t}^{\text {ooti }}$	Total period costs for overtime	$W P_{t}$	Number of perm. workers
$C_{t}^{\text {prod }}$	Total period costs of production	$W T_{t}$	Number of temp. workers
$C_{t}^{\text {wage }}$	Total period costs for wages	y	Total discounted cost
Decision variables			
c_{t}	Cycle time	$\Delta W T_{t}$	Change in temp. workforce size
$\Delta W P_{t}$	Change in perm. workforce size	$s m_{t}$	Shift model

Table 3. Selected instruments for the analysis

Instrument	Description	Inflexible state (-)	Flexible state (+)
A	Number of shift models	two 2-shift models,	four 2-shift models
B	one 3-shift model	three 3-shift models	
C	Number of cycle times	one	two
D	Upper limit on the maximum	100 hours	200 hours
E	Length of accumulated extra hours of the hours bank period	one year	two years
Maximum share of temporary workers	10%	15%	

Table 5. Analysis of variance for scenario 1 (high-order interactions pooled as an estimate of error)

		Degrees of freedom	Mean square	F-value	p-value
Source of variation	Sum of sqares				
A^{*} : Shift models	$43.008 E+12$	1	$43.008 E+12$	287.60	$<\mathbf{0 . 0 0 0 1}$
$B^{*}:$ Cycle times	$409.307 E+12$	1	$409.307 E+12$	2737.13	$<\mathbf{0 . 0 0 0 1}$
C : Extra hours	$0.199 E+12$	1	$0.199 E+12$	1.34	0.2660
$D^{*}:$ Balancing period	$6.525 E+12$	1	$6.525 E+12$	43.63	$<\mathbf{0 . 0 0 0 1}$
E^{*} : Temporary workers	$99.176 E+12$	1	$99.176 E+12$	663.21	$<\mathbf{0 . 0 0 0 1}$
$A B^{*}$	$3.658 E+12$	1	$3.658 E+12$	24.46	$\mathbf{0 . 0 0 0 1}$
$A C$	$0.154 E+12$	1	$0.154 E+12$	1.03	0.3257
$A D$	$0.066 E+12$	1	$0.066 E+12$	0.44	0.5148
$A E$	$0.018 E+12$	1	$0.018 E+12$	0.12	0.7354
$B C$	$0.009 E+12$	1	$0.009 E+12$	0.06	0.8124
$B D^{*}$	$2.055 E+12$	1	$2.055 E+12$	13.74	$\mathbf{0 . 0 0 1 9}$
$B E$	$0.091 E+12$	1	$0.091 E+12$	0.61	0.4457
$C D$	$0.199 E+12$	1	$0.199 E+12$	1.33	0.2660
$C E$	$0.172 E+12$	1	$0.172 E+12$	1.15	0.2991
$D E$	$0.227 E+12$	1	$0.227 E+12$	1.52	0.2361
Residual (error)	$2.393 E+12$	16	$0.150 E+12$		
Total	$567.255 E+12$	31			

Table 6. Regression analysis for the important effects

Effect	Coefficient estimate	Standard error	t-value	p-value
Average response	$153,684,863$	66,396	2314.65	$<\mathbf{0 . 0 0 1}$
A: Shift models	$-1,159,308$	66,396	-17.46	$<\mathbf{0 . 0 0 1}$
$B:$ Cycle times	$-3,576,429$	66,396	-53.86	$<\mathbf{0 . 0 0 1}$
$D:$ Balancing period	$-451,543$	66,396	-6.80	$<\mathbf{0 . 0 0 1}$
$E:$ Temporary workers	$-1,760,472$	66,396	-26.51	$<\mathbf{0 . 0 0 1}$
$A B$	338,120	66,396	5.09	$<\mathbf{0 . 0 0 1}$
$B D$	$-253,389$	66,396	-3.82	$\mathbf{0 . 0 0 1}$
$R^{2}=99.38 \%$, adjusted $R^{2}=99.23 \%$, bold p-value indicates significance at a level of $\alpha=5 \%$				

Figure 1. Objects of the preliminary analysis

Figure 2. Investigated demand scenarios (solid line: scenario 1, dotted line: scenario 2)

Figure 3. Normal probability plot of the effects for the full factorial design

Evaluating volume flexibility instruments by design-of-experiments methods

List of Figures

Figure Caption

Figure 1. Objects of the preliminary analysis
Figure 2. Investigated demand scenarios (solid line: scenario 1, dotted line: scenario 2)
Figure 3. Normal probability plot of the effects for the full factorial design

[^0]: *Corresponding author. Email: matthias.walter@tu-clausthal.de

[^1]: ${ }^{1}$ A noteworthy aspect of the qualitative empiric research of Salvador et al. (2007) is that the authors reveal side effects of steps intended to increase only mix or only volume flexibility. Those side effects can be conflicting or synergistic, i.e. promote one type of flexibility at the expense of the other or support both types.

[^2]: ${ }^{1}$ Half-normal plots can also be used for this purpose and are recommended (cf. Montgomery 2005, p. 227). For reasons of demonstration we choose a normal plot.

