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Abstract An original approach is proposed to estimate the impacts of climate change on extreme events
using an hourly rainfall stochastic generator. The considered generator relies on three parameters. These
parameters are estimated by average, not by extreme, values of daily climatic characteristics. Since climate
changes should result in parameters instability in time, the paper focuses on testing the presence of linear
trends in the generator parameters. Maximum likelihood tests are used under a Poisson-Pareto-Peak-Over-
Threshold model. A general regionalization procedure is also proposed which offers the possibility to work
on both local and regional scales. From the daily information of 139 rain gauge stations between 1960-2003,
changes in heavy precipitations in France and their impacts on quantile predictions are investigated. It
appears that significant changes occur mainly between December and May for the rainfall occurrence which
increased during the four last decades, except in the Mediterranean area. Using the trend estimates, one

can deduced that these changes, up to now, do not affect quantile estimations.
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1 Introduction

The great interest in climate change during the past twenty years has led to a quasi unanimous conclusion

for scientists : the Earth’s climate is changing (IPCC [2007). To prevent hydrological risks, it is important

to know if this global change could lead to an increase in extreme events (Groisman et all[2005). In an
hydrological context, it is well known that return period estimations are of fundamental interest. To deter-
mine the dimensions of hydraulic works such as dams or dikes, a preliminary study on rainfall, particularly

extreme rainfall, should not be missed.

The average temperature has increased 0.6~ C (£ 0.2°C) since the end of the 19" century (IPC

2007). This change should have consequences on precipitations. Simply stated, in a hotter world, the water

evaporation increases which may lead to a global increase in precipitation. On land, a small increase in

annual precipitation has been observed during the last century, but this trend is not uniformly distributed

across the Earth (IPCO [2007). The increase in annual precipitation seems to be more significant in the

middle latitudes than tropical areas. In the United States (Groisman et al. [2001), Canada (Zhang et al

2000) and northern and western Europe (Schonwiese and Rapp1997), there was an increasing trend during

the last century. In Europe this can be explained by the persistence of the positive phase of the North

Atlantic Oscillation in the last two or three decades (Cassou 12004). Unlike these studies, decreases have

been detected in China (Zhai et al!|1999) and the Mediterranean area (Xoplaki et all 2004).

The above studies focused on the evolution of average characteristics of precipitation and not on ex-

treme values. Global Climate Models (GCM) do not efficiently represent extreme events (Moberg and Jones

2004). So GCM outputs are of poor interest for extreme events. [Dubuisson and Moisselin (2006) studied

the trends of precipitation indices in France and showed that there is no evidence of an increase in heavy
precipitation events. Here we are concerned with the frequency of extreme events, looking for a potential

variation in time. Classical statistical methods (fitting a probability law) are of limited interest because of

a lack of long time series, leading to inaccurate estimation of distribution tails (Renard [2006; [Pujol et al

2007b). As an example, following data quality criteria recommended by Météo-France, only one time series

of daily precipitations could be considered to study a climate change in France. This time series comes from
139 rain-gauge stations during the period of 1960-2003. Note that data from 2004 and later are not yet
available because of actual homogenization by Météo-France. In the sequel, an original approach is proposed

to estimate the impacts of climate change on extreme events, based on the use of an hourly rainfall stochas-



tic generator (Arnaud et all 2007). It can be coupled with a rainfall-runoff model (Arnaud and Lavabr

2002). Climate evolution is then detected from the values of the generator parameters. Unlike classical

statistical approaches, these parameters are estimated from average, not extreme, values of daily climatic
characteristics. As a consequence, the estimations are less influenced by the sample than those based on
extreme values. The generator parameters we consider are the following: event occurrence, event duration
and event intensity. They are particularly well adapted to examine the rainfall signal. From these three
characteristics different types of climate that are well known in France can be discriminate. For example
the ”oceanic” climate can be characterized by events with long duration, the "alpine” climate by a large
number of events, and the "Mediterranean” climate by events with a strong intensity. Conditionally to the
values of these three parameters, rainfall quantiles for every rainfall duration, from one hour to ten days,

can be estimated from the generator precipitation outputs. It has been showed in a recent study that the

generator correctly estimate rainfall quantiles in such a time range (Neppel et all2007).

The first aim of the present work is to study the stability in time of the generator parameters. According

to the definition of parameters, we applied the Poisson-Pareto-Peak-Over-Threshold model (POT). This

model, commonly used in extreme values theory (Coles [2001), is well adapted to our framework. A linear

trend for the generator parameters is tested through a maximum-likelihood ratio test approach.|Parey et al

2007) also applied such an approach on time series of temperatures to detect a trend in extreme tem-

peratures. A procedure which allows us to work on a regional scale is also proposed. Since many climates
are present in France, all landscapes might not be subject to the same changes. A hierarchical clustering,
based on average rainfall characteristics, led us to divide France into 4 homogeneous climatic zones. Then
generator parameters can be estimated over the period 1960-2003 under the climate change hypothesis.

This new estimation allows us to appreciate rainfall distribution changes due to climate change.

The principle of the hourly rainfall generator is explained in Section2]. The three generator parameters
used in the sequel are presented in details. In Section [3 we focus on the test for the stationarity of the
rainfall generator parameters in both local and regional scales. Section [ presents a data application. Data
on which the trend test is applied are presented in the sub-section Il Sub-section [£2]illustrates how the
division of France into 4 homogeneous climatic zones are obtained. Sub-section shows the parameters

evolution in time and compares the robustness between the local and the regional trend test. Sub-section [4.4]



presents the effects of the climate change hypothesis on the rainfall distribution. A general discussion is

proposed in Section Bl A conclusion and some perspectives are given in Section [f] .

2 The Hourly Rainfall Generator: SHYPRE

In the literature, the rainfall quantiles can be estimated in two ways. The most well-known method is to

fit a probability law on data (Coles 2001). Another method is to use a mathematical structure of rainfall

representations (Waymire and Gupta [1981); [Wu et al! [2006; |Sivakumar and Sharma [2008). In this paper

we are concerned with the latter method. Our aim is to propose an original approach for detecting trend

in extreme rainfall. In the following, the general principle of the rainfall generator we consider is briefly

presented (for details, see (Arnaud |2008; |Arnaud et all|2007)) and the generator parameters are detailled.

2.1 Generator Principle

SHYPRE is a model of rainfall hydrograph simulation based on an hourly rainfall generation, which can be

coupled with a rainfall-runoff model. It has been developped at Cemagref in Aix-en-Provence (Cernesso

1993; |Arnaud [1997). The model is based on descriptive variables from hourly information characterizing

the rainfall signal such as the rainfall depth or duration. Each variable was fitted by a probability law

Cernesson et al! 11996). As in Monte-Carlo methods, these variables were simulated, taking into account

dependencies. Then time series, statistically equivalent to observations, can be reproduced for any desired
time period. Quantiles can be empirically estimated from these simulated times series. The generator’s
principle is illustrated in the Figure [

A regionalized version of the rainfall generator was parameterized according to daily data based on the

knowledge of three parameters, leading to relevant results (Arnaud et al!l2006). In fact, unifying the model

makes it perfectly applicable to regions with varied rainfall ranges, such as metropolitan France, Reunion

island in the Indian Ocean, and Martinique island in the Caribbean (Arnaud et all 2007). The region-

alization of the three model parameters, using 2812 daily rain gauge stations in the whole of France

Sol and Desouches [2005), allows the estimation of rainfall quantiles for different time durations on a

square of 1km? everywhere in the French territory (Arnaud et all|2006). For the Languedoc-Roussillon

region, the obtained results have been compared to those of an another regional approach (Neppel et al

2007). Results are comparable and it appears that the regionalized generator version correctly estimate



rainfall quantiles for durations from one hour to ten days. As a stochastic model, the rainfall generator
do not perfectly represent the rainfall reality but bearing on many studies showing that it represents well

extreme rainfall for many types of climate (from temperate to tropical), we assume in the sequel that it

correctly reproduce the behavior of extremes rainfall (Arnaud [2004).

Stage 1: calibration of the model parameters Stage 2 : simulation of hourly hyetographs
Simulation of the
- Selection of the descriptive variables descriptive variables louriy repartition]
from their PDF.
« Fitting of the probability density function P — —
(PDF) for the descriptive variables - Storm valum
- Storm durmon
= Analyze of the variables independerice -ate...
Observed events | Simulated events
= Maximum rainfall of
//Hourty hyc!ohrapht\ ( different duration ’-_(f lourly hystohraphs
{mm) r ll'- L
1
Time (h Time (h)
\'\_. i \ i stage 3: \\._ » S —
event (i) event(i+1) ... validation on unused event (k) event (k+1)
variables

Fig. 1 Principle of the hourly rainfall generator. Figure from ‘Arn;;; ; ;l])

2.2 The three generator parameters

The descriptive analysis of rainfall was based on observed rainfall events selected on daily criteria. An event
is defined as a succession of daily rainfall depths of more than 4 mm, including one daily rainfall depth
of at least 20 mnrJ;|. This definition allow us to assume that events are mutually independent. The three

following daily variables were considered:

— NE (event occurence) is the average number of event per year,
— uwPJmaz (event intensity) is the average of the maximum rainfall in one day of each event,

— uDTOT (event duration) is the average of event duration.

L The threshold 20 mm is a compromise to have enough event (~ 5 events per years) and to focus on extreme

events.



Moreover we selected two seasons: summer from June to November (when extreme events usually occur),
and winter from December to May. From the 3 x 2 daily parameters, say N Ey, uPJmazyy, pDTOTy for
winter and NEg, uPJmaxg, pnDTOTs for summer, it was possible to run the hourly rainfall generation
model for periods as long as needed, leading to a probabilistic study on the extreme rainfall with daily
information.

To conclude, from these 3 x 2 daily parameters, we can generate very long time series to estimate rainfall

quantiles for different durations and any return periods.

3 Detecting a trend for the generator parameters

We wanted to test the null hypothesis Hy: the parameters are stationary versus the alternative hypothesis
Hj: the parameters vary in time. Many studies present an overview of statistical approaches available for

detecting and estimating trends in environmental data. However, the trend test power varies according

to the nature of the studied data. As in (Hess et all[2001) and (Yue and Pilon 2004), a simulation study

was done to determine which test appeared as the most powerful when respecting a fixed false rejection

rate (type I error). The maximum likelihood ratio test (Coles [2001) appeared as the best approach for our

study. Note that [Renard (2006) arrived at the same result regarding runoff data.

3.1 Maximum Likelihood Ratio Test : ML test

Let My and M; designate two alternative models, of size dg and dy (the size is the number of parameters)
and assume that My is nested into M; (i.e., simply stated, My can be obtained from M; when assigning
particular value for some of his parameters). We test the null hypothesis Hp: My explains well the considered
phenomenon versus the alternative Hi: M) is a better model. Let £;(X; 6;) be the log-likelihood of a sample
X for model M;, i = 0,1. Let éi be the vector of size d; maximizing £;(X;.). The deviance statistic is

defined as
D = —2(Lo(X;00) — £1(X;6y)) (1)

The basic principle is parsimony. The model is chosen according to the value of D. Under Hy and with
a sample size large enough, D o X?ll*d[)' Therefore hypothesis Hy is rejected, with a type I error «, if

D > uq where P(Xgl_do > uq) = a. The p-value notion is used to decide on rejecting or not Hp: the



p-value is the probability of obtaining a result at least as large as the one actually observed, given that the
null hypothesis is true. In our case, it corresponds to ]P(Xilfd[) > D). We decide to reject Hy with a fixed

type I error « if the p-value is less than a.

3.2 ML test for the local approach

The hourly rainfall generator is parameterized through the three above mentioned daily variables NE,
uPJmax and uDTOT'. Since the parameter pDTOT influences little the extreme behavior of the generator,
we restricted our investigations on the non-stationarity of the two following parameters : NE and puPJmazx.
The approach we used is based on the POT model.

Let n be the number of events between the year A; and the year (A1 + A). Let (Xq,...,Xn) be the
depth of the maximum daily rainfall in millimeters for these n events. Let (¢1,...,tn) be dates (in days)
corresponding to (X1, ..., Xn). The time ¢t = 1 corresponds to the first of January, A;, and ¢; corresponds
to the position, into the series, of the date of the maximum daily rainfall of the event i. For example, if
the first event occur the 10" of January, A; and the next event occur ten days after, then, t; = 10 and
to = 20. Let Nig, q,) be the occurrence variable of events between the beginning of the day d; and the
end of the day dy. For example N|; 345) counts the number of event occurring during the first year of the

sample. When working on values over threshold, it is usual to model the number of events per time unit

(frequently per year) by a Poisson’s law (Ramachandra Rao and Hamed [1999; [Lang et al![1999). An event,

according to its definition, must have at least a depth of daily rainfall over the threshold 20 mm. Thus we
can say N 4 & Ny follows a non homogeneous Poisson’s law of parameter A(¢). A(t) corresponds to the
average number of excess per day at the time ¢. Therefore N}y ; follows a Poisson’s law with rate function
tA(t). The stationarity of a Poisson process can be tested through the stationarity of the process intensity

or the inter-arrival times. For a Poisson process with an intensity A(¢), waiting times are exponentially

distributed with parameter A(¢) (Lang1999). According to a study on simulated data, the test on waiting

times appears as the best and we decide to use it. The log-likelihood to test the stationarity of the number

of events is given by:

n

Ly = Z log(A(ti)) — Z Ati)(t; —ti—1) with tg =1 (2)
i=1

i=1

Concerning the parameter NE, we can test the stationary hypothesis Hy : (M0) A(t) = Ao versus the

linear trend hypothesis Hy: (M1) A(¢t) = Ag + A1t using the ML test with d; —dgp =2 — 1 = 1.



For the parameter uPJmax, the stationary test is built as follows. The variables (X;);—1., are dis-
tributed according to the same family of probability laws and are independent since events are considered

as independent. From the event definition, we have Vi = 1..n, X; > 20mm. We used the Generalized Pareto

Distribution (GPD) family to model the threshold exceedances (Muller [2006;|Coled 2001). The GPD family
has three parameters: a location parameter u (here u = 20mm), a scale parameter o and a shape parameter

§. The cumulative distribution function P(X < z|X > u) = Fi, ,¢)(z) is given by :

1— (14 S =18 gigh 22w < L for ¢ <0,

o
Fluog)(@) = 01— (1+ L2247/ wigh 222 > L for £ > 0,
exp(—(l%‘u)) for ¢ = 0.
Moreover if X ~ F(, 5 ¢) then E(X —u[X > u) = 1L—g Thus we can estimate the generator parameter

uPJmax by ig +u. Following [Renard (2006), we assumed the shape parameter £ to be constant because of

1

sampling uncertainties. Climate change is then characterized by the non-stationarity of the scale parameter:

o(t) varies in time. Therefore the log-likelihood we considered is given by :

£GP — filog(a(ti)) -1+ %) ilog (1+ '5(?(7;)@) with v = 20mm (3)
i=1 i=1 *

The stationary hypothesis Hg : (M0) o(t) = o¢ : pPJmaz = 1‘7—_05 + u versus the linear trend hypothesis
Hi: (M1) o(t) = oo+o1t: pPJmaz(t) = %?t—l—u is tested using the ML test with dj—dy = 3—2 = 1.
The parameter \g is the only one which can be analytically estimated. For the others parameters, A1, og

and o1, an optimization algorithm is needed and we use the the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

method (Broyden [1970; 1970; IGoldfarb 11970; IShannd 1970) of the "optim()” function implemented

in the “stats” package from language R (http://www.r-project.org/).

Remark 1 The two processes being independent (Ramachandra Rao and Hamed [1999), it is possible to

analyse them separately.

Remark 2 An exponential law is sometimes used to model threshold exceedances. It corresponds to the
case where the shape parameter of the GPD is equal to 0. When £ # 0, a study on simulated data showed

that the ML test based on an exponential likelihood does not respect the theoritical type I error. Since

M_LLLL&J 2006) showed that the hypothesis £ = 0 is often rejected in France, we prefer to use the ML test

with the GPD’s likelihood even if the estimation of £ is difficult.


http://www.r-project.org/

Remark 3 The GPD model is often used in trend detection for extreme values (Pujol et all[2007b; IColes

2001). Here we use it to compute, from estimated parameters, an average in a given time. Extreme quantile

estimation from tail distribution model is much more dependent on shape parameter ¢ than any average
estimation. Then, assuming a constant shape parameter £ becomes a weaker hypothesis compared to an

extreme value framework.

To test locally the stationarity of the rainfall generator parameters, we used the above tests on each station.
For a station S, we tested the stationarity of the time series X = (X7, ..., X;fs) and t° = (t7 ..., tTSLS)

versus a linear trend where X*° corresponds to the maximum daily rainfall of the ng observed events

occurring at the station S on the dates t°. We also noted T° = (t*lg —-1,... Jﬁs — tﬁs,l) the time series
of waiting times of an event occurring at S. Using the above tests, we could conclude regarding to the

stationarity of these series according to a fixed type I error a.

3.3 ML test for the regional approach

3.3.1 Building the ’regionalized” time series

In the regional approach, we had to build time series we called "regional” by regrouping stations from each
homogeneous zone. The GPD model was used for the maximum daily rainfall of an event. In a given zone,

the shape parameter was assumed to be constant and only the scale parameter varies between stations

Onibon et al! 2004; |Cunnand [1988). The aim of this step is to construct a sample of exceedances identi-

cally distributed within each zone.
Let Z be a homogeneous climatic zone. The shape parameter was assumed to be constant in a same
Zone and it denotes £z on Z. Let {27 be the set of stations which belong to Z and VS € 2z, let

X% = X% — u, where X° = (Xig,...,X;fS). Then, X° ~ GPD(0,05,£z). It is easy to show that

VS € 2y IE()N()N(SS) ~ GPD(0,1—£&7,£7) and % ~ Ezp(l), where Exp(\) designates the exponential

law with parameter \. Using the strong law of large numbers, both laws can be used to approximate re-

: X Ts ith Yo — L Y 0s %S 7o _ 1 s S
spectively the laws of f(:z and T:z with Xg = 7= 3205 Xj and Ts = 5= 3205 15 .

To build "regional” time series for the Z zone, we regrouped stations with the following method (Neppel et al

2007):

(i) VS € 2y, we divide Xs by its empirical mean )Z'_S; the same for 7°°.
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(i) We concatenate the reduced )Z'S, the t° and the reduced T°. We obtain "regional” time series of
maximum daily rainfalls noted (Y%, ) occurring on dates %, ) and ”regional” time series of waiting
times between two events observed on a same station belonging to Z, denoted (Tfnz) with ny =
> jeny j-

The spatial dependence between stations of the same zone can lead to a bias in the calculus of p-values:

a same event can take place on several neighbouring stations. To obtain an independent and identically

distributed sample, we had to remove them from the “regional” time series. Assuming that the distance

from which two stations are considered as spatially independent is known (below this distance is called the

station dependence distance), the "regionalized” time series for the Z zone is built as follows:

(i17) for each day D € tZ, we search for observed events taking place in Z. We note Qg the set of stations
where an event occurred at one of the days D, D —1 or D + 1.

(iv) We choose randomly a station 4 in Qg Then we remove from 7% and YZ the events of stations
k € 2L —{i} if and only if the distance between stations i and k is smaller than the station dependence
distance.

(v) We repeat the (iii) and (iv) steps K times.

Thus K different "regionalized” time series ii.d. (but not mutually independents) were built for each
homogeneous zone. For a given Z zone, we denote these K time series (f/an)LK and (le:nK)LK. Using
the ML test, we tested, for k = 1 : K, the stationarity of maximal daily rainfalls with (}71an)]€ as well as
event occurrence with (flznk)k

So we had, for each parameter and each zone, K p-values to characterize if the linear trend is significant.
3.3.2 Calculating the p-value for the regional test

For each homogeneous climatic zone and for each parameter, we had K p-values coming from the ML test
on the K ’regionalized” time series . How to know, from these K p-values, if the trend is significant?
Let Z be a fixed zone and consider one of the two sets of K p-values on this zone. Let oy designates the

significance level of the regional test ( global type I error). We propose the following method :

(i) We use a False Discovery Rate (FDR) approach (see to determine, from the K obtained
p-values, the number of rejected null hypothesis on Z, that is the number of time series among K for

which the stationary hypothesis is rejected at a fixed significance level, say ay. Let mq, be this number.
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Then we want to construct the empirical distribution of the number of rejected null hypothesis among K

at risk ay under Hy:

(i1) To remove a possible time dependence under Hy, we permute without replacement the K series using
the same permutation in order to keep the dependence between series;

(i17) We then apply the ML test on each K new series and deduce the number of rejected null hypothesis
via the Benjamini and Hochberg procedure at risk ay;

(iv) Repeating (77) and (474) many times, an empirical distribution of the random variable M, is obtained;
Mg, is the number of rejected null hypothesis under Hy among K at risk ay;

(v) We use this distribution to estimate the probability P(Ma, > ma,). If this probability, which corre-
sponds to the p-value of the regional test, is smaller than oy, then Hy is rejected on Z and the linear
trend of the series is significant on Z at risk agy. Estimations 61 and &g of the parameters o9 and o1

are given by medians values coming from the K series.

Concerning the value of a, which is used for calculating the number of rejected null hypothesis among
K, it ought to be between 0.2 and 0.3. A study on simulated data showed that the significance level of
the regional test was respected for this range of values. The best is to plot P(Ms, > ma,) according
to ay in order to see from which oy we have P(Ma, > ma,) < ag. If ap is smaller than 0.3, the
stationary hypothesis on a whole zone Hj is rejected at risk ag. We apply this regional trend test to data

in Section [4.3.2]

4 Hypothesis of climate change

4.1 Studied Data

Climate change must be studied only on high quality data otherwise observed changes could come from
the data themselves and might represent data artefact, leading to misleading interpretations. The reference

daily series has been established by Météo-France for climate study. For example, the IMFREX project

(http://medias.cnrs.fr/imfrex/web/) and [Dubuisson and Moisselin (2006) worked on such series.

This data is associated with quality codes and synthetic criteria to consider the homogeneity-stop in the
series. Météo-France’s advice was applied to our data. To establish a compromise between the period length

and the number of stations, we restricted our study to the period 1960-2003. 139 rain gauges were chosen,


http://medias.cnrs.fr/imfrex/web/
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with 10% of missing data at the most. Their location is presented in Figure 2 (by black points).

From these 139 daily rainfall time series, we can extract the date and depth of the maximum rainfall in one
day and the duration of each event observed between 1960 and 2003, in order to calculate trends of 3 x 2
generator parameters on a local scale. To work regionally, 4 homogeneous climatic zones were created, as

explained below.

4.2 Climatic zones construction

To use the regional approach for the trend test (see Section [B.3]), we looked for some homogeneous climatic
zones. To achieve this, a hierarchical clustering using Ward’s algorithm was applied. Indeed, the aim of the

Ward procedure is to unify groups in such a way that the variation inside these groups does not increase too

drastically: the resulting groups are as homogeneous as possible (Saportal2006). Champeaux and Tamburin

1996) applied it to daily precipitations in France. Here, we chose to cluster according to the coordinates

and the 3 X 2 generator parameter values (N Ey, uPJmazyw , uDTOTyw , NEg, uPJmazs and uDTOTg)
of rain gauges. In addition to the above 139 rain-gauges, 2761 other daily rain-gauges are also available in
metropolitan France. This data cannot be used to study climate change because the time-series are not long
enough. But these ones allowed us to estimate properly the average parameters of the rainfall generator
and to better characterize the climatic zones. The clustering parameters were standardize(ﬂ and we just
needed to calculate the inter-distance matrix. We chose the Euclidean distance criteria since it favours
marked differences and gives more importance to distances between groups. Then 4 zones were obtained:
“highland”, "mainland”, "mediterranean”, and ”oceanic” . They are illustrated in Figure

Table [ shows the average of the 3 x 2 parameters of the rainfall generator and the number of stations in

each zone where climate changes were studied.

4.3 Results of parameter evolution

This section is concerned with the application of the trend tests (see Section [B) on the data presented in

Section ]l First, we illustrate the results of the local trend test and its sensibility about the observation

2 A weight of 2 was applied to the variables NEy,, uPJmazy , NEg, and uPJmazxg because they have a bigger

influence on the extreme behavior of the generator than uDTOTy and pDTOTs.
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Zone ”Highland” | ”"Mainland” | ”"Mediterranean” | ”Oceanic”

nb. of stations among 703 1103 385 709

2900 ones to create zones

nb. of stations among 139 17 65 27 30

to detect climate change

NEw 5.1 1.4 4.9 2.7
NEg 6.24 3.24 5.2 3.6
wPJmazy (in mm) 30.6 26 37.7 27
puPJmazs (in mm) 33 29 44 30
uDTOTy (in day) 2.6 2.2 2.1 2.7
uDTOTs (in day) 2.1 2.0 1.8 2.3

Table 1 Number (nb.) of stations to create zones and to detect climate change and the average of generator

parameter values in each zone.

period. Then we apply the regional trend test on the four zones presented in Section [£21

The significance level for all trend tests is fixed to a = 0.1.

Remark 4 Our test procedure is not limited to time linear trends. For example, an exponential relation
o(t) = exp(op + o1t) has also be tested. Tests lead to same results than with a linear trend even for the

percentages of evolution parameter. Only the projection in the future will alter the results.

4.3.1 Results of the local trend test

The local trend test presented in Section 3.2l has been applied on the data set in order to conclude regarding
to the stationarity of the parameters NE and pP.Jmaz on each of the 139 rain gauge stations between
1960 and 2003. The results are illustrated in Figure Bl A trend is significant if the test p-value is smaller
than o = 0.1. To study the relevance of these results, we also applied the local trend test with different
observation periods: we successively removed from the reference observation period (1960-2003) the five
first years and the last three years.

Results of the local approach led to some apparent contradictions. First, climatic evolution should be the

same for nearby stations, but local results showed that some stations had contradictory significant trends,
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Highland
Mainland

Mediterranean
Oceanic

Fig. 2 4 homogeneous climatic zones as regards rainfall generator parameters and location of the 139 rain gauges

used in trend test.

as for example in northern Brittany for the parameter uPJmaxg (see the circle in Fig. . Thus it was
difficult to establish climatic evolution in a specific region from the local approach. Moreover the period
of observations has a (t00) big influence on the results. In fact, even if the number of stations where Hy is
rejected is approximately the same for the different observation periods, there are a lot of stations where
the test conclusion changes. For example, the parameter pP.Jmazyy has a significant trend for 28 stations
between 1960 and 2003. But 13 of them become non-significant between 1965 and 2003. So it is difficult to
determine if the observed trends are related to a potential evolution or come from sampling fluctuations.
The non-robustness of the local trend test is due to the short length of time series. To enlarge the data set,

we use the regional approach presented in Section

4.3.2 Results of the regional trend test

We now consider the regional trend test presented in Section B3] with K = 100 in order to test the NE

and puPJmax stationarity between 1960 and 2003 on each of the 4 zones illustrated in Figure 2l To use
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(c¢) Trend of pPJmaz in Winter (d) Trend of NE in Winter

Fig. 3 Local trend test results on each of the 139 stations for the variables NE and pPJmaz: trend (increase if the
red triangle points upwards , decrease if the blue triangle points downwards) and the value of the p-values (according

to size). We tested in the summer season (on the top) and the winter season (on the bottom).

the regional test, we have to define a station dependence distance for each zone. Since its estimation
varies according to the method used we decided to consider several station dependence distances Distg to
Dists (see Table B). Distg to Disto correspond to the results of three different methodsH leading to three
potential different dependence distances, and Dists corresponds to the case where all stations (in a same
Zone) are mutually dependents. Moreover, for the station dependence distance Disty, we also consider
different observation periods as for the local test.

First, the regional test results are not affected by the station dependance distance (see Table[d). Significant
trends are the same for any distances, even for the estimation of the parameter evolution. This point is

important when you know the difficulty to estimate these distances. Unlike the local test, the observation

3 It depends on the studied variables: the gap between the dates of the annual maximal daily rainfall (Disto), the

number of common days when an event occur (Dist1), and the number of common rainy days (Dist2)
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Period N Evw NEg PJmazxw | PJmaxg
1960-2003 36 10 28 12
1965-2003 36 15 27 11
1960-2000 33 8 28 9

1965-2003 vs 1960-2003 14- 14+ | 6- 11+ 13- 12+ 8- 7+
1960-2000 vs 1960-2003 8- 5+ 6- 4+ 4- 4+ 5- 24

Table 2 The first three rows: numbers of stations (out of 139) where Hy has been rejected on different observation
periods according to the local trend test; the last two rows : .+ (respectively .-) corresponds on numbers of stations
where Ho has (respectively not) been rejected on the observation period while Hp has not been rejected (resp. has

been rejected) on the period 1960-2003.

periods have a minor influence on the regional test results (see Table Bl). All significant trends detected
between 1960 and 2003 are also significant for the two others observation periods. Some differences appear,
particularly in Summer and in the "mediterranean” zone where the rainfall variability is the biggest in
France. Nevertheless, the regional approach gave us global information, in a given zone, about the climate
change.

The concatenation of several stations enlarges the data set and reduces the sampling variability. In other
words, significant regional trends have less chance to come from sampling variability. The regional approach

seemed clearly better to establish a real climatic evolution.

Distance Season ”Highland” | ”Mainland” | ”"Mediterranean” | ”Oceanic”
Winter 55 60 50 80
Distg
Summer 50 50 40 55
Winter 150 200 75 130
Distq
Summer 150 200 75 110
Winter 250 300 150 250
Disto
Summer 250 300 150 250
Winter 1000 1000 1000 1000
Dists
Summer 1000 1000 1000 1000

Table 3 The different station dependence distances (in km) taken for the "regionalized” time series building for

each homogeneous zone.
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Remark 5 The Generalized Pareto Distribution is used to infer on the parameter P Jmax. The threshold
u must be large enough to obtain a good approximation of the tail distribution and it is usually determined
through the mean-ezcess-function (Coles 2001). Here the threshold value was u = 20mm for the 4 zones
because of the event definition. This value seems too small especially for the "mediterranean” zone where the
threshold is widely fixed to around 50mm (Pujol et al![2007a). The regional trend test has been performed

with this threshold and led to the same significant trends.

Parameter ”Highland” ”Mainland” ”Mediterranean” ”Oceanic”
NEw [+17%,4+20%)] | [+38%, +42%] [—17%, —21%] [+20%, +25%)]
NEg ~ [+9%, +13%] ~ ~

uPJmazyw [+8%, +11%) ~ ~ ~

uPJmazs ~ ~ ~ ~

Table 4 The robustness of the regional test according to the station dependence distance. Significant trend at risk
a = 0.1 of different parameters with the regional approach with a four-zone division. +.% (—.%) corresponds to an
increase (a decrease) in percentage between 1960 and 2003. [.,.] is the range of percentage due to the choice of the

dependence distance

. ~ signifies that there is no significant trend for the 4 dependence distances.

4.3.83 Observed trends

Some interpretations of the above trend tests results on the period 1960-2003 are proposed in this section.
The results presented in FigureBlhave to be considered as only descriptive ones. They are given to illustrate
how perform the local trend test. From these results, no regional interpretation, as for example, "the number
of winter events increased significantly around Paris between 1960 and 2003” (see the circle in Fig. can
be deduced. Indeed, for a rigorous statistical analysis, one of the well-known multiple test procedure should
be used to provide a regional conclusion from local results (Benjamini and Hochberg 11995). Unfortunately
such procedures are known to be not powerful, and we did not use any of them. So we prefer to use the
results of the regional trend test.

The main observed changes took place in winter with an increase of event intensity in only ”highland”
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Parameter Period ”Highland” | ”Mainland” | "Mediterranean” | ”Oceanic”
1960-2003 +17% +42% —20% +20%
NEw 1960-2000 +21% +35% —21% +20%
1965-2003 +14% +46% —26% +24%
1960-2003 ~ +11% ~ ~
NEs 1960-2000 ~ +9% —10% +10%
1965-2003 ~ +12% +11% ~
1960-2003 +11% ~ ~ ~
pPJmazw | 1960-2000 +13% ~ ~ ~
1965-2003 +10% ~ ~ ~
1960-2003 ~ ~ ~ ~
pwPJmazs | 1960-2000 ~ ~ ~ ~
1965-2003 ~ ~ +6% ~

Table 5 The robustness of the regional test according to the considering period. Significant trend at risk o = 0.1
of different parameters with the regional approach with a four-zone division. +.% (—.%) corresponds to an increase

(a decrease) in percentage during the considering period. ~ signifies that there is no significant trend.

zone. This increase may be caused by the climate warming. Indeed, rain gauge stations underestimate
the intensity of solid precipitation. Because of the climate warming, some solid precipitation could be
transformed in liquid precipitation which leads to an increase of the intensity.

Unlike the "mediterranean” zone, there were more and more winter events in the "highland”, "mainland”
and “oceanic” zones. In summer, no trend was detected except for the "mainland” zone where the number
of events increased between 1960 and 2003.

The regional trend test was also performed with a nine-zone division. Results show no contradictory trend

with those coming from a four-zone division.
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4.4 Effects on rainfall distribution

For each of the 139 stations, a significant trend for the rainfall generator parameters was or was not
detected. So climate change was integrated in the estimation of generator parameters: if the linear trend
of a parameter was significant according to the ML test, an estimation of this parameter was possible for
each year between 1960 and 2003.

Let Paramg be the set of rainfall parameters estimated under the stationary hypothesis by computing the
parameters average on the whole observed time series.

Let Param 4 be the set of rainfall generator parameters under the non-stationary hypothesis estimated in
year A. On stations (or zone) where no stationary hypothesis was rejected (for all parameters), we had

Paramg = Param 4. In the following, Paramf;“’C corresponds to the parameter set estimated from the

local trend test results, and Paramf}egio

to the one estimated from the regional trend test results. These
parameter sets are estimated from results presented in Section A3l

With the rainfall generator, rainfall quantiles can be estimated using these parameter sets. So the effects
of climate change on extreme rainfall can be evaluated from the comparison between quantiles estimated

from Paramg and quantiles estimated from Param,. We can also assess whether or not an evolution of

average parameters leads to a bigger evolution when working with extreme values.

Remark 6 Quantiles from the rainfall generator do not come from a fit of a probability distribution like
GPD or exponential. They are estimated empirically from simulated hydrographs. Their estimation is
possible for any return period and any duration from one hour to ten days. So, generator results can be

looked upon as probability distributions.

Considering two sets of parameters for the rainfall generator leads to two different distributions. Let T’
denote a return period. We can calculate the T-quantiles from these two distributions and compute their
ratio. Then we obtain an increase or a decrease (in percentage) of the volume associated with the return
period T, and we can assess if an evolution in a small return period is accentuated in a bigger return
period.

Let PM24 designate the volume of maximal rainfall in 24 hours. Let ¢% (respectively qﬁ) be PM24

associated to the return period T coming from generator results with the parameterization Paramg (re-



20

2003
spectively Param ). We calculated the ratio Ry = 4L

7 for T = 2,5,10,100, 1000 years. In Figure @]
we compared the ratio Ro with the Rp ratios with 7" > 2 years for each station. The increase of changes
between the Paramg and the ParambSg; simulations can be evaluated according to the return period. For
most stations, |[Rpy — 1| > |Rpe — 1| for T1 > T2. According to the rainfall generator, climate change is
likely to have more significant effects on the extreme behavior than on the average one for the maximum
daily precipitation. This assumption can be discussed when we compare quantiles (of the maximum daily
precipitation) estimated with the parameterizations Paramg and Param%eog?fo. Table [6l shows the average
evolution inside each zone between these 2 parameterizations. Unlike the local approach, the regional one
lead to small changes in the quantile estimation. Even for high return period, changes are less than 10%
except for the "Highland” zone. It is due to the fact that no significant trend was detected for the uPJmax
parameter. In addition, the strongest rainfall events in France occur in summer. The generator takes into
account this phenomenon. Its extreme behavior is mainly influenced by the "summer” parameters. Unlike
the local approach, no or very few regional trends were detected in "summer”, that is why changes are
small. The distinction of 2 seasons in the trend calculation allowed us to take into account the real impact
of climate change. Indeed if we did not distinguish the 2 seasons, a significant increase in the event occur-
rences would be found which would lead to bigger changes. These changes would not reflect reality: only

winter events have a significant increase.
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Fig. 4 Ry = qz—o with T'= 5,10, 100, 1000 years according to Rz with the PaTamQLO"OC3 parametrization.
T
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Return period (T) || "Highland” | "Mainland” | "Mediterranean” | "Oceanic”
2 years ~ +10% ~ +5% ~ —1% ~ +2%
5 years ~+11% ~ +5% ~ —2% ~ +3%
10 years ~ +12% ~ +5% ~ —2% ~ +3%
100 years ~ +13% ~ +6% ~ —3% ~ +4%
1000 years ~ +15% ~ +7% ~ —3% ~ +4%
— q%UUS £ : Regio . .
Table 6 R = o (transformed to percentage) with the Paramy;,° parametrization.

Concerning risks, we can look at the evolution of the event occurrence probability. Within the context
of a stationary framework, the notion of return period is widely used : ”a value with a return period T
is expected to be exceeded on average in T years”. Within a non-stationary framework, this definition
becomes inadequate. We used the following interpretation, assuming that the climate change is quasi-null
within a single year: ”the T-quantiles calculated classically, in a certain year A, have a probability 1/T
to be exceeded during the considered year A” (Renard [2006). For example, if the volume x is the 100
years-quantile in 1960, whereas in 2003 this same volume z is the 50 years-quantiles, then we say that this
event is twice as likely in 2003 than in 1960.
From results established by the parameterizations Paramg and Paramsggs, we evaluated the changes in
event frequencies. We use g as the quantiles of reference, that is the Ty-quantiles of the rainfall distribution
coming from the parameterization Paramg. Then we calculated T5go3 in such a way that the Tgp3-quantile
coincides with zq of the rainfall distribution coming from the parameterization Paramaggs. This procedure
was performed with trends established by the local approach and the regional one (see Section Section [3]).

Results are shown in Figure[d] concerning the maximal rainfall in 24 hours (PM24) and for Ty = 100 years.

5 Discussion

In this paper, two new approaches are proposed: a regional trend test and an application of a rainfall

stochastic generator in the context of a climate change detected from the generator parameters.
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TO =100 years TO =100 years

T (year) in 2003

* T=100
2 T<100
A T<T75
A T<50
v T>100
v T>150
v T>200

(a) Local (b) Regional (4 zones)
Fig. 5 Changes in frequency of the maximal rainfall in 24 hours between the stationary hypothesis (reference) and

non stationary hypothesis (in 2003) for the local approach (left) and the regional one (right).

Unlike classical regional approach, several regional time series has been built to be independent (but not
mutually) and identically distributed. The methodology POT and the ML test have been applied to test
the parameters’ stationarity. This trend test can be performed for trend detection in extreme precipitation
series. In this case, a threshold (of the GPD distribution) must be better estimated in each considered
zone because it is important for the shape parameter estimation. Then the hypothesis of shape parameter
stationarity can underestimate changes in the extreme values.

Due to the poor geographical distribution of stations, the results of the regional trend test cannot be
generalized to a whole Zone. For example, it may be questionable to deduce from the 20% increase of the
number of events for the sampled stations into the "Oceanic” Zone (see Table [B]) that such an increase
applies everywhere in this Zone.

The application of the rainfall stochastic generator allowed us to work with average parameters what are
less influenced by the shape parameter. However a strong hypothesis was assumed: the rainfall process does
not change in time, which means the rainfall signal is always characterized in the same way by the 3 x 2
daily parameters with the passing years. This hypothesis seems to be correct because the current version of

the hourly rainfall model is single-structured for all climates, as the relevance of its parameterization allows
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it to be used without modifying its structure, whatever the climate and over a very broad rainfall range.

Therefore only the parameter values, and not the model structure, allows us to estimate quantiles under

different climates, from temperate to tropical (Arnaud et all2007). A possible evolution of the climate is

taken into account by estimating parameters with the passing years.

6 Conclusion and perspectives

The impacts of climate change on extreme rainfall were studied with a rainfall generator, parameterized by
3 x 2 average parameters. Significant trend research for these parameters allowed us to take into account
climatic evolution in order to estimate rainfall quantiles. The fundamental point of this method is that
an extremal behavior can be inferred from estimated average values, not extreme ones. Such an approach
is more robust to the sampling fluctuations. It is as much important as it is often used afterwards in
rainfall-runoff modelling.

The trend was studied, in a local but also in a regional approach, by constructing 4 homogeneous
climatic zones linked to the generator parameters. The regional approach seems better to illustrate a
real change and to be less subjected to statistical fluctuations. The observed changes occur mainly in
winter, from December to May, with an increase of rainfall event occurrence in France. In France, heavy
precipitations are likely to be more and more frequent except in the Mediterranean region. Nevertheless,
taking into account the climate change lead to small changes in estimating rainfall quantiles.

In this paper, the time evolution of the average parameters was detected from a trend test using
data coming from Météo-France. A forthcoming study will enable us to work with global climate models
(GCMs), which can generate some climatic variables, such as the daily precipitation, according to scenarios
of greenhouse gases and aerosol anthropogenic emissions. So, from these simulations, the parameters of the
rainfall generator can easily be estimated over different periods, and then the probable impacts of climate

change on extreme rainfall events can be evaluated according to these scenarios.

Appendix A Controlling the global significance level of a multiple tests approach using the

False Discovery Rate (FDR) : the Benjamini and Hochberg (BH) procedure

IB_&nJ_a.me_a.nd_H.oﬂ].bﬂJ (@) proposed a procedure to control the global significance level ag of a multiple tests

procedure. Assuming that K tests of a null hypothesis Hy are achieved, the BH procedure is the following:
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(i) Let p(1y < p) < ... < px) be the sorted observed p-values related to the K tests;

(7) Compute m = max{l < j < K, p(;) < %a};

71) If m exists, then reject among the K hypothesis the m ones corresponding to p <...<p p-values; else
) g y g (1) (m)

reject no hypothesis.

References

Arnaud, P. (1997). Modéle de prédetermination de crues basé sur la simulation stochastique des pluies horaires.
PhD thesis, Université Montpellier II.

Arnaud, P. (2004). Extension en métropole de la méthode shypre, adaptation du modéle de pluie. Technical report,
Cemagref.

Arnaud, P. (2008). Guide méthodologique sur I’approche shypre. Technical report, Cemargef - Aix en Provence.

Arnaud, P., Fine, J., and Lavabre, J. (2007). An hourly rainfall generation model adapted to all types of climate.
Atmos. Res., 85:230—242.

Arnaud, P. and Lavabre, J. (2002). Coupled rainfall model and discharge model for flood frequency estimation.
Water Resour. Res., 38:1075-1085.

Arnaud, P., Lavabre, J., Sol, B., and Desouches, C. (2006). Cartographie de ’aléa pluviographique de la France. La
Houille Blanche, 5:102—111.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to
multiple testing. J. of R. Stat. Soc. Ser. B, 57:289-300.

Broyden, C. (1970). The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations.
IMA J. of Appl. Math., 6(1):76-90.

Cassou, C. (2004). Du changement climatique aux regimes de temps: 1’ oscillation nord-atlantique. La Meteorol.,
May.

Cernesson, F. (1993). Modéle simple de prédetermination des crues de fréquences courantes a rares sur petits bassins
versants méditéranéens. PhD thesis, Université Montpellier II.

Cernesson, F., Lavabre, J., and Masson, J. (1996). Stochastic model for generating hourly hyetograph. Atmos. Res.,
42, 1-4:149-161.

Champeaux, J. and Tamburini, A. (1996). Zonage climatique de la France & partir des séries de précipitations
(1971-1990) du réseau climatologique d’état—= Climatological zoning of France from precipitation measurements
(1971-1990) of the French climatological network. Météorologie, (14):44-54.

Coles, S. (2001). An introduction to Statistical Modeling of Extreme Values. Springer-Verlag, Heidelberg, Germany.

Cunnane, C. (1988). Methods and merits of regional regional flood frequency analysis. J. of Hydrol., 100 (1-4):269—
290.

Dubuisson, B. and Moisselin, J. (2006). Evolution des extrémes climatiques en France a partir des séries observées.
La Houille Blanche, (6):42-47.

Fletcher, R. (1970). A new approach to variable metric algorithms. The Comput. J., 13(3):317-322.



25

Goldfarb, D. (1970). A family of variable metric updates derived by variational means. Math. of Comput., 24(109):23—
26.

Groisman, P., Knight, R., Easterling, D., Karl, T., Hegerl, G., and Razuvaev, V. (2005). Trends in Intense Precipi-
tation in the Climate Record. J. of Clim., 18(9):1326-1350.

Groisman, P., Knight, R., and Karl, T. (2001). Heavy Precipitation and High Streamflow in the Contiguous United
States: Trends in the Twentieth Century. Bull. of the A.M.S., 82(2):219-246.

Hess, A., Iyer, H., and Malm, W. (2001). Linear trend analysis: a comparison of methods. Atmos. Environ.,
35(30):5211-5222.

IPCC (2007). Climate Change 2007 : The Physical Science Basis, Contribution of Working Group I to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Lang, M. (1999). Theorical discussion and Monte-Carlo simulations for a Negative Binomial process paradox. Stoch.
Environ. Res. and Risk Assess., 13:183—200.

Lang, M., Ouarda, B., and Bobee, B. (1999). Towards operational guidelines for over-threshold modelling. Hydrol.
J., 225:103-117.

Moberg, A. and Jones, P. (2004). Regional climate model simulations of daily maximum and minimum near-surface
temperature across Europe compared with observed station data 1961-1990. Clim. Dyn., 23:695-715.

Muller, A. (2006). Comportement asymptotique de la distribution des pluies extrémes en France. PhD thesis,
Université de Montpellier II.

Neppel, L., Arnaud, P., and Lavabre, J. (2007). Connaissance régionale des pluies extrémes. Comparaison de deux
approches appliquées en milieu méditéranéens. C. R. Geosci., 339:820-830.

Onibon, H., Ouarda, T., Barbet, M., St-Hilaire, A., Bobée, B., and Bruneau, P. (2004). Analyse fréquentielle
régionale des précipitations journaliéres maximales annuelles au Québec. Hydrol. Sci., 49 (4):717-735.

Parey, S., Malek, F., Laurent, C., and Dacunha-Castelle, D. (2007). Trends and climate evolution: Statistical
approach for very high temperatures in France. Clim. Change, 81(3):331-352.

Pujol, N., Neppel, L., and Sabatier, R. (2007a). Regional approach for trend detection in precipitation series of the
french mediterranean region. Comptes rendus-Géoscience, 339(10):651-658.

Pujol, N., Neppel, L., and Sabatier, R. (2007b). Regional tests for trend detection in maximum precipitation series
in the French Mediterranean region. Hydrol. Sci. J., 52(5):956-973.

Ramachandra Rao, A. and Hamed, K. (1999). Flood frequency analysis. CRC Press, Boca Raton, FL, USA.

Renard, B. (2006). Détection et prise en compte d’éventuels impacts du changement climatique sur les extrémes
hydrologiques en France. PhD thesis, INP Grenoble.

Saporta, G. (2006). Probabilités, analyse des données et statistique. Editions TECHNIP.

Schonwiese, C. and Rapp, J. (1997). Climate Trend Atlas of Europe Based on Observations, 1891-1990. Kluwer
Academic Pub.

Shanno, D. (1970). Conditioning of quasi-newton methods for function minimization. Math. of Comput.,

24(111):647-656.



26

Sivakumar, B. and Sharma, A. (2008). A cascade approach to continuous rainfall data generation at point locations.
Stochastic Environmental Research and Risk Assessment, 22(4):451-459.

Sol, B. and Desouches, C. (2005). Spatialisation & résolution kilométrique sur la France de paramétres liés aux
précipitations. Technical report, Météo France, Convention Météo France DPPR n° 03/1735.

Waymire, E. and Gupta, V. (1981). The Mathematical Structure of Rainfall Representations 1. A Review of the
Stochastic Rainfall Models, Water Resour. Res, 17(5):1261-1272.

Wu, S., Tung, Y., and Yang, J. (2006). Stochastic generation of hourly rainstorm events. Stochastic Environmental
Research and Risk Assessment, 21(2):195-212.

Xoplaki, E., Gonzalez-Rouco, J., Luterbacher, J., and Wanner, H. (2004). Wet season Mediterranean precipitation
variability: influence of large-scale dynamics and trends. Clim. Dyn., 23(1):63-78.

Yue, S. and Pilon, P. (2004). A comparison of the power of the t test, Mann-Kendall and bootstrap tests for trend
detection. Hydrol. Seci. J., 49(1):21-37.

Zhai, P., Sun, A., Ren, F., Liu, X., Gao, B., and Zhang, Q. (1999). Changes of Climate Extremes in China. Clim.
Change, 42(1):203-218.

Zhang, X., Vincent, L., Hogg, W., and Niitsoo, A. (2000). Temperature and Precipitation Trends in Canada During

the 20th Century. Atmos.-Ocean, 38(3):395-429.



	Introduction
	The Hourly Rainfall Generator: SHYPRE
	Detecting a trend for the generator parameters
	Hypothesis of climate change
	Discussion
	Conclusion and perspectives
	Controlling the global significance level of a multiple tests approach using the False Discovery Rate (FDR) : the Benjamini and Hochberg (BH) procedure

