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Abstract

This paper concerns the nonsmooth dynamics of planar mechanical systems with
isolated contact in the presence of Coulomb friction. Following Stronge [38], a set
of closed-form analytic formulae is derived for a rigid-body impact law based on an
energetic coefficient of restitution and a resolution of the impact phase into distinct
segments of relative slip and stick. Thus, the impact behavior is consistent both with
the assumption of Coulomb friction and with the dissipative nature of impacts. The
analysis highlights the presence of boundaries between open regions of initial con-
ditions and parameter values corresponding to distinct forms of the impact law and
investigates the smoothness properties of the impact law across these boundaries.
It is shown how discontinuities in the impact law are associated with discontinuity-
induced bifurcations of periodic trajectories, including nonsmooth folds and per-
sistence scenarios. Numerical analysis of an example mechanical model is used to
illustrate and validate the conclusions.

Key words: rigid body mechanics, Coulomb friction, impact, nonsmooth,
bifurcation, discontinuities

1 Introduction

There has been much interest in using nonlinear dynamical systems theory to
understand the complex behavior of rigid body mechanics in the presence of
nonsmooth effects such as dry friction and impact (e.g., [4,25,28,34,38] and
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references therein). One difficulty is that the so-called geometric theory of
dynamical systems [17,22] typically assumes that the dynamics in question is
sufficiently smooth, whereas phenomena such as chattering of impacting sys-
tems [5,30] and stick-slip vibrations in the presence of Coulomb friction [35] are
fundamental consequences of nonsmoothness. For nonsmooth mechanical sys-
tems, even basic questions like existence and uniqueness of solutions to model
equations remains an area of active research, and various different formalisms
exist, such as sliding modes [14], complementarity [18,37], hybrid systems [36]
and differential inclusions [27].

The idea that interaction with discontinuities in a dynamical system can cause
qualitative changes in the dynamics has been known for some time, see for ex-
ample the pioneering work or Feigin [13]. Recently, the present authors and
their collaborators have introduced the notion of a discontinuity-induced bi-
furcation as a useful paradigm for explaining dynamical phenomena that are
unique to nonsmooth systems. In the context of the dynamics of systems
undergoing frictionless impact, Nordmark [29] (see also [15]) introduced the
notion of a discontinuity map that is able to analytically account for the
correction to the smooth dynamics induced by a grazing incidence with a dis-
continuity surface, for which he was able to show the onset of period-adding
sequences and chaotic dynamics. Later Dankowicz & Nordmark [6] (see also
[8]) generalized the concept to piecewise-smooth continuous models with appli-
cation to models of dry friction with additional intrinsic degrees of freedom.
Di Bernardo et al. [12] further derived discontinuity maps for bifurcations
unique to discontinuous dynamics that can undergo so-called sliding motion
(equivalent to relative stick in the present context of dry friction). Such sliding
bifurcations have been shown to underlie the onset of stick-slip oscillations in
a variety of models containing dry friction; see Merillas et al. [26] for the most
comprehensive results to date. These techniques have also been incorporated
into numerical software for simulation and parameter continuation [20,33,41].
A comprehensive theory is therefore emerging, as has been summarized in
the recent book [9] and review [10], and includes application to models that
include both impact and friction, see e.g. [7,40,43].

So far, the case of impacts that involve friction has not been systematically
analyzed in the context of discontinuity-induced bifurcation. Note however
the work by Leine et al. [24], who studied a variant of the classical Painlevé
example [31] of a falling rod, albeit with zero coefficient of restitution. There
it was shown that passage into the region in which the classical Painlevé
paradox applies is associated with bifurcations of branches of equilibria and
periodic orbits. Also, Lancioni et al. [23] considered simulations of a similar
model (which is also closely related to the example introduced in Sec. 2.3 below
although with a rather different form of impact law) with a nonzero coefficient
of restitution. They found periodic and chaotic motion with intervals of stick
and chatter-type motion.
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In contrast, the present paper concerns itself in generality with bifurcations
of system behavior involving phases of sustained free flight, interrupted by
isolated collisional contact events, for which the associated impact laws are
piecewise-smooth functions of system parameters and the system state at
the onset of contact. Following the approach adopted by Stronge [38] (see
also Batlle [1,2] and references therein) in the presence of dry friction, such
piecewise-defined impact laws are shown to result from a decomposition of
the impact phase into distinct segments of slip and stick motion. Here, the
termination of the impact phase is given in terms of the energetic coefficient of
restitution [38]. Unlike impact laws based on kinematic or kinetic coefficients
of restitution, this approach is guaranteed to lead to dissipative collisions in
all cases (see the discussion in Sec. 6 below for more details).

The key point of the paper is that discontinuity-induced bifurcations can oc-
cur due to the inherent nonsmoothness of the impact law across well-defined
boundaries associated with changes in the sequence of stick and slip segments
during the impact phase. As shown in Sec. 5, such changes result in at-most
piecewise-smooth Poincaré mappings on neighborhoods of degenerate periodic
trajectories. Specifically, mappings with a discontinuity in the first derivative
are known to be associated with a catastrophic loss of stable motion and sud-
den jumps between different kinds of attractor, see [9,10,13] and Figs. 6 and7
below.

The paper is organized as follows. Section 2 reviews the Lagrangian framework
for impulsive contact at isolated points on a rigid-body mechanism and illus-
trates the formalism for an example system. A collection of impact mappings
relating incoming and outgoing relative velocities are derived in Sec. 3. Bound-
aries between open regions of initial conditions and parameter values corre-
sponding to distinct forms of the impact mappings are enumerated in Sec. 4
as are the smoothness properties of the corresponding impact law across these
boundaries. Section 5 goes on to study the different kinds of discontinuity-
induced bifurcations that arise from the various degrees of nonsmoothness in
the impact law, and to provide support for these conclusions using numerical
analysis of the example mechanism. The paper ends with a discussion that
puts the results into the context of previous work and provides an outlook to
subsequent work.
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2 Mechanical model

2.1 A Lagrangian formulation

Consider a multibody mechanism whose configuration relative to an inertial
reference frame may be described in terms of a column matrix q of general-
ized coordinates and (possibly) the time coordinate t. Its dynamics are then
governed by Lagrange’s equations

d

dt
(∂q̇T )− ∂qT = F, (1)

where the components of the row matrices ∂qT and ∂q̇T are the partial deriva-
tives of the kinetic energy T with respect to the generalized coordinates and
the generalized velocities, respectively, and where F denotes a row matrix of
generalized forces.

Suppose that contact occurs between a point P on the multibody mechanism
and a rigid element in its environment. Throughout the duration of contact,
let F = Fc + Fa, where Fc represents the generalized forces associated with
contact interactions and Fa represents all other generalized forces acting on
the mechanism. Denote by x (q, t) the transformation from the generalized
coordinates to the column matrix of Cartesian coordinates of the point P
relative to the inertial reference frame. It follows that

Fc = λ · ∂qx (2)

for some row matrix λ.

There exists a positive definite, symmetric matrix M , whose entries are func-
tions of q and t, such that

T =
1

2
q̇T ·M · q̇ + . . . ,

where the omitted terms are at most linear in the column matrix of generalized
velocities q̇. From (1) and (2) it follows that

q̈ = M−1 · (∂qx)T · λT + . . . , (3)

where the omitted terms are independent of λ and are a function of Fa, q, q̇,
and t only. Finally, denote by v = ∂qx · q̇ + ∂tx the velocity of the point P
relative to the inertial frame. In terms of the symmetric matrix

m−1 = ∂qx ·M−1 · (∂qx)T , (4)
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it then follows that

v̇ = m−1 · λT + . . . , (5)

where the omitted terms are independent of λ and are a function of Fa, q, q̇,
and t only.

In the case of motion constrained to a plane,

∂qx =

⎛
⎜⎝ cT

cN

⎞
⎟⎠ , v =

⎛
⎜⎝ vT

vN

⎞
⎟⎠ , λ = (λT , λN) ,

where the subscripts T and N refer to components tangential and normal to
the common tangent direction at P , respectively. Suppose that ∂qx has full
row rank (which would not be the case for the model considered in [23,24] at
points where φ = ±π/2). From (4) it follows that

m−1 =

⎛
⎜⎝ A B

B C

⎞
⎟⎠

is positive definite, i.e., that

A > 0, C > 0, AC −B2 > 0. (6)

The formulation (1), (2) allows for several different modes of sustained motion
on open non-zero intervals of time. Let xN be a coordinate representing the
normal distance between P and the rigid element, such that sustained free
motion (with λ = 0) occurs whenever xN > 0 for such a time interval. Assume
that normal contact interactions acting at P are compressive, i.e., that λN ≥ 0
and that λN = 0 when there is no contact at P . Furthermore, suppose that
the simple Amonton-Coulomb friction law

|λT | ≤ μλN (7)

applies at P for some non-negative physical constant μ, representing a coeffi-
cient of friction. Sustained contact then occurs on intervals for which xN ≡ 0
and λN > 0. In particular, we distinguish between sustained stick where, in
addition to (7), the relative velocity between P and the instantaneous point
of contact on the rigid element vanishes; and sustained slip, where equality
occurs in (7). This work shall not consider the dynamics of sustained contact,
but shall instead treat impulsive contact, or impact, which occurs at isolated
points of time separating open intervals of free flight.
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2.2 Impulsive contact

Suppose that contact is initiated between P and a point P ′ on the rigid ele-
ment at some time t0, such that xN,0 = 0 and vN,0 < 0, where the subscript 0

represents evaluation at t = t0. By the standard impact approximation, sup-
pose that there exists an O (ε) interval of time following t0 for some ε � 1,
referred to below as the impact phase, during which i) the rigidity constraint
is only approximately satisfied, ii) Fa, ελ, q̇ = O (1), and iii) the position and
velocity of P ′ relative to the inertial frame change by O (ε). Let t − t0 = εt̃
and ελ = λ̃. It follows from (3) and (5) that

dq̇

dt̃
=

(
M−1

)
0
· (∂qx)T

0 · λ̃T +O (ε) (8)

and
dv

dt̃
=

(
m−1

)
0
· λ̃T +O (ε) , (9)

where, without loss of generality, v can be taken to represent the relative
velocity between P and P ′ during the impact phase.

Neglecting O (ε) terms, it follows from (8) and (9) that

Δq̇ =
(
M−1

)
0
· (∂qx)T

0 ·m0 ·Δv (10)

is the total change in the generalized velocities during the impact phase. In
what follows, we shall refer to a relationship that yields v0 �→ v0 + Δv as an
impact mapping and to (q0, q̇0) �→ (q0, q̇0 + Δq̇) as the resultant impact law.

During the impact phase, the normal impulse p is a monotonically increasing
O (1) function of t̃, since p (t0) = 0 and dp/dt̃ = λ̃N > 0. If we replace t̃ by p as
independent variable, drop tildes, and neglect O (ε) terms, we finally obtain

dv

dp
=

1

λN

(
m−1

)
0
· λT (11)

(cf. [2,19,38]) for the rate of change of the relative velocity as a function of
the normal impulse during the impact phase.

2.3 A model example

The theory in this paper shall be applied to an example system that is a
generalisation of the model problem studied by Leine et al. [24] and Lancioni
et al. [23] and is related to the original Painlevé problem [31] of a rod falling
on a hard surface.
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Consider the planar motion of a homogeneous rod of unit mass and twice unit
length in the presence of a unilateral constraint corresponding to the non-
penetrability of a half-plane that is stationary relative to an inertial reference
frame. Denote by P1 and P2 the two end points of the rod and restrict attention
to the case of possible contact of P1 with the straight-line boundary of the
stationary half-plane (cf. Fig. 1).

P1

P2

¸N

¸T

X

Y

Sx

Sy

R
μ

(x; y)

Fig. 1. Sketch of the model example.

Let x = q1 and y = q2 be the Cartesian coordinates of P1 relative to the
coordinate axes shown in Fig. 1. Moreover, let θ = q3 denote the counter-
clockwise angle of rotation required to align the rod with the X axis, with P2

to the left of P1. It follows that

T =
ẋ2

2
+

ẏ2

2
+ (ẋ sin θ + ẏ cos θ) θ̇ +

2

3
θ̇2,

cT = (1, 0, 0), and cN = (0, 1, 0). Let Sx and Sy be the components along the
X and Y axes of the net external force (excluding contact forces) acting on
the rod. Similarly, let R denote the net external torque (excluding contact
forces) acting about the center of mass of the rod, such that

Fa = (Sx, Sy, R + Sx sin θ + Sy cos θ) .

It follows that the equations of motion become

ẍ = Sx − 3R sin θ − θ̇2 cos θ +
(
1 + 3 sin2 θ

)
λT + 3 sin θ cos θλN

ÿ = Sy − 3R cos θ + θ̇2 sin θ + 3 sin θ cos θλT +
(
1 + 3 cos2 θ

)
λN

θ̈ = 3R− 3 cos θλN − 3 sin θλT .

Moreover, in the notation of (6)

A = 1 + 3 sin2 θ, B = 3 sin θ cos θ, C = 1 + 3 cos2 θ. (12)

7
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3 The impact phase

3.1 An energetic impact law

Consider the equations (11) written in terms of tangential and normal com-
ponents

dvT

dp
= A

λT

λN
+ B,

dvN

dp
= B

λT

λN
+ C, (13)

where we have dropped the 0 subscript on A, B, and C for notational conve-
nience. The assumption of the Amonton-Coulomb-type model of dry friction
enables us to distinguish between three modes of impulsive contact motion:
positive slip for which

vT > 0 and λT = −μλN ,

negative slip for which

vT < 0 and λT = μλN ,

and stick for which

vT = v̇T = 0 and |λT | ≤ μλN .

In particular, it follows from (13) that stick motion is persistent with

λT = −B

A
λN

provided that

|B| − μA ≤ 0.

Indeed, in this case, vT = 0 is stable against perturbations in initial conditions.

Given these three conditions, the dynamics of (13) is now described by a
concatenation of several different trajectory segments in the (vT , vN) plane
such that

dvT

dp
= kT ,

dvN

dp
= kN , (14)

where the rate constants are:

kT = k+
T

def
= B − μA, kN = k+

N
def
= C − μB

in positive slip;

kT = k−T
def
= B + μA, kN = k−N

def
= C + μB

in negative slip; and

kT = k0
T

def
= 0, kN = k0

N
def
=

AC − B2

A
> 0

8
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in stick. Since

k±N = k0
N +

B

A
k±T ,

it follows that the two rate constants corresponding to a given slip segment
cannot vanish simultaneously. Eq. (14) yields the first integral

kNvT − kTvN = constant (15)

referred to below as the trajectory integral. It follows that trajectory segments
in the (vT , vN) plane lie along straight lines (cf. Fig. 3 below).

The impact phase can be decomposed into two separate processes, viz., an
initial compression phase for which vN < 0, followed by a restitution phase for
which vN ≥ 0. The impact mapping that yields ΔvT and ΔvN as functions of
the initial values of vT , vN , A, B, and C will then be defined by the values
of vT and vN at the terminal point of the restitution phase. In the energetic
impact process [38], the restitution phase is assumed to terminate when the
total mechanical work performed by the normal force during restitution equals
−r2 times the total mechanical work performed by the normal force during
compression, for some constant r ∈ [0, 1] referred to as the energetic coefficient
of restitution. That is,

∫
vN <0

vNdp = −r2
∫

vN >0
vNdp. (16)

From (14) it follows that

vN =
vN

kN

dvN

dp
=

d

dp

(
v2

N

2kN

)
(17)

provided that kN 	= 0 or, equivalently, that

vN =
vN

kT

dvT

dp
=

d

dp

(
(2kT vN − kNvT ) vT

2k2
T

)
,

provided that kT 	= 0. As will shortly be shown, individual trajectory itineraries
(sequences of stick or slip) during impact depend on the initial conditions at
the onset of the impact phase. For the time being, suppose that the compres-
sion phase consists of nc trajectory segments and that the restitution phase
consists of nr segments. Denote by vN,i−1 and vN,i the values of the normal
velocity at the beginning and end, respectively, of the i-th impact phase seg-
ment and let kN,i denote the corresponding rate constant (here taken to be
nonzero). Then, using (17), the work balance condition (16) becomes

nc+nr∑
i=nc+1

v2
N,i − v2

N,i−1

2kN,i

= −r2
nc∑
i=1

v2
N,i − v2

N,i−1

2kN,i

. (18)

9
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In particular, nr and nc must both be greater than or equal to 1 and the value
of the normal velocity at the termination of the impact phase is greater than
or equal to zero with equality only in the case when r = 0.

Before proceeding to the general case, consider for the moment the special
case of a perfectly smooth surface with μ = 0 and a collision with B 	= 0, so
that sticking motion is not possible and there is no distinction between slip in
either direction. Therefore, since there is only one mode of motion, we must
have nc = 1 and nr = 1, such that vN,1 = 0 at the end of the first segment.
Equations (15) and (18) then become

CvT,1 = CvT,0 − BvN,0, CvT,2 −BvN,2 = CvT,1

and
v2

N,2

2C
= −r2−v2

N,0

2C
.

It follows that

(vT,2, vN,2) =
(
vT,0 − B

C
(1 + r) vN,0,−rvN,0

)
,

i.e.,

(ΔvT , ΔvN ) = (vT,2, vN,2)− (vT,0, vN,0) = −
(

B

C
, 1

)
(1 + r) vN,0.

Clearly, in the limit of no coupling between the impulsive normal and tangen-
tial dynamics, i.e., for B → 0, the impact mapping reduces to the Newtonian
restitution rule (vT,0, vN,0) �→ (vT,0,−rvN,0).

Unless otherwise stated, it is assumed that μ > 0 in what follows. In this case,
the equality

(C − μB) (μA + B) + (C + μB) (μA−B) = 2μ
(
AC −B2

)

implies that at most one of the four quantities k+
N , k−N , k−T , and −k+

T is non-
positive.

3.2 Explicit impact mappings

Consider the rescaling

d

dp
→ − C

vN,0

d

dp
, vT → −vN,0

√
A

C
vT , vN → −vN,0vN ,

B →
√

ACB, μ→
√

C

A
μ,

10
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where vN,0 < 0 is the value of the normal velocity at the beginning of the
impact phase. The impact phase dynamics in the (vT , vN) plane again corre-
spond to a dynamical system of the form (14), where |B| < 1, stick persists
only if |B| ≤ μ and A = C = −vN,0 = 1.

As shown in Fig. 2, in terms of the rescaled parameters the four curves B = ±μ
and B = ±μ−1 separate the strip |B| < 1, μ > 0 in the (B, μ) plane into five
open sets corresponding to distinct sign combinations of the rate constants
in positive and negative slip. Panels (a)-(e) of Fig. 3 depict a representative
sample of the corresponding impact phases in the (vT , vN)-plane. Initial con-
ditions for which vT > 0 and k+

N < 0 (region 5 in panel (b)) and vT < 0 and
k−N < 0 (region 6 in panel (c)) correspond to cases where the Painlevé paradox
occurs for positive slip. This phenomenon, which is also referred to as jam [38],
means that negative initial normal velocities become further negative, since
dvN/dp < 0 during the initial compression phase. Also, initial conditions for
which k+

T > 0 or k−T < 0 (panels (d) and (e) in Fig. 3) correspond to |B| > μ
and the absence of impulsive stick motion.

0
¡1 0 1

1

¼¼=20
0

1

¹

B

¹

μ

k¡

N < 0 k+

N < 0

k¡

T < 0 k+

T > 0

k+

T < 0

k+

N > 0

k¡

T > 0

k¡

N > 0

k¡

N < 0 k+

N < 0

k¡

T < 0 k+

T > 0

k+

T < 0

k+

N > 0

k¡

T > 0

k¡

N > 0

Fig. 2. The five different allowable sign combinations of k±T and k±N (all signs
are assumed to be the same as in the central region unless otherwise stated) as
parametrized by the rescaled variables B and μ (left panel) and by the unscaled
variables θ and μ in the model example (right panel) in Sec. 2.3.

It is straightforward to see from Fig. 3 that the impact phase is described
by one of three possible cases differentiated by the number of segments in
compression and restitution and the corresponding impulsive modes.

Case I: Let gI : (vT,0, vN,0, kT , kN , r) �→ (vT,2, vN,2) represent the impact map-
ping corresponding to a single-mode impact phase consisting of a single
compression segment followed by a single restitution segment both with
rate constants kT and kN 	= 0. In this case, at the terminal point of the first
segment vN,1 = 0. Simultaneous solution of the work balance equation (18)
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2

4

5

6

1

2

7
9

1

3
5

6

12

34
56

(a)

(b) (c)

(d) (e)

k¡

N < 0

k¡

T < 0 k+

T > 0

vT

vN

vT

vN

vT

vN

vT

vN

vT

vN

k+

T < 0

k+

N > 0

k¡

T > 0

k¡

N > 0

k+

N < 0

Fig. 3. The flow of the impacting phase projected onto the (vT , vN )-plane for each
of the five cases represented by open regions in Fig. 2. Dashed lines represent the
boundaries between the ten regions of initial conditions.

and the trajectory integral (15) for each of the two segments then yields

vT,2 = vT,0 − (1 + r)
kT

kN

vN,0,

vN,2 = −rvN,0.

Case II: Let gII : (vT,0, vN,0, kT , kN , k′T , k′N , r) �→ (vT,3, vN,3) represent the

12
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impact mapping corresponding to a two-mode impact phase consisting of a
single compression segment followed by two restitution segments with rate
constants kT 	= 0 and kN 	= 0 for the first two segments and k′T and k′N 	= 0
for the last segment. In this case, at the terminal point of the first segment
vN,1 = 0. Similarly, at the terminal point of the second segment vT,2 = 0.
Simultaneous solution of the work balance equation (18) and the trajectory
integral (15) for each of the three segments then yields

vT,3 =
k′T
k′N

⎛
⎜⎝kN

kT

vT,0 − vN,0 +

√√√√(
1− k′N

kN

)(
kN

kT

vT,0 − vN,0

)2

+ r2
k′N
kN

v2
N,0

⎞
⎟⎠ ,

vN,3 =

√√√√(
1− k′N

kN

)(
kN

kT

vT,0 − vN,0

)2

+ r2
k′N
kN

v2
N,0.

Case III: Let gIII : (vT,0, vN,0, kT , kN , k′T , k′N , r) �→ (vT,3, vN,3) represent the
impact mapping corresponding to a two-mode impact phase consisting of
two compression segments followed by a single restitution segment with rate
constants kT 	= 0 and kN for the first segment and k′T and k′N 	= 0 for the
last two segments. In this case, at the terminal point of the first segment
vT,1 = 0. Similarly, at the terminal point of the second segment vN,2 = 0.
Simultaneous solution of the work balance equation (18) and the trajectory
integral (15) for each of the three segments then yields

vT,3 =
k′T
k′N

⎛
⎜⎝kN

kT

vT,0 − vN,0 + r

√√√√(
1− k′N

kN

)(
kN

kT

vT,0 − vN,0

)2

+
k′N
kN

v2
N,0

⎞
⎟⎠ ,

vN,3 = r

√√√√(
1− k′N

kN

)(
kN

kT
vT,0 − vN,0

)2

+
k′N
kN

v2
N,0,

provided that kN 	= 0 and

vT,3 = 0,

vN,3 = r

√
v2

N,0 +
2k′NvT,0vN,0

kT
,

provided that kN = 0 (in which case k′T = 0).

Table 1 shows the values of kT , kN , k′T , and k′N and the corresponding impact
mapping for each of the ten labeled regions in panels (a)-(e) in Fig. 3.

The above analysis assumes that r > 0, in which case free motion ensues after
the impact phase. As r → 0, regions 3, 4, 7, and 8 disappear, leaving only
impact phases governed by the impact mappings gI and gIII , respectively.
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Region kT kN k
′
T k′N Impact mapping

1 k+
T k+

N ∗ ∗ gI

2 k−T k−N ∗ ∗ gI

3 k+
T k+

N k0
T k0

N gII

4 k−T k−N k0
T k0

N gII

5 k+
T k+

N k0
T k0

N gIII

6 k−T k−N k0
T k0

N gIII

7 k+
T k+

N k−T k−N gII

8 k−T k−N k+
T k+

N gII

9 k+
T k+

N k−T k−N gIII

10 k−T k−N k+
T k+

N gIII

Table 1
Values of the rate constants and the impact map type for the 10 different regions.

Indeed,

lim
r→0

gI (vT,0, vN,0, kT , kN , r) = gI (vT,0, vN,0, kT , kN , 0) = (vT,0, 0)

and

lim
r→0

gIII (vT,0, vN,0, kT , kN , k′T , k′N , r)=gIII (vT,0, vN,0, kT , kN , k′T , k′N , 0)

=

(
k′T
k′N

(
kN

kT
vT,0 − vN,0

)
, 0

)

consistent with the expectation that the normal velocity at the terminal point
of the restitution phase should vanish in this plastic limit (cf. Brogliato et
al. [24]).

4 Smoothness of the impact law

We proceed to enumerate codimension-one boundaries between collections of
initial conditions corresponding to distinct forms of the impact law and to
investigate the degree of smoothness of the impact law across these boundaries.
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4.1 Boundaries

For a fixed value of r = 0.9, Figure 4 gives a complete picture of the 10
regions and their boundaries in terms of the scaled variables. In fact, a careful
examination of the various formulae involved shows that the r dependence
is quite simple and does not change the topology of these diagrams, as long
as r > 0. The figure suggests the procedure shown in Fig. 5 for deciding the
region corresponding to any given initial conditions and parameter values.

We identify five distinct types of codimension-one boundaries in the impact
law. In particular, initial conditions on the boundaries between regions 2 and
4, between 1 and 3, between 2 and 8, and between 1 and 7, respectively,
correspond to a Case I impact phase with rate constants kT and kN and
vT,2 = 0 or a Case II impact phase with rate constants kT , kN , k′T , and k′N
and a zero-length terminal segment. In either case, these are characterized
by a zero tangential velocity at the terminal point of the impact phase and,
consequently, that

kNvT,0 − (1 + r) kT vN,0 = 0.

Similarly, initial conditions on the boundaries between regions 4 and 6, be-
tween 3 and 5, between 8 and 10, and between 7 and 9, respectively, correspond
to a Case II or Case III impact phase with rate constants kT , kN , k′T , and k′N ,
vT,1 = 0, and a zero-length middle segment. In either case, these are charac-
terized by a zero tangential velocity at the terminal point of the compression
phase and, consequently, that

kNvT,0 − kT vN,0 = 0.

Initial conditions on the boundaries between regions 1 and 10 and between 2
and 9, respectively, correspond to a Case I impact phase with rate constants
k′T and k′N or Case III impact phase with rate constants kT , kN , k′T , and k′N
and zero-length initial segment. Similarly, initial conditions on the boundaries
between regions 5 and 6, correspond to a Case III impact phase with rate
constants k+

T , k+
N , k0

T , and k0
N or Case III impact phase with rate constants

k−T , k−N , k0
T , and k0

N with vT,1 = 0 and zero-length initial segments. In either
case, these are characterized by a zero tangential velocity at the beginning of
the impact phase, i.e., that

vT,0 = 0.

Finally, initial conditions on the boundaries between regions 3 and 7, between
5 and 9, between 4 and 8, and between 6 and 10 respectively, correspond to
a Case II (or Case III ) impact phase with rate constants kT , kN , k′T , and k′N
or an impact phase of the same case with rate constants kT , kN , 0, and k0

N .
In either case, these are characterized by the vanishing of the tangential rate
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Fig. 4. The boundary structure for r = 0.9 in terms of the rescaled parameters.
(a) Full view. The boundaries between regions 3 and 7 and between 5 and 9 are
obscured. (b) Section for B = 0.5. (c) Section for μ = 0.5. (d) Section for μ = 2.
Here, solid curves represent boundaries with C0 continuity, dashed curves represent
boundaries with C1 continuity, and shading is used to highlight the regions for which
the impact phase ends in impulsive stick and for which the impact law is co-rank 1.

constant for the last two trajectory segments, i.e., that

k′T = 0.
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12

34 56 78 910

vT;0 > 0

k¡

NvT;0 ¡ (1 + r) k¡

T vN;0 > 0 k+

NvT;0 ¡ (1 + r) k+

T vN;0 > 0

k¡

NvT;0 ¡ k¡

T vN;0 > 0 k+

NvT;0 ¡ k+

T vN;0 > 0

k+

T > 0k+

T > 0 k¡

T > 0k¡

T > 0

Fig. 5. Decision tree on the initial conditions at the start of an impact phase that
determines the region. The branches to the right are taken when the condition is
fulfilled.

4.2 Discontinuities

For each of the codimension-one boundaries identified in Sec. 4.1 we derive
an explicit expression for the change in the impact law as the boundary is
crossed in order to analyse the smoothness of the impact law at that point.
For notational convenience, let z = (q, q̇)T in what follows. The five cases can
be summarised as follows:

vT = 0 at end of impact phase: Consider initial conditions on the bound-
aries between regions 2 and 4, between 1 and 3, between 2 and 8, and
between 1 and 7, respectively, i.e., such that kNvT,0 − (1 + r) kT vN,0 = 0.
For nearby initial conditions, Taylor expansion yields

δ [gII (vT , vN , kT , kN , k′T , k′N , r)− gI (vT , vN , kT , kN , r)] =[(
k′T − kT

kT kN

,
k′N − kN

kT kN

)
+O (δz)

]
δ (kNvT − (1 + r) kT vN ) , (19)

i.e., the impact law is only C0 under variations in kNvT−(1 + r) kT vN across
this boundary.

vT = 0 at end of compression phase: Consider, instead, initial conditions
on the boundaries between regions 4 and 6, between 3 and 5, between 8 and
10, and between 7 and 9, respectively, i.e., such that kNvT,0 − kT vN = 0.
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For nearby initial conditions, Taylor expansion yields

δ [gIII (vT , vN , kT , kN , k′T , k′N , r)− gII (vT , vN , kT , kN , k′T , k′N , r)] =⎡
⎢⎢⎣

(kN − k′N)

√
k′

N

kN
(1− r2)

2

2k2
Tk′2NrvN

(k′T , 1) +O (δz)

⎤
⎥⎥⎦ δ [(kNvT − kT vN )]2 ,

i.e., the impact law is only C1 under variations in kNvT − kTvN across this
boundary.

vT = 0 at impact; no stick: Now consider initial conditions on the bound-
aries between regions 1 and 10 and between 2 and 9, respectively, i.e., such
that vT,0 = 0. For nearby initial conditions, Taylor expansion yields

δ [gI (vT , vN , k′T , k′N , r)− gIII (vT , vN , kT , kN , k′T , k′N , r)] =[(
1− k′TkN

kTk′N
− k′T

k′N

(kN − k′N) r

kT
,
(k′N − kN) r

kT

)
+O (δz)

]
δvT ,

i.e., the impact law is only C0 under variations in vT across this boundary.
vT = 0 at impact; stick: Similarly, consider initial conditions on the bound-

aries between regions 5 and 6, such that vT,0 = 0. For nearby initial condi-
tions, Taylor expansion yields

δ
[
gIII

(
vT , vN , k+

T , k+
N , k0

T , k0
N , r

)
− gIII

(
vT , vN , k−T , k−N , k0

T , k0
N , r

)]
=⎛

⎝0,−
(
k+

T + k−T
)

k0
Nrμ

2vNk+
T k−T

+O (δz)

⎞
⎠ (δvT )2 ,

i.e., the impact law is only C1 under variations in vT across this boundary.
Loss of stick phase: Finally, consider initial conditions on the boundaries

between regions 3 and 7, between 5 and 9, between 4 and 8, and between 6
and 10 respectively, i.e., such that k′T = 0. Recall that

k′N = k0
N +

B

A
k′T .
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For nearby initial conditions, Taylor expansion then yields

δ
[
gII

(
vT , vN , kT , kN , k′T , k0

N +
B

A
k′T , r

)
− gII

(
vT , vN , kT , kN , 0, k0

N , r
)]

=⎡
⎢⎣
⎛
⎜⎝ 1

k0
N

⎛
⎜⎝kN

kT
vT − vN +

√√√√(
1− k0

N

kN

)(
kN

kT
vT − vN

)2

+ r2
k0

N

kN
v2

N

⎞
⎟⎠ ,

B

A

1

kN

⎛
⎝−

(
kN

kT
vT − vN

)2

+ r2v2
N

⎞
⎠

2

√√√√(
1− k0

N

kN

)(
kN

kT
vT − vN

)2

+ r2
k0

N

kN
v2

N

⎞
⎟⎟⎟⎟⎟⎟⎠

+O (δz)

⎤
⎥⎥⎥⎥⎥⎥⎦

δk′T

or

δ
[
gIII

(
vT , vN , kT , kN , k′T , k0

N +
B

A
k′T , r

)
− gIII

(
vT , vN , kT , kN , 0, k0

N , r
)]

=⎡
⎢⎣
⎛
⎜⎝ 1

k0
N

⎛
⎜⎝kN

kT

vT − vN + r

√√√√(
1− k0

N

kN

)(
kN

kT

vT − vN

)2

+
k0

N

kN

v2
N

⎞
⎟⎠ ,

B

A

r

kN

⎛
⎝−

(
kN

kT

vT − vN

)2

+ v2
N

⎞
⎠

2

√√√√(
1− k0

N

kN

)(
kN

kT
vT − vN

)2

+
k0

N

kN
v2

N

⎞
⎟⎟⎟⎟⎟⎟⎠

+O (δz)

⎤
⎥⎥⎥⎥⎥⎥⎦

δk′T , (20)

i.e., the impact law is only C0 under variations in k′T across this boundary.

The degree of continuity of the impact law across the corresponding boundaries
is summarized in Table 2 and further illustrated in Fig. 4.

Boundary type Regions Continuity

vT = 0 at end of impact phase 1–3, 1–7, 2–4, 2–8 C0

vT = 0 at end of compression phase 3–5, 4–6, 7–9, 8–10 C1

vT = 0 at impact; no stick 1–10, 2–9 C0

vT = 0 at impact; stick 5–6 C1

Loss of stick phase 3–7, 4–8, 5–9, 6–10 C0

Table 2
Summarising the degree of continuity of the impact law across each of the 15 differ-
ent codimension-one boundaries shown in panel (c) of Fig. 4, see text for detailed
derivations.
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5 Discontinuity-induced bifurcations

For the purpose of this paper, discontinuity-induced bifurcations are those
changes in system response that result from the onset of non-generic inter-
actions of an invariant set of a dynamical system with system discontinuities
under variation of system parameters [9]. In particular, we restrict attention
to codimension-one bifurcations, i.e., non-generic interactions that, without
loss of generality, can be unfolded by arbitrarily small variations of a single
system parameter.

5.1 Grazing contact

As an example, consider, for some critical parameter value η = η∗, the simple
tangential (grazing) contact of a periodic trajectory at a point z∗ with the
unilateral constraint, i.e., such that vN = 0 and v̇N > 0 in terms of the
unscaled variables. In particular, suppose that all other impacts occur with
negative normal velocity and with initial conditions for the impact phase away
from any of the discontinuity boundaries identified in the previous section.

To investigate the local dynamics in the vicinity of the grazing trajectory
and for η ≈ η∗, consider the introduction of a local Poincaré section Π =
{vN = 0} in some neighborhood of z∗. Ignore, for a moment, the presence of
the unilateral constraint near z∗. By the transversality of the intersection of
the grazing trajectory with Π (since v̇N > 0), it follows that we may define a
smooth map P that maps points z ≈ z∗ on Π to the subsequent intersection
near z∗ with Π along the corresponding system trajectories with η ≈ η∗, such
that P (z∗) = z∗. Suppose, in particular, that all eigenvalues of the Jacobian
of P evaluated at z = z∗ and η = η∗ have magnitude distinct from 1. By
the assumption of the codimension-one nature of the onset of such contact,
it follows that arbitrarily small variations in η result in the persistence of a
family of periodic trajectories that intersect Π at points with z ≈ z∗.

When reintroducing the effects of the unilateral constraints near z∗, the local
dynamics in the vicinity of the grazing trajectory and for η ≈ η∗ may again
be captured by a local map provided that the impact law reduces to the
identity in the limit that the unscaled initial normal impact velocity vN,0

decays to zero. As can be seen in Fig. 3, initial conditions for the impact
phase corresponding to this limit are possible only in regions 1 and 2 and
regions 5 and 6 corresponding to impact mappings gI and gIII , respectively.
Indeed, since

lim
vN,0→0

gI (vT,0, vN.0, kT , kN , r) = gI (vT,0, 0, kT , kN , r) = (vT,0, 0) ,
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the impact law reduces to the identity for points of near-grazing contact with
the unilateral constraint and initial states in regions 1 and 2. It follows from
the theory of discontinuity mappings introduced by Nordmark [29] (see also
[9, Ch. 6]) that the effect of an impact with small unscaled vN,0 < 0 is to
introduce a singularity in the map proportional to

√−vN,0. The corresponding
bifurcation characteristics have been explored at great length by a number of
authors and include the possibility of non-smooth folds, robust chaos, period-
adding sequences, and universal scaling relationships.

In contrast, for initial states in regions 5 and 6, the onset of grazing contact
is catastrophic. Here,

lim
vN,0→0

gIII

(
vT,0, vN,0, kT , kN , 0, k0

N , r
)

=gIII

(
vT,0, 0, kT , kN , 0, k0

N , r
)

=

⎛
⎜⎝0, r

√√√√(
1− k0

N

kN

)(
kN

kT

vT,0

)2
⎞
⎟⎠

corresponding to a release velocity an O (1) distance in the (vT , vN) plane
away from the initial state. It follows that, generically, a branch of periodic
trajectories that intersect Π at points near z∗ without experiencing a local
impact must terminate at the critical parameter value corresponding to the
onset of grazing contact.

5.2 Discontinuities in the impact law

Consider, instead, for some critical parameter values η = η∗, a periodic trajec-
tory with a single, forward-in-time transversal intersection z∗ with the unilat-
eral constraint and based at a point g (z∗) on the unilateral constraint, where
g represents the corresponding impact law. In particular, suppose that z∗ lies
on one of the boundaries in the impact law. By transversality it follows that
there exists a smooth mapping Q that maps points z ≈ g (z∗) at the end of
an impact phase to the beginning of the subsequent impact phase along the
corresponding system trajectories with η ≈ η∗, such that z∗ = (Q ◦ g) (z∗).
The composition Q ◦ g then represents a Poincaré mapping that maps points
z ≈ z∗ at the beginning of an impact phase to the beginning of the subsequent
impact phase along the corresponding system trajectories with η ≈ η∗. In par-
ticular, any discontinuities in the impact law are inherited by the Poincaré
mapping.

For the 15 distinct boundaries considered in the preceding section, the dis-
continuity in the impact law (and, consequently, in the Poincaré mapping) is
in either the first or the second derivative. The dynamics of piecewise-smooth
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mappings of this kind are considered in detail in [9, Chs.3,4]. Specifically, for
mappings with a discontinuity in the first derivative, the theory first derived
by Feigin (see [11,13]) establishes the existence of two continuous branches
of single impact periodic trajectories with impacts on opposite sides of the
corresponding boundary, such that each branch exists only on one side of the
critical parameter value. If both branches are on the same side of the bifur-
cation, a nonsmooth fold is said to occur; branches being on opposite sides
is called a persistence scenario. Moreover, the corresponding Floquet multi-
pliers typically converge to different limits as the critical parameter value is
approached along the two branches. In contrast, if the jump is in the second
derivative of the map, a continuous branch of periodic trajectories exists across
the critical parameter value, such that the corresponding Floquet multipliers
are continuous but with discontinuous derivatives at η = η∗.

Finally, we also mention the special case where the transition across the bound-
ary causes the gain or loss of an impulsive stick phase at the end of the impact
phase. For perturbations that result in impulsive stick, we have a loss of phase
space dimension, and the map Q ◦ g must develop a Floquet multiplier that
is exactly zero.

5.3 Numerical results

To illustrate the analytical results reported above, we consider augmenting the
model example from Sec. 2.3 with a specific applied moment and applied forces
so as to naturally set up limit cycle oscillations that represent steady vibro-
impacting behaviour. The idea is to understand how changes in the velocities
at impact as one changes a parameter can affect the dynamic properties of
these limit cycles.

The applied forces and moment are here chosen so as to model the dragging
of the rod across a moving surface, subject to vertical excitation. Specifically,
let ẋ = vT , ẏ = vN , θ̇ = ω, and

Sx = −kx(x− vdrt)− cx(vT − vdr)

Sy = −ky(y − y0)− cy((y − y0)
2 − y2

1)vN

R = −kθ(θ − θ0)− cθω,

where kx, ky, kθ, cx, cy, cθ, y0, y1, θ0, vdr, and the contact parameters μ and r,
are constant system parameters. Here, the horizontal force Sx corresponds to a
linear spring/damper, but with a reference position that moves with constant
velocity vdr (one may, alternatively, consider the system in a frame moving
with the reference position, in which case vdr becomes the backward velocity
of the ground, as in the case of a moving belt). The torque R again corresponds
to a linear spring/damper, with the reference position having a constant offset
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θ0. Finally, the vertical force Sy is that of a van der Pol oscillator, with an
offset y0 and the size of the region of negative damping being y1. This force
gives the system a natural excitation in the vertical direction.

The simple nature of the external time dependence in the system enables us the
speak about periodic motion if, after some time T all variables have returned
to their original values, except for x which must have increased by the amount
vdrT . In particular, each row of Tables 3, 4, and 5 corresponds to parameter
values and initial conditions (at t = 0) for a periodic trajectory with a single,
forward-in-time transversal intersection z∗ with the unilateral constraint and
based at a point g (z∗) on the unilateral constraint, where g represents either
of the two impact laws on either side of the corresponding boundary. In each
subsection below we consider the local dynamics in the vicinity of the periodic
trajectory for nearby parameter values η ≈ η∗ where the principal bifurcation
parameter η is the coefficient of friction μ in Secs. 5.3.1-5.3.3 and Sec. 5.3.5
and vdr in Sec. 5.3.4. Numerical results are quoted in terms of the unscaled
variables.

Boundary r μ vdr kx ky kθ cx cy cθ y0 y1 θ0

1–3 1 0.8507 1.8 0.6 1 1.6 0.1 1 0.12 0.5 0.8 0.275π

5–9 1 0.5448 0.2 0.7 1 1.9 0.05 0.05 0.05 0.5 0.8 0.7π

4–6 0.5 0.9355 −0.1 0.7 1 1.9 0.1 0.1 0.1 0.9 1 0.375π

5–6 0.5 0.8 −0.2054 0.7 1 1.9 0.1 0.1 0.1 0.9 1 0.375π

1–10 0.5 0.3495 −0.2 0.7 1 1.9 0.1 0.1 0.1 0.9 1 0.375π

Table 3
Values of system parameters for the different bifurcation examples.

Boundary x y θ vT vN ω T1 T2

1–3 −0.7585 0.7032 0.8728 3.2236 −1.5523 −0.0019 0.4014 3.458

5–9 0.0843 0.4948 2.1111 −0.0226 −0.4921 0.1553 5.9219 4.6263

4–6 0.5318 0.7966 2.1871 0.3566 0.9221 −0.1236 5.7325 1.6458

5–6 −0.3734 1.1879 1.3257 −0.3171 0.9486 −0.0071 5.5373 1.8018

1–10 0.2101 0.2747 1.0012 −0.5793 0.5296 0.1281 5.5470 0.5976

Table 4
Initial conditions (at t = 0) for the corresponding periodic trajectory, the time T1

from the initial condition to the subsequent impact, and the time T2 = T −T1 from
the impact back to the initial point, where T is the period.
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Boundary B μ vT,0

1–3 0.5946 0.9405 1.5692

5–9 −0.5957 0.5957 0.8026

4–6 −0.5926 0.8323 −0.4730

5–6 0.5146 1.1659 0.0000

1–10 0.5165 0.5075 0.0000

Table 5
Values of the scaled impact law variables B, μ, and vT,0 at impact.

5.3.1 vT = 0 at end of the impact phase

Consider the periodic single impact trajectory with parameter values and ini-
tial conditions given by the first row of Tables 3 and 4 and with an impact on
the 1–3 boundary in the impact law. Here,

z∗ = (0.5534, 0, 0.8691, 3.2869,−1.8947,−0.0149)T .

Substitution into Eq. (12) yields A = 2.7500, B = 1.4790, C = 2.2500 at
the beginning of the impact phase, such that k+

T = −.8604, k+
N = .9918,

k−T = 3.8184, k−N = 3.5082, and k0
N = 1.4546.

The 1–3 boundary in the impact law is characterized by the vanishing of the
function

H(z, μ)
def
= k+

NvT − (1 + r)k+
T vN ,

where (z, μ) ≈ (z∗, μ∗) is in region 1 provided that H (z, μ) > 0 and in region
3 otherwise. For nearby points z ≈ z∗ and parameter values μ ≈ μ∗, it follows
that

H(z, μ) = γ(z − z∗) + N(μ− μ∗) +O(z − z∗, μ− μ∗)2,

where

γ = ∂z

(
k+

NvT − (1 + r)k+
T vN

)∣∣∣
z=z∗,μ=μ∗ = (0, 0,−19.7549, 0.9918, 1.7208, 0) ,

N = ∂μ

(
k+

NvT − (1 + r)k+
T vN

)∣∣∣
z=z∗,μ=μ∗ = −15.2820.

Initial conditions z ≈ z∗ in region 1 correspond to a Case I impact phase with
rate constants k+

T and k+
N , while those in region 3 correspond to a Case II

impact phase with rate constants k+
T , k+

N , k0
T , and k0

N . From Eq. (19) it follows
that

δ
[
gII

(
vT , vN , k+

T , k+
N , k0

T , k0
N , r

)
− gI

(
vT , vN , k+

T , k+
N , r

)]
= [(−1.0082,−0.5423) +O (δz)] δ

(
k+

NvT − (1 + r) k+
T vN

)
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for z ≈ z∗. Let g1 and g3 denote the impact laws on the corresponding sides
of the 1–3 boundary. From (10) it follows that

d(g3 − g1)

d
(
k+

NvT − (1 + r)k+
T vN

)
∣∣∣∣∣∣
z=z∗,μ=μ∗

= (0, 0, 0,−1.0082,−0.5423, 0.8401)T .

To O(z − z∗, μ− μ∗) the composite Poincaré mapping now takes the form

(Q ◦ g)(z, μ) =

⎧⎨
⎩α(z − z∗) + M(μ− μ∗) if H(z, μ) > 0

α(z − z∗) + M(μ− μ∗) + βH(z, μ) if H(z, μ) < 0
, (21)

where

α = ∂zQ|z=g1(z∗),μ=μ∗ · ∂zg1|z=z∗,μ=μ∗ ,

β = ∂zQ|z=g1(z∗),μ=μ∗ · d(g3 − g1)

d
(
k+

NvT − (1 + r)k+
T vN

)
∣∣∣∣∣∣
z=z∗,μ=μ∗

,

M = ∂zQ|z=g1(z∗),μ=μ∗ · ∂μg1|z=z∗,μ=μ∗ + ∂μQ|z=g1(z∗),μ=μ∗ .

Numerical values of the matrices are

∂zQ|z=g1(z∗),μ=μ∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.8058 −0.9081 −0.4528 0.1679 0.1828 −0.0607

0 0 0 0 0 0

0 0.0091 −0.2368 0 −0.0018 0.1924

−0.1007 0.0198 0.7254 −0.8226 −0.0040 −0.4394

0 0.0132 0.9750 0 −0.0357 0.3378

0 0.0119 −0.9221 0 −0.0024 −0.3051

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

∂μQ|z=g1(z∗),μ=μ∗ = (0, 0, 0, 0, 0, 0)T

and

∂zg1|z=z∗,μ=μ∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 −19.9170 1 1.7348 0

0 0 0 0 −1 0

0 0 15.1707 0 −0.0255 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

∂μg1|z=z∗,μ=μ∗ = (0, 0, 0,−15.4075, 0, 8.8257)T .
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By the Feigin theory,

1− γ(I − α)−1β = −0.7594 < 0

implies that the two branches of periodic single impact trajectories with im-
pacts in regions 1 and 3, respectively, exist on the same side of μ = μ∗. This
is a nonsmooth fold. Indeed, since

N + γ(I − α)−1M = 5.0087 > 0,

these branches exist for μ > μ∗ (cf. panel (a) of Fig. 6).
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(a) (b)
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Fig. 6. (a) Variations in ω on the Poincaré section Π : {x − vdrt = −0.7585}
along two branches of region 3 (solid) and region 1 (dashed) impacting periodic
trajectories that emanate from a non-smooth fold; (b) Absolute values of the cor-
responding characteristic multipliers; (c) Variations in ω on the Poincaré section
Π : {x−vdrt = 0.0843} along two branches of region 9 (solid) and region 5 (dashed)
impacting periodic trajectories that emanate from a persistent bifurcation; (d) Ab-
solute values of a subset of the corresponding characteristic multipliers.

As seen in panel (b) of Fig. 6, the trajectory with impacts in region 3 is
asymptotically stable for μ ≈ μ∗, while the trajectory with impacts in region
1 is unstable. In agreement with the theory, the Floquet multipliers are dis-
continuous functions of μ at μ = μ∗ and the trajectory with impact in region
3 has one Floquet multiplier equal to zero corresponding to a final impulsive
stick segment during the impact phase. The piecewise linear approximation of
the Poincaré map can be further used to explore the existence of additional
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branches of periodic trajectories. Here, it was found, that other than the two
branches of single-impact periodic trajectories, no periodic trajectories with
10 or fewer impacts per period exist on some neighborhood of the critical
parameter trajectory and for μ ≈ μ∗.

5.3.2 Loss of stick phase

Consider, instead, the periodic single-impact trajectory with an impact on the
5–9 boundary in the impact law and obtained with the parameter values and
initial conditions given by the second row of Tables 3 and 4. Here,

z∗ = (0.1155, 0, 2.2817, 0.2852,−0.3250,−0.1314)T .

Substitution into Eq. (12) yields A = 2.7227, B = −1.4834, C = 2.2773 at the
beginning of the impact phase, such that k+

T = −2.9667, k+
N = 3.0855, k−T = 0,

k−N = 1.4692, and k0
N = 1.4692.

The 5–9 boundary in the impact law is characterized by the vanishing of the
function

H(z, μ)
def
= k−T .

For nearby points z ≈ z∗ and parameter values μ ≈ μ∗, it follows that

H(z, μ) = γ(z − z∗) + N(μ− μ∗) +O(z − z∗, μ− μ∗)2,

where

γ = ∂zk
−
T

∣∣∣
z=z∗,μ=μ∗ = (0, 0,−2.0616, 0, 0, 0) ,

N = ∂zk
−
T

∣∣∣
z=z∗,μ=μ∗ = 2.7227.

Initial conditions z ≈ z∗ in region 5 correspond to a Case III impact phase
with rate constants k+

T , k+
N , 0, and k0

N while those in region 9 correspond to
a Case III impact phase with rate constants k+

T , k+
N , k−T , and k−N . From Eq.

(20) it follows that

δ
[
gIII

(
vT , vN , k+

T , k+
N , k−T , k−N , r

)
− gIII

(
vT , vN , k+

T , k+
N , 0, k0

N , r
)]

=

[(0.1726,−0.0411) +O (δz)] δk−T

for z ≈ z∗. Let g5 and g9 denote the impact laws on the corresponding sides
of the 5–9 boundary. From Eqs. (10) it follows that

d(g9 − g5)

d
(
k−N

)
∣∣∣∣∣∣
z=z∗,μ=μ∗

= (0, 0, 0, 0.1725,−0.0411,−0.1182)T .
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The composite Poincaré mapping now again takes the form of Eq. (21), where

∂zQ|z=g1(z∗),μ=μ∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1799 0.2610 0.2170 −1.0017 −0.1009 −0.9636

0 0 0 0 0 0

0 −0.4030 0.2710 0 0.1558 0.0530

0.7012 1.3776 1.0600 0.2300 −0.5326 0.9518

0 1.0280 −2.1653 0 0.7637 −0.4606

0 −1.3828 −0.6842 0 0.5346 −0.7568

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

∂μQ|z=g1(z∗),μ=μ∗ = (0, 0, 0, 0, 0, 0)T

and

∂zg5|z=z∗,μ=μ∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 −0.0226 −0.0686 −0.7532 0

0 0 0.1620 0.5348 −0.8579 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

∂μg5|z=z∗,μ=μ∗ = (0, 0, 0, 0,−0.0447,−0.0219)T .

By the Feigin theory

1− γ(I − α)−1β = 0.9402 > 0

implies that the two branches of periodic single impact trajectories with im-
pacts in regions 5 and 9, respectively, exist on opposite sides of μ = μ∗. This
is a persistence scenario. Indeed, since

N + γ(I − α)−1M = 2.7448 > 0,

the branch of periodic trajectories with impacts in region 5 exists for μ > μ∗,
while the branch of periodic trajectories with impacts in region 9 exists for
μ < μ∗ (cf. panel (c) of Fig. 6). As the corresponding periodic trajectories
are asymptotically stable for μ ≈ μ∗, it follows that this bifurcation scenario
corresponds to the persistence of a local attractor.

As seen in panel (d) of Fig. 6, one of the Floquet multipliers of the periodic
trajectory with impacts in region 5 again equals zero, corresponding to a
impacting stick segment at the conclusion of the impact phase. This multiplier
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connects continuously to a nonzero multiplier for the periodic trajectory with
impacts in region 9, while all other multipliers experience discontinuous, but
relatively small, jumps at μ = μ∗. Indeed, Eq. (20) shows that the difference
in linearization of the impact law between regions 5 and 9 evaluated at z = z∗

and μ = μ∗ is proportional to the gradient of k−T with respect to z evaluated
at z = z∗ and μ = μ∗. As k−T depends only on q and not on q̇, this gradient is
nonzero only in those components that relate to differentiation with respect to
q. On the other hand, the linearization of the impact law in region 5 evaluated
at z = z∗ and μ = μ∗ has a left nullvector that is nonzero only in those
components that relate to differentiation with respect to q̇ (the impact law is
the identity for q). It follows that this nullvector is also a left nullvector for
the linearization of the impact law in region 9 evaluated at z = z∗ and μ = μ∗

explaining the existence of a zero Floquet multiplier for the latter impact law
in this limit.

The piecewise linear approximation of the Poincaré map can again be used to
explore the existence of additional branches of periodic trajectories. Here, it
was found that, other than the two branches of single-impact periodic trajec-
tories, no periodic trajectories with 10 or fewer impacts per period exist on
some neighborhood of the critical periodic trajectory and for μ ≈ μ∗.

5.3.3 vT = 0 at end of compression phase

Now consider the periodic single impact orbit with an impact on the 4–6
boundary in the impact law obtained with the corresponding parameter values
and initial conditions in Tables 3 and 4. The Poincaré mapping is piecewise
smooth with a continuous first derivative and it follows that the periodic
trajectory persists for μ ≈ μ∗ with continuously varying Floquet multipliers
albeit with a discontinuous slope at μ = μ∗ (cf. panels (a) and (b) of Fig. 7).

5.3.4 vT = 0 at impact; stick

Now consider the periodic single impact orbit with an impact on the 5–6
boundary in the impact law obtained with the corresponding parameter values
and initial conditions in Tables 3 and 4. The Poincaré mapping is piecewise
smooth with a continuous first derivative and it follows that the periodic
trajectory persists for vdr ≈ v∗dr with continuously varying Floquet multipliers
albeit with a discontinuous slope at vdr = v∗dr (cf. panel (c) of Fig. 7).

5.3.5 vT = 0 at impact; no stick

Finally, consider the periodic single impact orbit with an impact on the 1–10
boundary in the impact law obtained with the corresponding parameter values
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Fig. 7. (a) Variations in ω on the Poincaré section Π : {x−vdrt = 0.5318} along two
branches of region 6 (solid) and region 4 (dashed) impacting periodic trajectories
that emanate from a persistent bifurcation; (b) Absolute values of a subset of the
corresponding characteristic multipliers; (c) Variations in the absolute value of one
of the characteristic multipliers along two branches of region 6 (solid) and region
5 (dashed) impacting periodic trajectories that emanate from a persistent bifurca-
tion. (d) Variations in the absolute value of the characteristic multipliers along two
branches of region 10 (solid) and region 1 (dashed) impacting periodic trajectories
that emanate from a persistent bifurcation.

and initial conditions in Tables 3 and 4. The Poincaré mapping is piecewise
smooth with a discontinuous first derivative. The analysis undertaken in a pre-
vious section may again be repeated so as to allow for the application of the
Feigin theory for piecewise-linear mappings with a discontinuous linearization
on the boundary. As seen in panel (d) of Fig. 7, the branch of periodic trajec-
tories with impacts in region 1 exists for μ > μ∗, while the branch of periodic
trajectories with impacts in region 10 exists for μ < μ∗. As the correspond-
ing periodic trajectories are asymptotically stable for μ ≈ μ∗, it follows that
this bifurcation scenario corresponds to the persistence of a local attractor.
As predicted by the theory, no Floquet multipliers are continuous at μ = μ∗.
No periodic trajectories with 10 or fewer impacts per period exist on some
neighborhood of the critical periodic trajectory and for μ ≈ μ∗.
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6 Discussion

At the core of the present paper is a discrete impact law that models the
change in the generalized velocities of a planar rigid-body mechanism following
a collisional interaction of elements of the mechanism with the surrounding
environment (or, with some modification, with each other). The derivation of
this impact law relies heavily on the following set of consistent assumptions,
see e.g., [1,2,38].

Orders of magnitude: As discussed in Sec. 2.2, the contact phase occurs
over a time scale that is asymptotically shorter than the typical time scale of
the macroscopic behavior of the rigid-body mechanism. In particular, while
the normal and tangential contact forces are assumed to be an order of mag-
nitude larger than those forces acting on the mechanism from sources other
than the contact, the integrated normal and tangential impulses across the
contact phase are finite. By a suitable rescaling, this assumption results in a
closed set of differential equations governing the rates of change of the relative
tangential and normal velocities at the contact point in terms of the normal
and tangential forces during the contact phase and in terms of constant coeffi-
cients that can be expressed as functions of the generalized coordinates at the
onset of the contact phase. Moreover, in the present case of planar mechanical
systems, these differential equations can be solved in closed form.

Segment decomposition: The normal and tangential contact forces are as-
sumed to obey the assumptions of the classical Amonton-Coulomb model of
dry friction. This results in a decomposition of the impact phase into distinct
segments of motion during which the contact point is in slip (in either tangen-
tial direction) or in stick. This allows for the modeling of impact phases that
include a change of the direction of tangential motion. It also encompasses the
Painlevé phenomenology whereby the normal velocity initially increases as a
result of the onset of contact (see panels (b) and (c) of Fig. 3).

Dissipation: The net change in kinetic energy of the rigid-body mechanism
across the impact phase is nonpositive. In particular, the impact phase is
resolved into a compressive phase during which the normal velocity results
in an increased depth of relative normal penetration and a restitutive phase
during which the relative normal motion is in the direction of reduced pene-
tration. Here, only a fraction of the negative work performed by the normal
contact force during the compressive phase is returned as positive work to the
mechanism during the restitutive phase. Moreover, as the tangential contact
force is opposite in direction to the relative tangential motion during slip, the
resultant work is always nonpositive.

The derivation of the impact law presented here is entirely equivalent to that
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presented in the work of Stronge [38]. The specific new contributions here are i)
a detailed enumeration of explicit expressions for the relative normal and tan-
gential velocities at the end of the impact phase in terms of their values at the
onset of contact; ii) a detailed enumeration of the boundaries between regions
of initial conditions and parameter values that result in distinct expressions
for the impact law; and iii) a detailed enumeration of the smoothness proper-
ties of the impact law across these boundaries. This formulation is designed
to enable implementation of the impact law in hybrid forward-simulation in-
tegration algorithms, and is also suitable for unfolding discontinuity-induced
bifurcations.

In particular, several of the impact law boundaries were shown to be associ-
ated with discontinuities in the first derivative of the impact law. As supported
by explicit numerical calculations, the Feigin theory for piecewise-linear maps
[11,9,13] can then be successfully applied to analyse the case of a limit cycle
trajectory that impacts on such a boundary. Specifically, the persistence and
stability properties of branches of periodic orbits that emanate from such a
bifurcation point can be rigorously established. Of particular importance to
applications is the demonstration of the existence of nonsmooth folds along
such branches, which correspond to the sudden loss of a local attractor in
the system response under parameter variation. The phenomenology devel-
oped generalizes to arbitrary rigid-body mechanisms, provided that the par-
ticular impact law boundaries are realizable given physically realistic system
parameters. For example, in the model example discussed above, the Painlevé
phenomenon occurs only for values of μ > 4/3.

Alternative formulations of impact laws have a long history and continue to
be cited and applied in the literature. These include the classical Newton
kinematic coefficient of restitution equal to the negative ratio of the relative
normal velocities before and after the contact phase and the Poisson kinetic
coefficient of restitution equal to the ratio between the normal impulses during
restitution and compression (see Keller [21] and Pfeiffer and Glocker [34]).
For smooth contact (i.e., when μ = 0 in our present notation), the kinematic,
kinetic, and energetic coefficients of restitution are equivalent and predict the
same release velocities.

In the case of impacts with friction, the kinematic approach can be generalised
to include a second, tangential coefficient of restitution equal to the negative
ratio of the relative tangential velocities before and after the contact phase
(see Walton [42] and Payr & Glocker [32]). In general, however, the kinematic,
kinetic, and energetic approaches do not agree for impacts with friction, unless
the impact phase is such that the direction of relative tangential motion is
constant (Case I in Sec. 3.2 above). Indeed, as discussed further by both Batlle
[1] and Stronge [38] (see also the review paper [37]) both the kinematic and
kinetic formulations suffer from the problem that in some cases they predict
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a non-physical increase in the kinetic energy of the rigid-body mechanism as
a result of the collision.

In addition to agreed-upon first principles, including the dissipative nature of
collisional contact, proposed impact laws may be evaluated in terms of their
agreement with suitable limits of models of compliant contact. For example, in
[39] it is shown that models employing kinematic coefficients of restitution do
not agree with the infinite-stiffness limit of predictions made from models that
rely on a combination of dry friction and tangential and normal compliance
and that allow for changes in the direction of relative slip during the contact
phase. In contrast, the rigid-body impact laws formulated here are consistent
with the predictions of such models.

A wider goal than that achieved here is to enumerate and analyse all codimension-
one discontinuity-induced bifurcations in the system response that result from
a consistent hybrid formulation of rigid-body mechanics in the presence of
impacts, sustained contact, and dry friction, in the manner of the ongoing
program of work for other classes of piecewise-smooth dynamical systems
[9,10,13]. Future work will determine whether one can unfold, in a consistent
way, the ambiguities inherent in rigid-body formulations with impact and fric-
tion, collectively known as Painlevé paradoxes [16,24,31,37], without moving
to compliant formulations.

It should also be remembered that the analysis presented here has been re-
stricted to planar motion with isolated points of contact. In the case of three-
dimensional motion with isolated points of contact, a similar approach might
be applicable (see [3]), but closed-form expressions for the impact mappings
are no longer available. Future work will consider extending the formulation
to analyze discontinuity-induced bifurcations in the three-dimensional case. It
should also be stressed that situations with simultaneous contact at multiple
points or along contact lines cannot currently be resolved within the present
framework.
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[16] F. Génot and B. Brogliato, New results on Painlevé paradoxes, Eur. J. Mech.
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