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Université de Grenoble I
38402 St. Martin d’Hères. France
ariadna.fossas@ujf-grenoble.fr
maxime.nguyen@ujf-grenoble.fr

Abstract

We consider a planar surface Σ of infinite type which has the Thompson group T as asymptotic

mapping class group. We construct the asymptotic pants complex C of Σ and prove that the group

T acts transitively by automorphisms on it. Finally, we establish that the automorphism group of

the complex C is an extension of the Thompson group T by Z/2Z.
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1 Introduction

Given a compact surface of genus g with b boundary components, one can build various locally infinite
simplicial complexes on which the mapping class group of the surface acts by automorphisms, mainly the
curve complex, the arc complex and the pants complex. The automorphism group of each one of these
complexes is related to the mapping class group itself. Specifically, Ivanov in [14] and subsequently Luo
in [19] proved that the automorphism group of the curve complex is the extended mapping class group for
almost all compact surfaces, and Korkmaz extended this result to punctured spheres and punctured tori
in [15]. Analogous results were proved for the arc complex by Ivanov [14] and Irmak and McCarthy [13],
for the pants complex by Margalit [20], for the Hatcher-Thurston complex by Irmak and Korkmaz [12],
for the arc and curve complex by Korkmaz and Papadopoulos [16], and for the complex of non-separating
curves by Schmutz-Schaller [21] and subsequently by Irmak [11].

When dealing with surfaces of infinite type, one issue is to find good analogues for mapping class groups
and for the complexes enumerated above. Funar and Kapoudjan defined the notion of asymptotic mapping
class group for some surface of genus zero and infinite type in [6], the first one of a series of three papers
(see also [7] and [8]). They constructed several complexes for this type of surfaces and proved that
the asymptotic mapping class group acts on them by automorphisms. These complexes can be seen as
generalizations of the pants complex to the infinite type case. It is worth to mention that the asymptotic
mapping class groups they defined are closely related to Thompson’s group T , which is one of the first
examples of finitely presented infinite simple groups.

In this paper, we consider the case of a planar infinite surface with non compact boundary, which has
the Thompson group T as its asymptotic mapping class group. Then, we construct a locally infinite
cellular complex C related to the pants complex of the infinite surface of genus zero of [6]. We prove that
the group T acts by automorphisms on the complex and, finally, we establish that the automorphism
group of the complex is T ⋊ Z/2Z. We also give a geometric interpretation to this semi-direct product
as the extended asymptotic mapping class group, obtaining in this way a complete analogue to Ivanov’s
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theorem for the surface Σ of infinite type.

Our result can also be considered from a different viewpoint. In 1970, Tits proved in [23] that most
subgroups of automorphism groups of trees generated by vertex stabilizers are simple. This result was
extended by Haglund and Paulin in [9] to the case of automorphism groups of negatively curved polyhedral
complexes which are (in general uncountable) non-linear and virtually simple. On the other hand, Farley
proved in [5] that the Thompson groups F , T and V act properly and isometrically on CAT(0) cubical
complexes. In particular, these groups are a-T-menable and satisfy the Baum-Connes conjecture with
arbitrary coefficients. This leads to the legitimate question of realizing the simple groups T and V as
automorphisms groups of suitable cell complexes. Although the complex which we obtain is not Gromov
hyperbolic, it gives a convenient answer to this question for the group T .

Definitions and statement of the results

The surface Σ and its asymptotic mapping class group

Let D
2 be the hyperbolic disc and suppose that its boundary ∂D2 is parametrized by the unit interval

(with identified endpoints). Let E denote the triangulation of D
2 given by the family of bi-infinite

geodesics representing the standard dyadic intervals, i.e. the family of geodesics Ina joining the points
p = a

2n
, q = a+1

2n
on ∂D2, where a, n are integers satisfying 0 ≤ a ≤ 2n − 1. Let T3 be the dual graph of

E, which is an infinite (unrooted) trivalent tree. We choose to realize the tree T3 in D
2 by using geodesic

segments obtained from the Ina (with n ≥ 1 and a even) by rotations of angles π
2n

, as shown in figure 1.
We also denote by T3 this realisation.

0

E

T3

1

2

3

4

1

4

Figure 1: The triangulation E of D2 and its dual tree T3.

Now, let Σ be a closed δ-neighbourhood of T3 (see figure 2). Remark that the surface Σ is planar
(thus oriented), non compact, contractible and its boundary has infinitely many connected components.
Note that we can choose δ small enough to avoid self-intersections of the boundary and such that each
intersection Ina ∩ Σ is a single connected arc joining two boundary components of Σ.

The triangulation E together with the boundary components of Σ define a tessellation of our surface into
hexagons (see figure 2). By abuse of notation we will denote this hexagonal tessellation also by E. Note
that the boundary of each hexagon alternates sides contained in different connected components of ∂Σ
with sides contained in different arcs of the triangulation E.
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Σ

Figure 2: The surface Σ and its hexagonal tessellation.

Definition 1. The set of arcs {In1

a1
, . . . , Ink

ak
} of E is separating if the union of its arcs bounds a compact

subsurface of Σ containing I10 ∩ Σ.

Let Homeo(Σ) denote the group of orientation-preserving homeomorphisms of Σ.

Definition 2. An element ϕ ∈ Homeo(Σ) is asymptotically rigid if there exists a set of separating arcs
{In1

a1
, . . . , Ink

ak
} such that:

1. For all 1 ≤ i ≤ k, there exist Imi

bi
such that ϕ(Ini

ai
) ∩ Σ = Imi

bi
∩Σ, and

2. For all 1 ≤ i ≤ k, for all j ∈ N, and for all 0 ≤ l < 2j the arc ϕ(Ini+j

2jai+l
) ∩ Σ is equal to the arc

Imi+j

2jbi+l
∩ Σ.

Remark 1. The set of arcs {Im1

b1
, . . . , Imk

bk
} from the definition above is a set of separating arcs.

Remark 2. Let ϕ be an asymptotically rigid homeomorphism. The first condition of the definition says
that there exists a compact subsurface C ⊂ Σ which boundary is composed by segments of ∂Σ and arcs
of E such that ϕ sends C to another compact subsurface C′ of the same type (i.e. which boundary is
composed by segments of ∂Σ and arcs of E). The second condition deals with the behaviour of ϕ outside
C. Let t1, . . . , tk be the connected components of T3\(T3∩C) and t

′
1, . . . , t

′
k be the connected components

of T3 \ (T3 ∩ C
′). Then the second condition says that each ti is ’naturally’ sent to t

′
i.

The group of asymptotically rigid homeomorphisms of Σ will be denoted by Homeoa(Σ).

Definition 3. The asymptotic mapping class group of Σ is the quotient of Homeoa(Σ) by the group of
isotopies of Σ.

Remark 3. ([7], section 1.3) The asymptotic mapping class group of Σ is isomorphic to the Thompson
group T , which is the group of orientation preserving piecewise linear homeomorphisms of the circle that
are differentiable except at finitely many dyadic rational numbers, such that, on intervals of differentia-
bility, the derivatives are powers of 2, and which send the set of dyadic rational numbers to itself. For a
complete introduction to Thompson’s groups see [3].

The complex C

Once the surface Σ defined, we are going to define a 2-dimensional cellular complex C. The vertices of
C are the isotopy classes relatively to the boundary of the tessellations of Σ into hexagons which differ
from the distinguished tessellation E only in a finite number of hexagons. Note that every hexagon of a
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tessellation have 3 sides corresponding to different boundary components of Σ and 3 sides corresponding
to arcs joining these boundary components.

Let v be a vertex of C, and let a be an arc bounding two hexagons h1, h2 of the tessellation v. Let a′

be an arc contained in h1 ∪ h2 joining two boundary components of Σ such that i([a], [a′]) = 1, where i
denote the geometric intersection number and [a] the isotopy class of a relatively to the boundary. Let
w be the vertex of C obtained from v by replacing the arc a by a′. Then, the vertices v and w are joined
by an edge on C. We say that w is obtained from v by flipping the arc a.

Let v be a vertex of C and let a and b be two arcs, each one of which bounding two hexagons of the
tessellation v. We say that a and b are adjacent if there exists an hexagon on the tessellation v having
both of them on its boundary. There are two possible cases:

1. The two arcs are not adjacent. Then, flipping first a and then b one obtains the same tessellation
as the result of first flipping b and then a. Thus, the commutativity of flips defines a 4-cycle on the
1-skeleton of C and we fill it with a squared 2-cell.

2. The two arcs are adjacent. Then, flipping first a and then b one obtains a different tessellation
from the result of first flipping b and then a. These two tessellations differ from a flip. We fill the
corresponding 5-cycle with a pentagonal 2-cell.

We obtain, in particular, the following analogue to the case of the cellular complexes associated to compact
surfaces:

Proposition 4. The asymptotic mapping class group of Σ acts transitively on the complex C by auto-
morphisms.

It is now natural to ask whether or not the automorphism group of the cellular complex C is related to
the asymptotic mapping class group of the surface Σ. To answer this question, we construct the following
exact sequence:

1 −→ T −→ Aut(C) −→ Z/2Z −→ 1,

and prove that it splits.

Thus, we obtain the following result:

Theorem 1. The automorphism group of the complex C is isomorphic to the semi-direct product
T ⋊ Z/2Z.

Furthermore, the extension is not trivial; we obtain a non trivial action of Z/2Z to Out(T ). Thus, as
Brin established in [2] that the group of outer automorphisms of T is isomorphic to Z/2Z, we get an
isomorphism between Out(T ) and Z/2Z.

Finally, the tools used to prove the main theorem lead us to give a geometric interpretation of this result.
It turns out that one can classify the elements of Aut(C) in two categories: those which preserve (in
some natural sense) the orientation of the complex, and those which reverse the orientation. Then, it is
natural to define the extended mapping class group of Σ as T ⋊Z/2Z, which makes theorem 1 a complete
analogue to Ivanov’s theorem for compact surfaces.

Structure of the paper

This paper is structured as follows. In the second section, we provide a modification of the surface Σ which
does not involve changes on the mapping class group. This will allow us to describe the isomorphism
between the asymptotic mapping class group and Thompson’s group T . In the third section, we briefly
discuss the analogy between the complex C and the complexes obtained for compact surfaces and define
the action of the asymptotic mapping class group on C. Finally, in the fourth section, we describe the
structure of the automorphisms group of the complex C, proving theorem 1.
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2 The surface and its asymptotic mapping class group

In this section we introduce a slightly different surface Σ′ which allows us to simplify the situation. Both
surfaces Σ and Σ′ have the same asymptotic mapping class group.

Definition 4. The surface Σ′ is obtained by attaching to the hyperbolic disk D
2 the points of its boundary

corresponding to the dyadic rational numbers.

Remark 4. The triangulation E of D2 is a triangulation of Σ′ having for vertices all the boundary
components of Σ′.

Lemma 1. Let ∂0Σ be a connected component of the boundary of Σ, which is a bi-infinite line on D
2.

The adherence of ∂0Σ is ∂0Σ∪{q}, where q is a dyadic rational number on ∂D2. Thus, there is a natural
bijection between the set of dyadic rational numbers ∂Σ′ and the set of connected components of the
boundary of Σ.

Corollary 1. Let ∂0Σ be a connected component of the boundary of Σ, and let In1

a1
, In2

a2
be two geodesics

of E intersecting ∂0Σ. Then, In1

a1
and In2

a2
have a common boundary point (dyadic).

Corollary 2. Let {In1

a1
, . . . , Ink

ak
} be a set of separating arcs which are cyclically ordered. Then, they are

the sides of an ideal hyperbolic k-gon.

Corollary 3. One can deform continuously Σ to Σ′ by an homotopy H : Σ× [0, 1] → D
2∪∂D2 such that:

• For t < 1, H(·, t) is an homeomorphism.

• For t < 1, H(Σ ∩ Ina , t) ⊂ Ina .

• H(·, 1) is an homeomorphism between the interior of Σ and D
2.

• Let ∂0Σ be a connected component of the boundary of Σ and let q be the dyadic rational number on
its adherence. Then, H(∂0Σ, 1) = q.

One can now define the notion of asymptotically rigid homeomorphism of Σ′, and the asymptotic mapping
class group by taking Homeoa(Σ

′) modulo isotopies of Σ′.

Proposition 1. The asymptotic mapping class groups of Σ and Σ′ are isomorphic.

Furthermore, they are isomorphic to Thompson’s group T .

Proof. Let ϕ ∈ Homeoa(Σ). We define ϕ′ ∈ Homeoa(Σ
′) as follows:

ϕ′(x) =

{

H (ϕ(y), 1) , if x ∈ D
2

H (ϕ (∂xΣ) , 1) , if x ∈ ∂Σ′,

where y ∈ Σ such that H(y, 1) = x, and ∂xΣ is the connected component of ∂Σ having x on its adherence
and H is the homotopy from lemma 3. Note that every isotopy of Σ can be extended to an isotopy of
D

2 ∪ ∂D2. Thus, the application we defined induces an injective morphism for the mapping class groups.

Reciprocally, let [ϕ′] be an element of the asymptotic mapping class group of Σ′. Note that we can choose
a representative ϕ′ ∈ Homeoa(Σ

′) such that ϕ′
|Σ ∈ Homeoa(Σ). Thus, we defined an injective morphism

from the asymptotic mapping class group of Σ′ to the asymptotic mapping class group of Σ.

Finally, one can verify that the composition of both is the identity.
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Before giving the isomorphism between T and the asymptotic mapping class group of Σ, let us give the
analytical definition of Thompson’s group T :

Definition 5. The Thompson group T is the set of orientation preserving piecewise linear homeomor-
phisms of the circle S1 = [0, 1]/0∼1 whose points of non-differentiability are dyadic rational numbers,
whose derivatives (where defined) are powers of 2, which send the set of dyadic rational numbers to itself.

Let ϕ be a representative of an equivalence classe of the asymptotic mapping class group of Σ′. We
claim that ϕ acts as an element of the Thompson group T on ∂Σ′, which is the set of dyadic rational
numbers, and that this action does not depend on the representative. To see this, let {In1

a1
, . . . , Ink

ak
} and

{Im1

b1
, . . . , Imk

bk
} be sets of separating arcs associated to ϕ, with ϕ(Ini

ai
) = Imi

bi
for 1 ≤ i ≤ k. Without

loss of generality, we can suppose that a1 = 0, ak = 2nk − 1 (I1a is contained on the compact subsurface
bounded by the arcs Ina ) and that both sets are cyclically ordered. Let f be the unique map of the circle
satisfying the following conditions:

1. For all 1 ≤ i ≤ k, f
( ai
2ni

)

=
bi
2mi

,

2. For all 1 ≤ i ≤ k, f

(

ai + 1

2ni

)

=
bi + 1

2mi
, and

3. For all x ∈

(

ai
2ni

,
ai + 1

2ni

)

, f ′(x) = 2ni−mi .

One can see that f ∈ T using the corollary 2 and the fact that ϕ is orientation-preserving.

Reciprocally, given an element f ∈ T it can be proven (adaptation to T of lemma 2.2 from [3]) that there
exists a partition of the unit interval into standard dyadic intervals 0 = x0 < x1 < . . . < xk = 1, and an
integer 0 ≤ j ≤ k such that:

1. The subintervals of the partition 0 = f(xj) < f(xj+1) < . . . < f(xk) = f(x0) < . . . < f(xj−1) <
f(xj) + 1 = 1 are standard dyadic, and

2. The map f is linear in every subinterval of the partition.

Thus, we can find two ideal k-gons inscribed in E defining an element ϕ in the asymptotic mapping class
group of Σ′ which acts as f on ∂Σ′. This ends the proof of the following result (see [7]):

Proposition 2. The asymptotic mapping class group of Σ is isomorphic to the Thompson group T .

For the purposes of this paper it is useful to think of the Thompson group T as the group generated by
two elements: an element α of order 4 and an element β of order 3. The full presentation is the following
(for the details see [7] and [18]):

T ≃
〈

α, β |α4, β3,
[

βαβ, α2βαβα2
]

,
[

βαβ, α2β2α2βαβα2βα2
]

, (βα)
5
〉

.

The two generators α, β of Thompson’s group T can be defined in terms of polygons as follows: α sends
{I20 , I

2
1 , I

2
2 , I

2
3} respectively to {I21 , I

2
2 , I

2
3 , I

2
0} and β sends {I10 , I

2
0 , I

2
1} respectively to {I20 , I

2
1 , I

1
0}.

Remark that the polygons defining an element of T are not unique, although there is a minimal one
which satisfies the conditions. Consider this minimal pair of polygons defining an element f ∈ T . Then,
if we split a standard dyadic interval of the source polygon in two halves and we also split the standard
dyadic interval corresponding to its image in two halves, the element defined by the new pair of polygons
is the same. All possible pairs of polygons defining f are obtained doing this expanding operation finitely
many times.
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3 The asymptotic pants complex

First of all, we would like to present the relation of the complex C and the different known complexes for
the compact case. In some general sense, one can see C as an analogue to the pants complex. For this,
take another copy of the initial surface Σ, already tessellated in hexagons by E, and glue the two copies
together along their boundary. Now, the arcs of E on the two copies are also glued and they become
simple curves which decompose the doubled surface in infinitely many pairs of pants. Hence, the vertices
of the complex C can be seen as decompositions in pairs of pants of the double surface, obtained from the
initial decomposition by a finite number of elementary moves. An elementary move consists on changing
a simple curve γ by another γ′, which does not intersect the other curves of the pants decomposition, and
with minimal geometric intersection number i([γ], [γ′]) = 2. In our case, we only consider the elementary
moves that can be seen on the planar surface Σ. For the details of this construction see [6] and [7].

The rest of this section is devoted to give another point of view of the complex C using the definition of
Σ′. For example, we can see the 0-skeleton of C as the set of triangulations of Σ′ with vertices in ∂Σ′

which differ from E only on a finite number of triangles. Hence, two vertices u, v of C are joined by an
edge if we can obtain v from u by changing the diagonal of a quadrilateral inscribed on the triangulation
u. We will that v is obtained by flipping an arc of u.

Remark 5. (Geometric interpretation of the 2-cells) Each 2-cell of the complex can be seen, geometrically,
as the object obtained from a triangulation v of the complex C by flipping consecutively two of its arcs.
If there exists a triangle in v containing the two arcs on its boundary, then the 2-cell is pentagonal.
Otherwise, the 2-cell is squared.

Remark 6. Given three vertices u, v, w of C where u,w are different and adjacent to v, there exists a
unique 2-cell containing u, v, w. This follows from the precedent remark.

Definition 6. We call the 2-dimensional cellular complex C the asymptotic pants complex of the surfaces
Σ and Σ′.

It is worth to mention that the asymptotic pants complex is closely related to the graph of triangulations
of a convex n-gon (see, for example, [1], [17] and [10]) and hence, it is also related to the rotation distance
in binary trees (see [22]). The graph of triangulations of a convex n-gon is a graph whose vertices are the
triangulations of the n-gon in n− 2 triangles, and where two vertices are joined by an edge if there is a
single flip going from one to the other. Thus, the asymptotic pants complex can be seen as a 2-dimensional
complex associated to the triangulations graph of an infinite-sided convex polygon. Now, one can derive
the connectivity of the complex C from the finite case (see [10] for a simple proof). To see this, one can
think that every vertex of C has only a finite number of arcs not contained in the triangulation E and
so, there exists a convex polygon having all of this arcs on its interior. Furthermore, Lee in [17] proved
that the complex of triangulations of a convex n-gon is a convex polytope of dimension n − 3 (see also
[4]). Thus, the complex C is also simply connected.

Proposition 3. The complex C is connected and simply connected.

Finally, we will define the action of T on C. Let v be a vertex of C and let f be an element of T . Consider
the set of geodesics G defined as follows: the geodesic joining the dyadic rational numbers p, q is in G
if the geodesic joining the dyadic rational numbers f−1(p) and f−1(q) belongs to the triangulation v.
Remark that the geodesics on G define a triangulation of Σ′; this triangulation will be the image by
f of the vertex v and we will denote it by f · v. As a consequence of the definitions of T and C, the
triangulation f · v corresponds to a vertex of C. Note that it is possible to find an ideal polygon bounded
by the set of separating arcs {In1

a1
, . . . , Ink

ak
} which is the source polygon for the element f and which

contains all the geodesics that are on the triangulation v and which are not on the base triangulation E.

Let v, w be two vertices joined by an edge in C, and let f be an element of T . It follows from the definition
of the action of f on the vertices of C that f · v and f · w are joined by an edge in C. It also follows
from the definition of the action on the vertices together with the geometric interpretation of the 2-cells
(remark 5) that the action can be extended to the 2-skeleton of C. Thus, we can define a natural map
Ψ : T → Aut(C).
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Proposition 4. The asymptotic mapping class group T of Σ′ acts transitively on the asymptotic pants
complex C by automorphisms. Furthermore, the map Ψ : T → Aut(C) is injective.

Proof. It follows from the paragraph preceding the proposition that T acts on C by automorphisms. We
prove the transitivity by showing that given a vertex v of C there exists an element f ∈ T such that
f ·E = v. Let P be an ideal polygon inscribed on E containing all the edges of the triangulation v which
are not on the triangulation E, and having at least the dyadics 0, 1

4
, 1
2
, 3
4
on its boundary. Let a be an

interior edge of the triangulation of P in v joining the dyadics p and q. Suppose that p > q. There exists
a unique triangle in P having as vertices p, x, q, where x is a dyadic number p > x > q. We associate the
triangle of E with vertices 1

2
, 0, 1

4
to this triangle. Analogously, we associate to the triangle with vertices

y > p > q (or p > q > y) of P the triangle with vertices 3

4
, 0, 1

2
. Repeating this procedure finitely many

times we construct an ideal polygon Q triangulated as E, whose sides are naturally associated to those
of the polygon P . Then, the element f ∈ T defined by f(Q) = P satisfies our claim.

For the second assertion it is enough to prove that given an element f ∈ T different from the identity,
there exists a vertex v in C such that f · v 6= v. Let q be a dyadic such that f(q) 6= q (it exists because
f 6= id). Take a square inscribed in the triangulation E, having q as a vertex and such that it has empty
intersection with its image by f . Now, let v be the triangulation obtained from E by flipping the diagonal
of this square. Then, f · v 6= v.

Proposition 5. The complex C is not Gromov hyperbolic.

The proof uses the following observation:

Remark 7. Every flip changes a single arc of the initial triangulation. Therefore, the distance between
two vertices v, w ∈ C is bounded below by the number of arcs which are on the triangulation v and are
not in the triangulation w.

Proof. Let n be a positive integer. We construct a geodesic triangle u, v, w such that dC(u, v) = dC(v, w) =
n, and dC(u,w) = 2n; and we give a point p in the geodesic segment uw such that dC(p, x) ≥ n for all
x ∈ uv ∪ vw.

Let s1, . . . , s2n be 2n disjoint squares inscribed in the triangulation E. Let u = E, v be the vertex
obtained from E by flipping the diagonals of the squares s1, . . . , sn and w be the vertex obtained from
v by flipping the diagonals of the squares sn+1, . . . , s2n. The segments uv and vw consist on flipping,
respectively, the diagonals of s1, . . . , sn, and sn+1, . . . , s2n, in order. The segment uw consists on flipping
first the diagonal of the square s2n, then the diagonal of s2n−1 until the diagonal of s1, in decreasing
order (see figure 3). The point p is the vertex obtained from E by flipping the diagonals of sn+1, . . . , s2n.
By the remark 7 all these segments are geodesics, and dC(p, x) = n + min{dC(u, x), dC(w, x)}, for all
x ∈ uv ∪ vw.
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Figure 3: The points correspond to triangulations obtained from E by flipping the diagonals of si
if there is a one in the i-th coordinate. Discontinuous lines represent distances in C.

4 The automorphism group of the complex C

In this section we study the group of automorphisms Aut(C) of the asymptotic pants complex C, and we
prove that it is isomorphic to the semi-direct product T ⋊ Z/2Z.

The proof of this result has some similarities with Ivanov’s proof (see [14]) of the fact that the automor-
phism group of the arc complex of a compact surface is isomorphic to the extended mapping class group.
In particular, he showed that the image of a maximal simplex determines completely an automorphism.
In our case, every automorphism is determined by its image of the ball of radius one centred in some
vertex v. Then, given an automorphism ϕ of the complex C, we construct an element t ∈ Ψ(T ) ⊂ Aut(C)
such that t(E) = ϕ(E). For this step, we need to introduce an auxiliary complex, which is related to the
link of v in C.

4.1 Construction of the link complex L2(v)

Recall that in any triangulation v of Σ′, the flips along two different arcs of v do not commute if and
only if both arcs belong to the boundary of some triangle of v (remark 5). We construct a sub-complex
of C which encodes this information.

Let L1(v) be a graph whose set of vertices is the set of vertices of C adjacent to the vertex v. Two vertices
are connected by an edge if they lie in the same pentagon in C.
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Figure 4: The link of E.

Given a vertex of C there is a geometric interpretation of L1(v): we associate to every arc a of the
triangulation v a vertex which represents the vertex of C obtained from v by flipping the arc a. Then,
from the geometric interpretation of the 2-cells of C (remark 5) we see that two vertices of L1(v) associated
to the arcs a, b are joined by an edge if and only if there is a triangle in v having both a, b on its boundary.
Thus, L1(v) can be seen as a connected union of triangles, each of them inscribed on a triangle of v,
where the intersection between different triangles is either empty or a vertex, and where every vertex
belong to two different triangles (see figure 4).

Definition 7. Let v be a vertex of C. The link of v is the 2-dimensional complex L2(v) obtained from
L1(v) by gluing a 2-cell on each triangle. Furthermore, the link lies on D

2 and every triangle is naturally
oriented.

Remark that the link has been constructed using only the combinatorial structure of C in the neighbour-
hood of a vertex. Note also that C is regular in the sense that all vertices have the same combinatorial
structure on their neighbourhoods. Thus, one can derive the following result:

Lemma 2. Let v be a vertex of C. Then, every automorphism φ ∈ Aut(C) induces an isomorphism
φ∗,v : L2(v) → L2(w), where w = φ(v).

Now, using the transitivity of the action of T on C one obtains:

Corollary 4. Let v and w be vertices of C. Then, their links L2(v) and L2(w) are isomorphic.

4.2 Extensions of link isomorphisms

In the previous section we proved that every automorphism ϕ of C induces link isomorphisms between
L2(v) and L2(w), where w = ϕ(v). Now, given two vertices v and w of C and given an isomorphism
i : L2(v) → L2(w) between their links, it is natural to ask under which conditions one can find an
automorphism ϕ ∈ Aut(C) such that ϕ∗,v = i. More specifically, which is the main obstruction to the
existence of this automorphism?

Let ϕ ∈ Aut(C). Let w be the image of v by ϕ. Let (a, b, c) be three vertices of a triangle ∆ on the link
L2(v), and suppose they are cyclically ordered according to the orientation of the triangle. The vertices
ϕ(a), ϕ(b), ϕ(c) are the vertices of a triangle φ(∆) in the link L2(w). Now, there are two possible cases:

1. The orientation of ϕ(∆) induces the cyclic order (ϕ(a), ϕ(b), ϕ(c)) on its vertices. Then we say that
ϕ is orientation preserving on ∆.
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2. The orientation of ϕ(∆) induces the cyclic order (ϕ(a), ϕ(c), ϕ(b)) on its vertices. Then we say that
ϕ is orientation reversing on ∆.

Definition 8. Let ϕ ∈ Aut(C) and v be a vertex of C. We say that ϕ is v-orientation preserving
(reversing) if it is orientation preserving (reversing) on every triangle of L2(v).

Remark 8. Every element f ∈ T induces an automorphism Ψ(f) ∈ Aut(C) (from proposition 4) which
is v-orientation preserving for all vertices v of C.

Lemma 3. Let v and w be vertices of C, and i : L2(v) → L2(w) be an orientation preserving isomorphism
of their links. Then, there exists a unique automorphism ϕi ∈ Aut(C) such that ϕ∗,v = i. Furthermore,
ϕi ∈ T .

Proof. We first prove the existence by constructing ϕ ∈ T in the following way: let {Id1

c1
, . . . , Idl

cl
} a set of

separating arcs on the triangulation w containing all the edges which differ from E. Let u′1, . . . , u
′
l be the

vertices of L1(w) corresponding to the triangulations obtained from w by flipping, respectively, the edges
Id1

c1
, . . . , Idl

cl
. Let {In1

a1
, . . . , Ink

ak
} be separating arcs on the triangulation v containing on their interior

i−1(u′1), . . . , i
−1(u′l). Let u1, . . . , uk be the vertices of L1(v) corresponding to the triangulations obtained

from v by flipping, respectively, the edges In1

a1
, . . . , Ink

ak
. Then, i(u1), . . . , i(uk) are vertices corresponding

to edges which form a set of separating arcs of w, {Im1

b1
, . . . , Imk

bk
}. Define ϕ by ϕ(I

nj

aj ) = I
mj

bj
for 1 ≤ j ≤ k.

It is easy to see that ϕ∗,v = i.

Uniqueness: this proof is based on the remarks 5 and 6. Let ψ ∈ Aut(C) such that ψ∗,v = i. Then, we
prove that its action on the 0-skeleton of C must coincide with ϕ.

• ψ(v) = w.

• For every element u on the unit sphere of C centred in v, ψ(u) must be i(u).

• Suppose that ψ is defined in the ball BC(v, n) of C of radius n centred in v for n ≥ 2, and let u be
a vertex at distance n+ 1 of v. Consider a path p = v, u1, . . . , un−1, un, u of length n+ 1 joining v
and u. The vertices un−1, un, u define a unique 2-cell in C (remark 6), and this 2-cell contains at
least a fourth vertex u′ ∈ BC(v, n). Thus, ψ(u) must be the vertex of the unique 2-cell defined by
ψ(u′), ψ(un−1), ψ(un) which is adjacent to ψ(un) and different from ψ(un−1).

Lemma 4. Let v and w be vertices of C and let i : L2(v) → L2(w) be an isomorphism of their links
such that it is orientation reversing on ∆1 = (u0, u1, u2) and orientation preserving on ∆2 = (u0, u3, u4).
Then, there does not exist ϕ ∈ Aut(C) with ϕ∗,v = i.

Proof. Suppose there exists ϕ ∈ Aut(C) such that ϕ∗,v = i.
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i(u1)

i(u4)

w i(u0)

ϕ(u6)

ϕ(u5)

v

u1

u4 u6

u5

u0

ϕ

Figure 5: Example of lemma 4.

The vertices u1, v, u0 define a pentagonal 2-cell of C; let u5 be the vertex at distance 1 of u0 and different
from v on this cell. Analogously, let u6 be the vertex at distance 1 of u0 different from v and lying on
the pentagonal 2-cell defined by the path u4, v, u0. The path u5, u0, u6 defines a pentagonal 2-cell of C.

On the other hand, i(u1), i(v), i(u0) also define a pentagonal 2-cell of C. Adapting the prove of uniqueness
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of the lemma 3, ϕ(u5) must be the vertex at distance 1 of i(u0) and different from w on this pentagonal
2-cell. Furthermore, ϕ(u6) must be the vertex at distance 1 of ϕ(u0) different from w and lying on
the pentagonal 2-cell defined by the path i(u4), i(v), i(u0). But in this case the path ϕ(u5), ϕ(u0), ϕ(u6)
defines a squared 2-cell of C, which contradicts the fact that ϕ ∈ Aut(C). See figure 5 for a picture of the
situation.

Remark 9. Let v be a vertex of C and let w be one of its neighbours in C. Let w, u1, u2 and w, u3, u4
denote the triangles of L2(v) containing w. Observe that the geometric representation of the link L2(w)
of w has the same vertices as L2(v) and only the triangles mentioned above change to w, u1, u4 and
w, u2, u3. See figures 4 and 6.

Figure 6: The link of the vertex of C obtained from E by flipping I10 .

This provides an alternative prove of lemma 4:

Proof. Suppose there exists ϕ ∈ Aut(C) such that ϕ∗,v = i. Then ϕ∗,u0
must be an isomorphism between

the link of u0 and the link of i(u0). As a consequence of remark 9, u1 and u4 are adjacent in the link of
u0, but i(u1) and i(u4) are not adjacent in the link of i(u0) (see figure 7), which contradicts the fact that
ϕ∗,u0

is an isomorphism.

Figure 7: The map i in ∆1 and ∆2. In discontinuous lines the links of u0 and i(u0).

Lemma 5. Let iR : L2(E) → L2(E) be the orientation reversing isomorphism obtained by the symmetry
of axis I10 . Then, there exists a unique automorphism ϕR ∈ Aut(C) such that ϕR∗,E

= iR.
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Proof. The uniqueness can be proved exactly as in lemma 3. For the existence it suffices to send each
vertex to its symmetric with respect to the symmetry of axis I10 .

4.3 Proof of theorem 1

In order to simplify the prove of theorem 1 and give a geometric interpretation of it, we introduce the
following concept:

Definition 9. Let ϕ ∈ Aut(C). It is orientation preserving (reversing) if it is v-orientation preserving
(reversing) for all vertices v of C.

Remark 10. As a consequence of lemma 3, the subgroup of orientation preserving automorphisms of C
is isomorphic to T .

Remark 11. The automorphism ϕR from lemma 5 is orientation reversing.

Using remarks 10 and 11, one obtains the following classification of the automorphisms of C:

Proposition 6. Every automorphism of C is either orientation preserving or orientation reversing.

Proof. As a consequence of lemma 4, given an automorphism ϕ of C, its restriction ϕ∗,E to the link
L2(E) is either E-orientation preserving or E-orientation reversing. In the first case, ϕ ∈ Ψ(T ) by lemma
3 and thus it is orientation preserving (remark 10). In the second case, consider the automorphism
ϕ′ = ϕ ◦ ϕR, which is E-orientation preserving and thus orientation preserving. Then, ϕ = ϕ′ ◦ ϕR (note
that ϕ−1

R = ϕR), therefore it is orientation reversing (remark 11).

Now, we prove theorem 1:

Proof. We want to construct the following exact sequence:

1 −→ T −→ Aut(C) −→ Z/2Z −→ 1,

and prove that it splits.

We denote by Π : Aut(C) → Z/2Z and define it as follows:

ϕ 7→

{

0, if ϕ is orientation preserving
1, if ϕ is orientation reversing.

Proposition 6 shows that the map Π is a well defined morphism of groups. As a consequence of lemmas
3 and 5, the map Π is surjective and the isomorphism Z/2Z ≃ 〈ϕR〉 is a section of Π.

Finally, ker(Π) ≃ T follows from lemma 3.

Therefore, we have an action of Z/2Z into the group of automorphisms of T , where the generator of
Z/2Z acts as the automorphism γR which is defined by γR(t) = ϕR ◦ t ◦ ϕR, for t ∈ T . In particular, the
automorphism γR obtained in T is defined by γR(α) = α−1 and γR(β) = α2β−1α2. Thus, if we compose
γR with the conjugation by α2 we obtain the generator of the group of outer automorphisms of T sending
α to α−1 and β to β−1, which is the generator of Out(T ) given by Brin in [2].

Remark 12. (Geometric interpretation of theorem 1.) By proposition 6, all automorphisms of C are
either orientation preserving or orientation reversing. Thus, if one defines the extended asymptotic map-
ping class group of Σ as T ⋊Z/2Z, theorem 1 turns out to be an exact analogue to Ivanov’s theorem for
the planar surface of infinite type Σ.
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