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21 Introdu
tionThe great interest in 
limate 
hange during the past twenty years has led to a quasi unanimous 
on
lusionfor s
ientists : the Earth's 
limate is 
hanging (IPCC 2007). To prevent hydrologi
al risks, it is importantto know if this global 
hange 
ould lead to an in
rease in extreme events (Groisman et al. 2005). In anhydrologi
al 
ontext, it is well known that return period estimations are of fundamental interest. To deter-mine the dimensions of hydrauli
 works su
h as dams or dikes, a preliminary study on rainfall, parti
ularlyextreme rainfall, should not be missed.The average temperature has in
reased 0.6�C (± 0.2�C) sin
e the end of the 19th 
entury (IPCC2007). This 
hange should have 
onsequen
es on pre
ipitations. Simply stated, in a hotter world, the waterevaporation in
reases whi
h may lead to a global in
rease in pre
ipitation. On land, a small in
rease inannual pre
ipitation has been observed during the last 
entury, but this trend is not uniformly distributeda
ross the Earth (IPCC 2007). The in
rease in annual pre
ipitation seems to be more signi�
ant in themiddle latitudes than tropi
al areas. In the United States (Groisman et al. 2001), Canada (Zhang et al.2000) and northern and western Europe (S
hönwiese and Rapp 1997), there was an in
reasing trend duringthe last 
entury. In Europe this 
an be explained by the persisten
e of the positive phase of the NorthAtlanti
 Os
illation in the last two or three de
ades (Cassou 2004). Unlike these studies, de
reases havebeen dete
ted in China (Zhai et al. 1999) and the Mediterranean area (Xoplaki et al. 2004).The above studies fo
used on the evolution of average 
hara
teristi
s of pre
ipitation and not on ex-treme values. Global Climate Models (GCM) do not e�
iently represent extreme events (Moberg and Jones2004). So GCM outputs are of poor interest for extreme events. Dubuisson and Moisselin (2006) studiedthe trends of pre
ipitation indi
es in Fran
e and showed that there is no eviden
e of an in
rease in heavypre
ipitation events. Here we are 
on
erned with the frequen
y of extreme events, looking for a potentialvariation in time. Classi
al statisti
al methods (�tting a probability law) are of limited interest be
ause ofa la
k of long time series, leading to ina

urate estimation of distribution tails (Renard 2006; Pujol et al.2007b). As an example, following data quality 
riteria re
ommended by Météo-Fran
e, only one time seriesof daily pre
ipitations 
ould be 
onsidered to study a 
limate 
hange in Fran
e. This time series 
omes from139 rain-gauge stations during the period of 1960-2003. Note that data from 2004 and later are not yetavailable be
ause of a
tual homogenization by Météo-Fran
e. In the sequel, an original approa
h is proposedto estimate the impa
ts of 
limate 
hange on extreme events, based on the use of an hourly rainfall sto
has-



3ti
 generator (Arnaud et al. 2007). It 
an be 
oupled with a rainfall-runo� model (Arnaud and Lavabre2002). Climate evolution is then dete
ted from the values of the generator parameters. Unlike 
lassi
alstatisti
al approa
hes, these parameters are estimated from average, not extreme, values of daily 
limati

hara
teristi
s. As a 
onsequen
e, the estimations are less in�uen
ed by the sample than those based onextreme values. The generator parameters we 
onsider are the following: event o

urren
e, event durationand event intensity. They are parti
ularly well adapted to examine the rainfall signal. From these three
hara
teristi
s di�erent types of 
limate that are well known in Fran
e 
an be dis
riminate. For examplethe �o
eani
� 
limate 
an be 
hara
terized by events with long duration, the �alpine� 
limate by a largenumber of events, and the �Mediterranean� 
limate by events with a strong intensity. Conditionally to thevalues of these three parameters, rainfall quantiles for every rainfall duration, from one hour to ten days,
an be estimated from the generator pre
ipitation outputs. It has been showed in a re
ent study that thegenerator 
orre
tly estimate rainfall quantiles in su
h a time range (Neppel et al. 2007).The �rst aim of the present work is to study the stability in time of the generator parameters. A

ordingto the de�nition of parameters, we applied the Poisson-Pareto-Peak-Over-Threshold model (POT). Thismodel, 
ommonly used in extreme values theory (Coles 2001), is well adapted to our framework. A lineartrend for the generator parameters is tested through a maximum-likelihood ratio test approa
h. Parey et al.(2007) also applied su
h an approa
h on time series of temperatures to dete
t a trend in extreme tem-peratures. A pro
edure whi
h allows us to work on a regional s
ale is also proposed. Sin
e many 
limatesare present in Fran
e, all lands
apes might not be subje
t to the same 
hanges. A hierar
hi
al 
lustering,based on average rainfall 
hara
teristi
s, led us to divide Fran
e into 4 homogeneous 
limati
 zones. Thengenerator parameters 
an be estimated over the period 1960-2003 under the 
limate 
hange hypothesis.This new estimation allows us to appre
iate rainfall distribution 
hanges due to 
limate 
hange.The prin
iple of the hourly rainfall generator is explained in Se
tion 2 . The three generator parametersused in the sequel are presented in details. In Se
tion 3, we fo
us on the test for the stationarity of therainfall generator parameters in both lo
al and regional s
ales. Se
tion 4 presents a data appli
ation. Dataon whi
h the trend test is applied are presented in the sub-se
tion 4.1. Sub-se
tion 4.2 illustrates how thedivision of Fran
e into 4 homogeneous 
limati
 zones are obtained. Sub-se
tion 4.3 shows the parametersevolution in time and 
ompares the robustness between the lo
al and the regional trend test. Sub-se
tion 4.4



4presents the e�e
ts of the 
limate 
hange hypothesis on the rainfall distribution. A general dis
ussion isproposed in Se
tion 5. A 
on
lusion and some perspe
tives are given in Se
tion 6 .2 The Hourly Rainfall Generator: SHYPREIn the literature, the rainfall quantiles 
an be estimated in two ways. The most well-known method is to�t a probability law on data (Coles 2001). Another method is to use a mathemati
al stru
ture of rainfallrepresentations (Waymire and Gupta 1981; Wu et al. 2006; Sivakumar and Sharma 2008). In this paperwe are 
on
erned with the latter method. Our aim is to propose an original approa
h for dete
ting trendin extreme rainfall. In the following, the general prin
iple of the rainfall generator we 
onsider is brie�ypresented (for details, see (Arnaud 2008; Arnaud et al. 2007)) and the generator parameters are detailled.2.1 Generator Prin
ipleSHYPRE is a model of rainfall hydrograph simulation based on an hourly rainfall generation, whi
h 
an be
oupled with a rainfall-runo� model. It has been developped at Cemagref in Aix-en-Proven
e (Cernesson1993; Arnaud 1997). The model is based on des
riptive variables from hourly information 
hara
terizingthe rainfall signal su
h as the rainfall depth or duration. Ea
h variable was �tted by a probability law(Cernesson et al. 1996). As in Monte-Carlo methods, these variables were simulated, taking into a

ountdependen
ies. Then time series, statisti
ally equivalent to observations, 
an be reprodu
ed for any desiredtime period. Quantiles 
an be empiri
ally estimated from these simulated times series. The generator'sprin
iple is illustrated in the Figure 1.A regionalized version of the rainfall generator was parameterized a

ording to daily data based on theknowledge of three parameters, leading to relevant results (Arnaud et al. 2006). In fa
t, unifying the modelmakes it perfe
tly appli
able to regions with varied rainfall ranges, su
h as metropolitan Fran
e, Reunionisland in the Indian O
ean, and Martinique island in the Caribbean (Arnaud et al. 2007). The region-alization of the three model parameters, using 2812 daily rain gauge stations in the whole of Fran
e(Sol and Desou
hes 2005), allows the estimation of rainfall quantiles for di�erent time durations on asquare of 1 km2 everywhere in the Fren
h territory (Arnaud et al. 2006). For the Languedo
-Roussillonregion, the obtained results have been 
ompared to those of an another regional approa
h (Neppel et al.2007). Results are 
omparable and it appears that the regionalized generator version 
orre
tly estimate



5rainfall quantiles for durations from one hour to ten days. As a sto
hasti
 model, the rainfall generatordo not perfe
tly represent the rainfall reality but bearing on many studies showing that it represents wellextreme rainfall for many types of 
limate (from temperate to tropi
al), we assume in the sequel that it
orre
tly reprodu
e the behavior of extremes rainfall (Arnaud 2004).

Fig. 1 Prin
iple of the hourly rainfall generator. Figure from (Arnaud et al. 2007).
2.2 The three generator parametersThe des
riptive analysis of rainfall was based on observed rainfall events sele
ted on daily 
riteria. An eventis de�ned as a su

ession of daily rainfall depths of more than 4 mm, in
luding one daily rainfall depthof at least 20 mm1. This de�nition allow us to assume that events are mutually independent. The threefollowing daily variables were 
onsidered:� NE (event o

uren
e) is the average number of event per year,� µPJmax (event intensity) is the average of the maximum rainfall in one day of ea
h event,� µDTOT (event duration) is the average of event duration.1 The threshold 20 mm is a 
ompromise to have enough event (∼ 5 events per years) and to fo
us on extremeevents.



6Moreover we sele
ted two seasons: summer from June to November (when extreme events usually o

ur),and winter from De
ember to May. From the 3×2 daily parameters, say NEW , µPJmaxW , µDTOTW forwinter and NES , µPJmaxS, µDTOTS for summer, it was possible to run the hourly rainfall generationmodel for periods as long as needed, leading to a probabilisti
 study on the extreme rainfall with dailyinformation.To 
on
lude, from these 3 × 2 daily parameters, we 
an generate very long time series to estimate rainfallquantiles for di�erent durations and any return periods.3 Dete
ting a trend for the generator parametersWe wanted to test the null hypothesis H0: the parameters are stationary versus the alternative hypothesis
H1: the parameters vary in time. Many studies present an overview of statisti
al approa
hes available fordete
ting and estimating trends in environmental data. However, the trend test power varies a

ordingto the nature of the studied data. As in (Hess et al. 2001) and (Yue and Pilon 2004), a simulation studywas done to determine whi
h test appeared as the most powerful when respe
ting a �xed false reje
tionrate (type I error). The maximum likelihood ratio test (Coles 2001) appeared as the best approa
h for ourstudy. Note that Renard (2006) arrived at the same result regarding runo� data.3.1 Maximum Likelihood Ratio Test : ML testLet M0 and M1 designate two alternative models, of size d0 and d1 (the size is the number of parameters)and assume that M0 is nested into M1 (i.e., simply stated, M0 
an be obtained from M1 when assigningparti
ular value for some of his parameters). We test the null hypothesis H0: M0 explains well the 
onsideredphenomenon versus the alternative H1: M1 is a better model. Let Li(X; θi) be the log-likelihood of a sample
X for model Mi, i = 0, 1. Let θ̂i be the ve
tor of size di maximizing Li(X; .). The devian
e statisti
 isde�ned as

D = −2
(
L0(X; θ̂0) − L1(X; θ̂1)

) (1)The basi
 prin
iple is parsimony. The model is 
hosen a

ording to the value of D. Under H0 and witha sample size large enough, D
H0∼ χ2

d1−d0
. Therefore hypothesis H0 is reje
ted, with a type I error α, if

D > uα where P(χ2
d1−d0

> uα) = α. The p-value notion is used to de
ide on reje
ting or not H0: the



7p-value is the probability of obtaining a result at least as large as the one a
tually observed, given that thenull hypothesis is true. In our 
ase, it 
orresponds to P(χ2
d1−d0

> D). We de
ide to reje
t H0 with a �xedtype I error α if the p-value is less than α.3.2 ML test for the lo
al approa
hThe hourly rainfall generator is parameterized through the three above mentioned daily variables NE,
µPJmax and µDTOT . Sin
e the parameter µDTOT in�uen
es little the extreme behavior of the generator,we restri
ted our investigations on the non-stationarity of the two following parameters : NE and µPJmax.The approa
h we used is based on the POT model.Let n be the number of events between the year A1 and the year (

A1 + A
). Let (X1, . . . , Xn) be thedepth of the maximum daily rainfall in millimeters for these n events. Let (t1, . . . , tn) be dates (in days)
orresponding to (X1, . . . , Xn). The time t = 1 
orresponds to the �rst of January, A1, and ti 
orrespondsto the position, into the series, of the date of the maximum daily rainfall of the event i. For example, ifthe �rst event o

ur the 10th of January, A1 and the next event o

ur ten days after, then, t1 = 10 and

t2 = 20. Let N[d1,d2] be the o

urren
e variable of events between the beginning of the day d1 and theend of the day d2. For example N[1,365] 
ounts the number of event o

urring during the �rst year of thesample. When working on values over threshold, it is usual to model the number of events per time unit(frequently per year) by a Poisson's law (Rama
handra Rao and Hamed 1999; Lang et al. 1999). An event,a

ording to its de�nition, must have at least a depth of daily rainfall over the threshold 20 mm. Thus we
an say N[t,t]
def
= N[t] follows a non homogeneous Poisson's law of parameter λ(t). λ(t) 
orresponds to theaverage number of ex
ess per day at the time t. Therefore N[1,t] follows a Poisson's law with rate fun
tion

tλ(t). The stationarity of a Poisson pro
ess 
an be tested through the stationarity of the pro
ess intensityor the inter-arrival times. For a Poisson pro
ess with an intensity λ(t), waiting times are exponentiallydistributed with parameter λ(t) (Lang 1999). A

ording to a study on simulated data, the test on waitingtimes appears as the best and we de
ide to use it. The log-likelihood to test the stationarity of the numberof events is given by:
LP

n =

n∑

i=1

log(λ(ti)) −

n∑

i=1

λ(ti)(ti − ti−1) with t0 = 1 (2)Con
erning the parameter NE, we 
an test the stationary hypothesis H0 : (M0) λ(t) = λ0 versus thelinear trend hypothesis H1: (M1) λ(t) = λ0 + λ1t using the ML test with d1 − d0 = 2 − 1 = 1.



8 For the parameter µPJmax, the stationary test is built as follows. The variables (Xi)i=1..n are dis-tributed a

ording to the same family of probability laws and are independent sin
e events are 
onsideredas independent. From the event de�nition, we have ∀i = 1..n, Xi > 20mm. We used the Generalized ParetoDistribution (GPD) family to model the threshold ex
eedan
es (Muller 2006; Coles 2001). The GPD familyhas three parameters: a lo
ation parameter u (here u = 20mm), a s
ale parameter σ and a shape parameter
ξ. The 
umulative distribution fun
tion P(X < x|X > u) = F(u,σ,ξ)(x) is given by :

F(u,σ,ξ)(x) =






1 − (1 +
ξ(x−u)

σ )−1/ξ with x−u
σ < − 1

ξ for ξ < 0,
1 − (1 +

ξ(x−u)
σ )−1/ξ with x−u

σ > − 1
ξ for ξ > 0,

exp(−
(x−u)

σ ) for ξ = 0.Moreover if X ∼ F(u,σ,ξ) then E(X − u|X > u) = σ
1−ξ . Thus we 
an estimate the generator parameter

µPJmax by σ̂

1−ξ̂
+u. Following Renard (2006), we assumed the shape parameter ξ to be 
onstant be
ause ofsampling un
ertainties. Climate 
hange is then 
hara
terized by the non-stationarity of the s
ale parameter:

σ(t) varies in time. Therefore the log-likelihood we 
onsidered is given by :
LGPD

n = −

n∑

i=1

log(σ(ti)) −
(
1 +

1

ξ

) n∑

i=1

log
(
1 +

ξ(xi − u)

σ(ti)

) with u = 20mm (3)The stationary hypothesis H0 : (M0) σ(t) = σ0 : µPJmax = σ0

1−ξ + u versus the linear trend hypothesis
H1: (M1) σ(t) = σ0+σ1t : µPJmax(t) = σ0+σ1t

1−ξ +u is tested using the ML test with d1−d0 = 3− 2 = 1.The parameter λ0 is the only one whi
h 
an be analyti
ally estimated. For the others parameters, λ1, σ0and σ1, an optimization algorithm is needed and we use the the Broyden-Flet
her-Goldfarb-Shanno (BFGS)method (Broyden 1970; Flet
her 1970; Goldfarb 1970; Shanno 1970) of the �optim()� fun
tion implementedin the �stats� pa
kage from language R (http://www.r-proje
t.org/).Remark 1 The two pro
esses being independent (Rama
handra Rao and Hamed 1999), it is possible toanalyse them separately.Remark 2 An exponential law is sometimes used to model threshold ex
eedan
es. It 
orresponds to the
ase where the shape parameter of the GPD is equal to 0. When ξ 6= 0, a study on simulated data showedthat the ML test based on an exponential likelihood does not respe
t the theoriti
al type I error. Sin
eMuller (2006) showed that the hypothesis ξ = 0 is often reje
ted in Fran
e, we prefer to use the ML testwith the GPD's likelihood even if the estimation of ξ is di�
ult.

http://www.r-project.org/


9Remark 3 The GPD model is often used in trend dete
tion for extreme values (Pujol et al. 2007b; Coles2001). Here we use it to 
ompute, from estimated parameters, an average in a given time. Extreme quantileestimation from tail distribution model is mu
h more dependent on shape parameter ξ than any averageestimation. Then, assuming a 
onstant shape parameter ξ be
omes a weaker hypothesis 
ompared to anextreme value framework.To test lo
ally the stationarity of the rainfall generator parameters, we used the above tests on ea
h station.For a station S, we tested the stationarity of the time series XS = (XS
1 , . . . , XS

nS
) and tS = (tS1 . . . , tSnS

)versus a linear trend where XS 
orresponds to the maximum daily rainfall of the nS observed eventso

urring at the station S on the dates tS . We also noted T S = (tS1 − 1, . . . , tSnS
− tSnS−1) the time seriesof waiting times of an event o

urring at S. Using the above tests, we 
ould 
on
lude regarding to thestationarity of these series a

ording to a �xed type I error α.3.3 ML test for the regional approa
h3.3.1 Building the �regionalized� time seriesIn the regional approa
h, we had to build time series we 
alled �regional� by regrouping stations from ea
hhomogeneous zone. The GPD model was used for the maximum daily rainfall of an event. In a given zone,the shape parameter was assumed to be 
onstant and only the s
ale parameter varies between stations(Onibon et al. 2004; Cunnane 1988). The aim of this step is to 
onstru
t a sample of ex
eedan
es identi-
ally distributed within ea
h zone.Let Z be a homogeneous 
limati
 zone. The shape parameter was assumed to be 
onstant in a sameZone and it denotes ξZ on Z. Let ΩZ be the set of stations whi
h belong to Z and ∀S ∈ ΩZ , let

X̃S = XS − u, where XS = (XS
1 , . . . , XS

nS
). Then, X̃S ∼ GPD(0, σS , ξZ). It is easy to show that

∀S ∈ ΩZ
X̃S

E(X̃S)
∼ GPD(0, 1 − ξZ , ξZ) and TS

E(TS)
∼ Exp(1), where Exp(λ) designates the exponentiallaw with parameter λ. Using the strong law of large numbers, both laws 
an be used to approximate re-spe
tively the laws of X̃S

X̃S

and TS

TS

with X̃S = 1
nS

∑nS

i=1 X̃S
i and TS = 1

nS

∑nS

i=1 T S
i .To build �regional� time series for the Z zone, we regrouped stations with the following method (Neppel et al.2007):(i) ∀S ∈ ΩZ , we divide X̃S by its empiri
al mean X̃S ; the same for T S.



10(ii) We 
on
atenate the redu
ed X̃S , the tS and the redu
ed T S . We obtain �regional� time series ofmaximum daily rainfalls noted (Y Z
1:nZ

) o

urring on dates (tZ1:nZ
) and �regional� time series of waitingtimes between two events observed on a same station belonging to Z, denoted (T Z

1:nZ
) with nZ =

∑
j∈ΩZ

nj .The spatial dependen
e between stations of the same zone 
an lead to a bias in the 
al
ulus of p-values:a same event 
an take pla
e on several neighbouring stations. To obtain an independent and identi
allydistributed sample, we had to remove them from the �regional� time series. Assuming that the distan
efrom whi
h two stations are 
onsidered as spatially independent is known (below this distan
e is 
alled thestation dependen
e distan
e), the �regionalized� time series for the Z zone is built as follows:(iii) for ea
h day D ∈ tZ , we sear
h for observed events taking pla
e in Z. We note ΩD
Z the set of stationswhere an event o

urred at one of the days D, D − 1 or D + 1.(iv) We 
hoose randomly a station i in ΩD

Z . Then we remove from T Z and Y Z the events of stations
k ∈ ΩD

Z −{i} if and only if the distan
e between stations i and k is smaller than the station dependen
edistan
e.(v) We repeat the (iii) and (iv) steps K times.Thus K di�erent �regionalized� time series i.i.d. (but not mutually independents) were built for ea
hhomogeneous zone. For a given Z zone, we denote these K time series (Ỹ Z
1:nK

)1:K and (T̃ Z
1:nK

)1:K . Usingthe ML test, we tested, for k = 1 : K, the stationarity of maximal daily rainfalls with (Ỹ Z
1:nK

)k as well asevent o

urren
e with (T̃ Z
1:nK

)k.So we had, for ea
h parameter and ea
h zone, K p-values to 
hara
terize if the linear trend is signi�
ant.3.3.2 Cal
ulating the p-value for the regional testFor ea
h homogeneous 
limati
 zone and for ea
h parameter, we had K p-values 
oming from the ML teston the K �regionalized� time series . How to know, from these K p-values, if the trend is signi�
ant?Let Z be a �xed zone and 
onsider one of the two sets of K p-values on this zone. Let αg designates thesigni�
an
e level of the regional test ( global type I error). We propose the following method :(i) We use a False Dis
overy Rate (FDR) approa
h (see Appendix A) to determine, from the K obtainedp-values, the number of reje
ted null hypothesis on Z, that is the number of time series among K forwhi
h the stationary hypothesis is reje
ted at a �xed signi�
an
e level, say αℓ. Let mαℓ
be this number.



11Then we want to 
onstru
t the empiri
al distribution of the number of reje
ted null hypothesis among Kat risk αℓ under H0:(ii) To remove a possible time dependen
e under H0, we permute without repla
ement the K series usingthe same permutation in order to keep the dependen
e between series;(iii) We then apply the ML test on ea
h K new series and dedu
e the number of reje
ted null hypothesisvia the Benjamini and Ho
hberg pro
edure at risk αℓ;(iv) Repeating (ii) and (iii) many times, an empiri
al distribution of the random variable Mαℓ
is obtained;

Mαℓ
is the number of reje
ted null hypothesis under H0 among K at risk αℓ;(v) We use this distribution to estimate the probability P(Mαℓ

≥ mαℓ
). If this probability, whi
h 
orre-sponds to the p-value of the regional test, is smaller than αg, then H0 is reje
ted on Z and the lineartrend of the series is signi�
ant on Z at risk αg . Estimations σ̂1 and σ̂0 of the parameters σ0 and σ1are given by medians values 
oming from the K series.Con
erning the value of αℓ whi
h is used for 
al
ulating the number of reje
ted null hypothesis among

K, it ought to be between 0.2 and 0.3. A study on simulated data showed that the signi�
an
e level ofthe regional test was respe
ted for this range of values. The best is to plot P(Mαℓ
≥ mαℓ

) a

ordingto αℓ in order to see from whi
h αℓ we have P(Mαℓ
≥ mαℓ

) ≤ αg. If αℓ is smaller than 0.3, thestationary hypothesis on a whole zone H0 is reje
ted at risk αg. We apply this regional trend test to datain Se
tion 4.3.2.4 Hypothesis of 
limate 
hange4.1 Studied DataClimate 
hange must be studied only on high quality data otherwise observed 
hanges 
ould 
ome fromthe data themselves and might represent data artefa
t, leading to misleading interpretations. The referen
edaily series has been established by Météo-Fran
e for 
limate study. For example, the IMFREX proje
t(http://medias.
nrs.fr/imfrex/web/) and Dubuisson and Moisselin (2006) worked on su
h series.This data is asso
iated with quality 
odes and syntheti
 
riteria to 
onsider the homogeneity-stop in theseries. Météo-Fran
e's advi
e was applied to our data. To establish a 
ompromise between the period lengthand the number of stations, we restri
ted our study to the period 1960-2003. 139 rain gauges were 
hosen,

http://medias.cnrs.fr/imfrex/web/


12with 10% of missing data at the most. Their lo
ation is presented in Figure 2 (by bla
k points).From these 139 daily rainfall time series, we 
an extra
t the date and depth of the maximum rainfall in oneday and the duration of ea
h event observed between 1960 and 2003, in order to 
al
ulate trends of 3 × 2generator parameters on a lo
al s
ale. To work regionally, 4 homogeneous 
limati
 zones were 
reated, asexplained below.4.2 Climati
 zones 
onstru
tionTo use the regional approa
h for the trend test (see Se
tion 3.3), we looked for some homogeneous 
limati
zones. To a
hieve this, a hierar
hi
al 
lustering using Ward's algorithm was applied. Indeed, the aim of theWard pro
edure is to unify groups in su
h a way that the variation inside these groups does not in
rease toodrasti
ally: the resulting groups are as homogeneous as possible (Saporta 2006). Champeaux and Tamburini(1996) applied it to daily pre
ipitations in Fran
e. Here, we 
hose to 
luster a

ording to the 
oordinatesand the 3×2 generator parameter values (NEW , µPJmaxW , µDTOTW , NES , µPJmaxS and µDTOTS)of rain gauges. In addition to the above 139 rain-gauges, 2761 other daily rain-gauges are also available inmetropolitan Fran
e. This data 
annot be used to study 
limate 
hange be
ause the time-series are not longenough. But these ones allowed us to estimate properly the average parameters of the rainfall generatorand to better 
hara
terize the 
limati
 zones. The 
lustering parameters were standardized2 and we justneeded to 
al
ulate the inter-distan
e matrix. We 
hose the Eu
lidean distan
e 
riteria sin
e it favoursmarked di�eren
es and gives more importan
e to distan
es between groups. Then 4 zones were obtained:�highland�, �mainland�, �mediterranean�, and �o
eani
� . They are illustrated in Figure 2.Table 1 shows the average of the 3 × 2 parameters of the rainfall generator and the number of stations inea
h zone where 
limate 
hanges were studied.4.3 Results of parameter evolutionThis se
tion is 
on
erned with the appli
ation of the trend tests (see Se
tion 3) on the data presented inSe
tion 4.1. First, we illustrate the results of the lo
al trend test and its sensibility about the observation2 A weight of 2 was applied to the variables NEW , µPJmaxW , NES , and µPJmaxS be
ause they have a biggerin�uen
e on the extreme behavior of the generator than µDTOTW and µDTOTS .



13Zone �Highland� �Mainland� �Mediterranean� �O
eani
�nb. of stations among
2900 ones to 
reate zones 703 1103 385 709nb. of stations among 139to dete
t 
limate 
hange 17 65 27 30

NEW 5.1 1.4 4.9 2.7

NES 6.24 3.24 5.2 3.6

µPJmaxW (in mm) 30.6 26 37.7 27

µPJmaxS (in mm) 33 29 44 30

µDTOTW (in day) 2.6 2.2 2.1 2.7

µDTOTS (in day) 2.1 2.0 1.8 2.3Table 1 Number (nb.) of stations to 
reate zones and to dete
t 
limate 
hange and the average of generatorparameter values in ea
h zone.period. Then we apply the regional trend test on the four zones presented in Se
tion 4.2.The signi�
an
e level for all trend tests is �xed to α = 0.1.Remark 4 Our test pro
edure is not limited to time linear trends. For example, an exponential relation
σ(t) = exp(σ0 + σ1t) has also be tested. Tests lead to same results than with a linear trend even for theper
entages of evolution parameter. Only the proje
tion in the future will alter the results.4.3.1 Results of the lo
al trend testThe lo
al trend test presented in Se
tion 3.2 has been applied on the data set in order to 
on
lude regardingto the stationarity of the parameters NE and µPJmax on ea
h of the 139 rain gauge stations between1960 and 2003. The results are illustrated in Figure 3. A trend is signi�
ant if the test p-value is smallerthan α = 0.1. To study the relevan
e of these results, we also applied the lo
al trend test with di�erentobservation periods: we su

essively removed from the referen
e observation period (1960-2003) the �ve�rst years and the last three years.Results of the lo
al approa
h led to some apparent 
ontradi
tions. First, 
limati
 evolution should be thesame for nearby stations, but lo
al results showed that some stations had 
ontradi
tory signi�
ant trends,



14

Fig. 2 4 homogeneous 
limati
 zones as regards rainfall generator parameters and lo
ation of the 139 rain gaugesused in trend test.as for example in northern Brittany for the parameter µPJmaxS (see the 
ir
le in Fig. 3(a)). Thus it wasdi�
ult to establish 
limati
 evolution in a spe
i�
 region from the lo
al approa
h. Moreover the periodof observations has a (too) big in�uen
e on the results. In fa
t, even if the number of stations where H0 isreje
ted is approximately the same for the di�erent observation periods, there are a lot of stations wherethe test 
on
lusion 
hanges. For example, the parameter µPJmaxW has a signi�
ant trend for 28 stationsbetween 1960 and 2003. But 13 of them be
ome non-signi�
ant between 1965 and 2003. So it is di�
ult todetermine if the observed trends are related to a potential evolution or 
ome from sampling �u
tuations.The non-robustness of the lo
al trend test is due to the short length of time series. To enlarge the data set,we use the regional approa
h presented in Se
tion 3.3.4.3.2 Results of the regional trend testWe now 
onsider the regional trend test presented in Se
tion 3.3 with K = 100 in order to test the NEand µPJmax stationarity between 1960 and 2003 on ea
h of the 4 zones illustrated in Figure 2. To use
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p−value

>0.1
<0.1
<0.05
<0.01(a) Trend of µPJmax in Summer (b) Trend of NE in Summer

(
) Trend of µPJmax in Winter (d) Trend of NE in WinterFig. 3 Lo
al trend test results on ea
h of the 139 stations for the variables NE and µPJmax: trend (in
rease if thered triangle points upwards , de
rease if the blue triangle points downwards) and the value of the p-values (a

ordingto size). We tested in the summer season (on the top) and the winter season (on the bottom).the regional test, we have to de�ne a station dependen
e distan
e for ea
h zone. Sin
e its estimationvaries a

ording to the method used we de
ided to 
onsider several station dependen
e distan
es Dist0 to
Dist3 (see Table 3). Dist0 to Dist2 
orrespond to the results of three di�erent methods3 leading to threepotential di�erent dependen
e distan
es, and Dist3 
orresponds to the 
ase where all stations (in a sameZone) are mutually dependents. Moreover, for the station dependen
e distan
e Dist0, we also 
onsiderdi�erent observation periods as for the lo
al test.First, the regional test results are not a�e
ted by the station dependan
e distan
e (see Table 4). Signi�
anttrends are the same for any distan
es, even for the estimation of the parameter evolution. This point isimportant when you know the di�
ulty to estimate these distan
es. Unlike the lo
al test, the observation3 It depends on the studied variables: the gap between the dates of the annual maximal daily rainfall (Dist0), thenumber of 
ommon days when an event o

ur (Dist1), and the number of 
ommon rainy days (Dist2)



16 Period NEW NES PJmaxW PJmaxS1960-2003 36 10 28 121965-2003 36 15 27 111960-2000 33 8 28 91965-2003 vs 1960-2003 14- 14+ 6- 11+ 13- 12+ 8- 7+1960-2000 vs 1960-2003 8- 5+ 6- 4+ 4- 4+ 5- 2+Table 2 The �rst three rows: numbers of stations (out of 139) where H0 has been reje
ted on di�erent observationperiods a

ording to the lo
al trend test; the last two rows : .+ (respe
tively .-) 
orresponds on numbers of stationswhere H0 has (respe
tively not) been reje
ted on the observation period while H0 has not been reje
ted (resp. hasbeen reje
ted) on the period 1960-2003.periods have a minor in�uen
e on the regional test results (see Table 5). All signi�
ant trends dete
tedbetween 1960 and 2003 are also signi�
ant for the two others observation periods. Some di�eren
es appear,parti
ularly in Summer and in the �mediterranean� zone where the rainfall variability is the biggest inFran
e. Nevertheless, the regional approa
h gave us global information, in a given zone, about the 
limate
hange.The 
on
atenation of several stations enlarges the data set and redu
es the sampling variability. In otherwords, signi�
ant regional trends have less 
han
e to 
ome from sampling variability. The regional approa
hseemed 
learly better to establish a real 
limati
 evolution.Distan
e Season �Highland� �Mainland� �Mediterranean� �O
eani
�Dist0 Winter 55 60 50 80Summer 50 50 40 55Dist1 Winter 150 200 75 130Summer 150 200 75 110Dist2 Winter 250 300 150 250Summer 250 300 150 250Dist3 Winter 1000 1000 1000 1000Summer 1000 1000 1000 1000Table 3 The di�erent station dependen
e distan
es (in km) taken for the �regionalized� time series building forea
h homogeneous zone.



17Remark 5 The Generalized Pareto Distribution is used to infer on the parameter µPJmax. The threshold
u must be large enough to obtain a good approximation of the tail distribution and it is usually determinedthrough the mean-ex
ess-fun
tion (Coles 2001). Here the threshold value was u = 20mm for the 4 zonesbe
ause of the event de�nition. This value seems too small espe
ially for the �mediterranean� zone where thethreshold is widely �xed to around 50mm (Pujol et al. 2007a). The regional trend test has been performedwith this threshold and led to the same signi�
ant trends.Parameter �Highland� �Mainland� �Mediterranean� �O
eani
�

NEW [+17%,+20%] [+38%,+42%] [−17%,−21%] [+20%,+25%]

NES ∼ [+9%,+13%] ∼ ∼

µPJmaxW [+8%,+11%] ∼ ∼ ∼

µPJmaxS ∼ ∼ ∼ ∼Table 4 The robustness of the regional test a

ording to the station dependen
e distan
e. Signi�
ant trend at risk
α = 0.1 of di�erent parameters with the regional approa
h with a four-zone division. +.% (−.%) 
orresponds to anin
rease (a de
rease) in per
entage between 1960 and 2003. [., .] is the range of per
entage due to the 
hoi
e of thedependen
e distan
e. ∼ signi�es that there is no signi�
ant trend for the 4 dependen
e distan
es.4.3.3 Observed trendsSome interpretations of the above trend tests results on the period 1960-2003 are proposed in this se
tion.The results presented in Figure 3 have to be 
onsidered as only des
riptive ones. They are given to illustratehow perform the lo
al trend test. From these results, no regional interpretation, as for example, �the numberof winter events in
reased signi�
antly around Paris between 1960 and 2003� (see the 
ir
le in Fig. 3(d)) 
anbe dedu
ed. Indeed, for a rigorous statisti
al analysis, one of the well-known multiple test pro
edure shouldbe used to provide a regional 
on
lusion from lo
al results (Benjamini and Ho
hberg 1995). Unfortunatelysu
h pro
edures are known to be not powerful, and we did not use any of them. So we prefer to use theresults of the regional trend test.The main observed 
hanges took pla
e in winter with an in
rease of event intensity in only �highland�



18 Parameter Period �Highland� �Mainland� �Mediterranean� �O
eani
�
NEW

1960-2003 +17% +42% −20% +20%1960-2000 +21% +35% −21% +20%1965-2003 +14% +46% −26% +24%

NES

1960-2003 ∼ +11% ∼ ∼1960-2000 ∼ +9% −10% +10%1965-2003 ∼ +12% +11% ∼

µPJmaxW

1960-2003 +11% ∼ ∼ ∼1960-2000 +13% ∼ ∼ ∼1965-2003 +10% ∼ ∼ ∼

µPJmaxS

1960-2003 ∼ ∼ ∼ ∼1960-2000 ∼ ∼ ∼ ∼1965-2003 ∼ ∼ +6% ∼Table 5 The robustness of the regional test a

ording to the 
onsidering period. Signi�
ant trend at risk α = 0.1of di�erent parameters with the regional approa
h with a four-zone division. +.% (−.%) 
orresponds to an in
rease(a de
rease) in per
entage during the 
onsidering period. ∼ signi�es that there is no signi�
ant trend.
zone. This in
rease may be 
aused by the 
limate warming. Indeed, rain gauge stations underestimatethe intensity of solid pre
ipitation. Be
ause of the 
limate warming, some solid pre
ipitation 
ould betransformed in liquid pre
ipitation whi
h leads to an in
rease of the intensity.Unlike the �mediterranean� zone, there were more and more winter events in the �highland�, �mainland�and �o
eani
� zones. In summer, no trend was dete
ted ex
ept for the �mainland� zone where the numberof events in
reased between 1960 and 2003.The regional trend test was also performed with a nine-zone division. Results show no 
ontradi
tory trendwith those 
oming from a four-zone division.



194.4 E�e
ts on rainfall distributionFor ea
h of the 139 stations, a signi�
ant trend for the rainfall generator parameters was or was notdete
ted. So 
limate 
hange was integrated in the estimation of generator parameters: if the linear trendof a parameter was signi�
ant a

ording to the ML test, an estimation of this parameter was possible forea
h year between 1960 and 2003.Let Param0 be the set of rainfall parameters estimated under the stationary hypothesis by 
omputing theparameters average on the whole observed time series.Let ParamA be the set of rainfall generator parameters under the non-stationary hypothesis estimated inyear A. On stations (or zone) where no stationary hypothesis was reje
ted (for all parameters), we had
Param0 ≡ ParamA. In the following, ParamLoc

A 
orresponds to the parameter set estimated from thelo
al trend test results, and ParamRegio
A to the one estimated from the regional trend test results. Theseparameter sets are estimated from results presented in Se
tion 4.3.With the rainfall generator, rainfall quantiles 
an be estimated using these parameter sets. So the e�e
tsof 
limate 
hange on extreme rainfall 
an be evaluated from the 
omparison between quantiles estimatedfrom Param0 and quantiles estimated from ParamA. We 
an also assess whether or not an evolution ofaverage parameters leads to a bigger evolution when working with extreme values.

Remark 6 Quantiles from the rainfall generator do not 
ome from a �t of a probability distribution like
GPD or exponential. They are estimated empiri
ally from simulated hydrographs. Their estimation ispossible for any return period and any duration from one hour to ten days. So, generator results 
an belooked upon as probability distributions.Considering two sets of parameters for the rainfall generator leads to two di�erent distributions. Let Tdenote a return period. We 
an 
al
ulate the T -quantiles from these two distributions and 
ompute theirratio. Then we obtain an in
rease or a de
rease (in per
entage) of the volume asso
iated with the returnperiod T , and we 
an assess if an evolution in a small return period is a

entuated in a bigger returnperiod.Let PM24 designate the volume of maximal rainfall in 24 hours. Let q0

T (respe
tively qA
T ) be PM24asso
iated to the return period T 
oming from generator results with the parameterization Param0 (re-



20spe
tively ParamA). We 
al
ulated the ratio RT =
q2003

T

q0

T

for T = 2, 5, 10, 100, 1000 years. In Figure 4,we 
ompared the ratio R2 with the RT ratios with T > 2 years for ea
h station. The in
rease of 
hangesbetween the Param0 and the ParamLoc
2003 simulations 
an be evaluated a

ording to the return period. Formost stations, |RT1 − 1| > |RT2 − 1| for T1 > T2. A

ording to the rainfall generator, 
limate 
hange islikely to have more signi�
ant e�e
ts on the extreme behavior than on the average one for the maximumdaily pre
ipitation. This assumption 
an be dis
ussed when we 
ompare quantiles (of the maximum dailypre
ipitation) estimated with the parameterizations Param0 and ParamRegio

2003 . Table 6 shows the averageevolution inside ea
h zone between these 2 parameterizations. Unlike the lo
al approa
h, the regional onelead to small 
hanges in the quantile estimation. Even for high return period, 
hanges are less than 10%ex
ept for the �Highland� zone. It is due to the fa
t that no signi�
ant trend was dete
ted for the µPJmaxparameter. In addition, the strongest rainfall events in Fran
e o

ur in summer. The generator takes intoa

ount this phenomenon. Its extreme behavior is mainly in�uen
ed by the �summer� parameters. Unlikethe lo
al approa
h, no or very few regional trends were dete
ted in �summer�, that is why 
hanges aresmall. The distin
tion of 2 seasons in the trend 
al
ulation allowed us to take into a

ount the real impa
tof 
limate 
hange. Indeed if we did not distinguish the 2 seasons, a signi�
ant in
rease in the event o

ur-ren
es would be found whi
h would lead to bigger 
hanges. These 
hanges would not re�e
t reality: onlywinter events have a signi�
ant in
rease.
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ording to R2 with the ParamLoc
2003 parametrization.



21Return period (T ) �Highland� �Mainland� �Mediterranean� �O
eani
�
2 years ≈ +10% ≈ +5% ≈ −1% ≈ +2%

5 years ≈ +11% ≈ +5% ≈ −2% ≈ +3%

10 years ≈ +12% ≈ +5% ≈ −2% ≈ +3%

100 years ≈ +13% ≈ +6% ≈ −3% ≈ +4%

1000 years ≈ +15% ≈ +7% ≈ −3% ≈ +4%Table 6 RT =
q2003

T

q0

T

(transformed to per
entage) with the Param
Regio
2003 parametrization.Con
erning risks, we 
an look at the evolution of the event o

urren
e probability. Within the 
ontextof a stationary framework, the notion of return period is widely used : �a value with a return period Tis expe
ted to be ex
eeded on average in T years�. Within a non-stationary framework, this de�nitionbe
omes inadequate. We used the following interpretation, assuming that the 
limate 
hange is quasi-nullwithin a single year: �the T -quantiles 
al
ulated 
lassi
ally, in a 
ertain year A, have a probability 1/Tto be ex
eeded during the 
onsidered year A� (Renard 2006). For example, if the volume x is the 100years-quantile in 1960, whereas in 2003 this same volume x is the 50 years-quantiles, then we say that thisevent is twi
e as likely in 2003 than in 1960.From results established by the parameterizations Param0 and Param2003, we evaluated the 
hanges inevent frequen
ies. We use x0 as the quantiles of referen
e, that is the T0-quantiles of the rainfall distribution
oming from the parameterization Param0. Then we 
al
ulated T2003 in su
h a way that the T2003-quantile
oin
ides with x0 of the rainfall distribution 
oming from the parameterization Param2003. This pro
edurewas performed with trends established by the lo
al approa
h and the regional one (see Se
tion Se
tion 4.3).Results are shown in Figure 5 
on
erning the maximal rainfall in 24 hours (PM24) and for T0 = 100 years.

5 Dis
ussionIn this paper, two new approa
hes are proposed: a regional trend test and an appli
ation of a rainfallsto
hasti
 generator in the 
ontext of a 
limate 
hange dete
ted from the generator parameters.
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T0 = 100 years

T (year) in 2003

T=100
T<100
T<75
T<50
T>100
T>150
T>200 (a) Lo
al

T0 = 100  years

(b) Regional (4 zones)Fig. 5 Changes in frequen
y of the maximal rainfall in 24 hours between the stationary hypothesis (referen
e) andnon stationary hypothesis (in 2003) for the lo
al approa
h (left) and the regional one (right).Unlike 
lassi
al regional approa
h, several regional time series has been built to be independent (but notmutually) and identi
ally distributed. The methodology POT and the ML test have been applied to testthe parameters' stationarity. This trend test 
an be performed for trend dete
tion in extreme pre
ipitationseries. In this 
ase, a threshold (of the GPD distribution) must be better estimated in ea
h 
onsideredzone be
ause it is important for the shape parameter estimation. Then the hypothesis of shape parameterstationarity 
an underestimate 
hanges in the extreme values.Due to the poor geographi
al distribution of stations, the results of the regional trend test 
annot begeneralized to a whole Zone. For example, it may be questionable to dedu
e from the 20% in
rease of thenumber of events for the sampled stations into the �O
eani
� Zone (see Table 5) that su
h an in
reaseapplies everywhere in this Zone.The appli
ation of the rainfall sto
hasti
 generator allowed us to work with average parameters what areless in�uen
ed by the shape parameter. However a strong hypothesis was assumed: the rainfall pro
ess doesnot 
hange in time, whi
h means the rainfall signal is always 
hara
terized in the same way by the 3 × 2daily parameters with the passing years. This hypothesis seems to be 
orre
t be
ause the 
urrent version ofthe hourly rainfall model is single-stru
tured for all 
limates, as the relevan
e of its parameterization allows



23it to be used without modifying its stru
ture, whatever the 
limate and over a very broad rainfall range.Therefore only the parameter values, and not the model stru
ture, allows us to estimate quantiles underdi�erent 
limates, from temperate to tropi
al (Arnaud et al. 2007). A possible evolution of the 
limate istaken into a

ount by estimating parameters with the passing years.6 Con
lusion and perspe
tivesThe impa
ts of 
limate 
hange on extreme rainfall were studied with a rainfall generator, parameterized by
3 × 2 average parameters. Signi�
ant trend resear
h for these parameters allowed us to take into a

ount
limati
 evolution in order to estimate rainfall quantiles. The fundamental point of this method is thatan extremal behavior 
an be inferred from estimated average values, not extreme ones. Su
h an approa
his more robust to the sampling �u
tuations. It is as mu
h important as it is often used afterwards inrainfall-runo� modelling.The trend was studied, in a lo
al but also in a regional approa
h, by 
onstru
ting 4 homogeneous
limati
 zones linked to the generator parameters. The regional approa
h seems better to illustrate areal 
hange and to be less subje
ted to statisti
al �u
tuations. The observed 
hanges o

ur mainly inwinter, from De
ember to May, with an in
rease of rainfall event o

urren
e in Fran
e. In Fran
e, heavypre
ipitations are likely to be more and more frequent ex
ept in the Mediterranean region. Nevertheless,taking into a

ount the 
limate 
hange lead to small 
hanges in estimating rainfall quantiles.In this paper, the time evolution of the average parameters was dete
ted from a trend test usingdata 
oming from Météo-Fran
e. A forth
oming study will enable us to work with global 
limate models(GCMs), whi
h 
an generate some 
limati
 variables, su
h as the daily pre
ipitation, a

ording to s
enariosof greenhouse gases and aerosol anthropogeni
 emissions. So, from these simulations, the parameters of therainfall generator 
an easily be estimated over di�erent periods, and then the probable impa
ts of 
limate
hange on extreme rainfall events 
an be evaluated a

ording to these s
enarios.Appendix A Controlling the global signi�
an
e level of a multiple tests approa
h using theFalse Dis
overy Rate (FDR) : the Benjamini and Ho
hberg (BH) pro
edureBenjamini and Ho
hberg (1995) proposed a pro
edure to 
ontrol the global signi�
an
e level αg of a multiple testspro
edure. Assuming that K tests of a null hypothesis H0 are a
hieved, the BH pro
edure is the following:



24(i) Let p(1) ≤ p(2) ≤ . . . ≤ p(K) be the sorted observed p-values related to the K tests;(ii) Compute m = max {1 ≤ j ≤ K, p(j) ≤ j

K
α};(iii) If m exists, then reje
t among the K hypothesis the m ones 
orresponding to p(1) ≤ . . . ≤ p(m) p-values; elsereje
t no hypothesis.Referen
esArnaud, P. (1997). Modèle de prédetermination de 
rues basé sur la simulation sto
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hni
al report,Cemagref.Arnaud, P. (2008). Guide méthodologique sur l'appro
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hni
al report, Cemargef - Aix en Proven
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limate.Atmos. Res., 85:230�242.Arnaud, P. and Lavabre, J. (2002). Coupled rainfall model and dis
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y estimation.Water Resour. Res., 38:1075�1085.Arnaud, P., Lavabre, J., Sol, B., and Desou
hes, C. (2006). Cartographie de l'aléa pluviographique de la Fran
e. LaHouille Blan
he, 5:102�111.Benjamini, Y. and Ho
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