
HAL Id: hal-00585835
https://hal.science/hal-00585835v4

Preprint submitted on 25 Oct 2011 (v4), last revised 26 Jan 2012 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deciding the Value 1 Problem of Probabilistic Leaktight
Automata

Nathanaël Fijalkow, Hugo Gimbert, Youssouf Oualhadj

To cite this version:
Nathanaël Fijalkow, Hugo Gimbert, Youssouf Oualhadj. Deciding the Value 1 Problem of Probabilistic
Leaktight Automata. 2011. �hal-00585835v4�

https://hal.science/hal-00585835v4
https://hal.archives-ouvertes.fr

Deciding the Value 1 Problem

of Probabilistic Leaktight Automata

Nathanaël Fijalkow∗, Hugo Gimbert† and Youssouf Oualhadj‡

October 25, 2011

Abstract

The value 1 problem is a decision problem for probabilistic automata over finite words:
given a probabilistic automaton A, are there words accepted by A with probability ar-
bitrarily close to 1? This problem was proved undecidable recently, even in restricted
cases [FGO11, GO10]. We introduce a new class of probabilistic automata, called leak-
tight automata, for which the value 1 problem is shown decidable (and PSPACE-complete).
We construct an algorithm based on the computation of a monoid abstracting the behaviours
of the automaton, and rely on algebraic techniques developed by Simon for the correctness
proof. The class of leaktight automata is decidable in PSPACE, subsumes all subclasses
of probabilistic automata whose value 1 problem is known to be decidable (in particular
deterministic automata), and is closed under two natural composition operators.

Introduction

Probabilistic automata. Rabin invented a very simple yet powerful model of probabilistic
machine called probabilistic automata, which, quoting Rabin, “are a generalization of finite
deterministic automata” [Rab63]. A probabilistic automaton has a finite set of states Q and
reads input words over a finite alphabet A. The computation starts from the initial state i and
consists in reading the input word sequentially; the state is updated according to transition
probabilities determined by the current state and the input letter. The probability to accept
a finite input word is the probability to terminate the computation in one of the final states
F ⊆ Q.

From a language-theoretic perspective, several algorithmic properties of probabilistic au-
tomata are known: while language emptiness is undecidable [Ber74, GO10, Paz71], language
equivalence is decidable [CMR07, Sch61, Tze92] as well as other properties [CL89, CMRR08].

Rather than formal language theory, our initial motivation for this work comes from control
and game theory: we aim at solving algorithmic questions about partially observable Markov
decision processes and stochastic games. For this reason, we consider probabilistic automata as
machines controlled by a blind controller, who is in charge of choosing the sequence of input
letters in order to maximize the acceptance probability. While in a fully observable Markov
decision process the controller can observe the current state of the process to choose adequately
the next input letter, a blind controller does not observe anything and its choice depends only
on the number of letters already chosen. In other words, the strategy of a blind controller is an
input word of the automaton.

∗LIAFA, Université Denis Diderot - Paris 7, France. nath@liafa.jussieu.fr
†LaBRI, CNRS, Bordeaux, France. hugo.gimbert@labri.fr
‡LaBRI, Université Bordeaux 1, France. youssouf.oualhadj@labri.fr

1

The value of a probabilistic automaton. With this game-theoretic interpretation in mind,
we define the value of a probabilistic automaton as the supremum acceptance probability over
all input words, and we would like to compute this value. Unfortunately, as a consequence of
Paz undecidability result, the value of an automaton is not computable in general. However,
the following decision problem was conjectured by Bertoni [Ber74] to be decidable 1 :

Value 1 problem: Given a probabilistic automaton, does the automaton have value 1? In
other words are there input words whose acceptance probability is arbitrarily close to 1?

Recently, the second and third authors of the present paper proved that the value 1 prob-
lem is undecidable [GO10]. However, probabilistic automata, and more generally partially
observable Markov decision processes and stochastic games, are a widely used model of prob-
abilistic machines used in many fields like software verification [BBG08, CDHR07], image pro-
cessing [CK97], computational biology [DEKM99] and speech processing [Moh97]. As a con-
sequence, it is crucial to understand which decision problems are algorithmically tractable for
probabilistic automata.

Our result. Following this goal, we found a new class of probabilistic automata, leaktight
automata, for which the value 1 problem is decidable. This subclass subsumes all known sub-
classes of probabilistic automata sharing this decidability property and is closed under parallel
composition and synchronized product. Our algorithm to decide the value 1 problem computes
in polynomial space a finite monoid whose elements are directed graphs and checks whether it
contains a certain type of elements that are value 1 witnesses.

Related works. The value 1 problem was proved decidable for a sub-class of probabilistic
automata called ♯-acyclic automata [GO10]. Since the class of ♯-acyclic automata is strictly
contained in the class of leaktight automata, the result of the present paper extends the de-
cidability result of [GO10]. Chadha et al. [CSV09] recently introduced the class of hierarchical
probabilistic automata, which is also strictly contained in the class of leaktight automata. As
a consequence of our result, the value 1 problem is decidable for hierarchical probabilistic au-
tomata. Our proof techniques totally depart from the ones used in [CSV09, GO10]. Instead,
we make use of algebraic techniques and in particular Simon’s factorization forest theorem,
which was used successfully to prove the decidability of the boundedness problem for distance
automata [Sim94].

Outline. Basic definitions are given in Section 1, our algorithm is presented in Section 2,
the decidability of the leaktight property is given in Section 3 and finally Section 4 investi-
gates properties and provides examples of leaktight automata. The proofs can be found in the
appendix.

1 Definitions

1.1 Probabilistic automata

Let Q be a finite set of states. A probability distribution over Q is a row vector δ of size |Q|
whose coefficients are in [0, 1] such that

∑

q∈Q δ(q) = 1. A probabilistic transition matrix M is

a square matrix in [0, 1]Q×Q such that every row of M is a probability distribution over Q.

Definition 1 (Probabilistic automata). A tuple A = (Q,A, (Ma)a∈A, i, F) represents a proba-
bilistic automaton, where Q is a finite set of states, A is the finite input alphabet, (Ma)a∈A are

1Bertoni formulated the value 1 problem in a different yet equivalent way: “Is the cut-point 1 isolated or

not?”.

2

the probabilistic transition matrices, i ∈ Q is the initial state and F ⊆ Q is the set of accepting
states.

For each letter a ∈ A, Ma(s, t) is the probability to go from state s to state t when reading
letter a. Given an input word w ∈ A∗, we denote 0 ≤ w(s, t) ≤ 1 the probability to go
from state s to state t when reading the word w. Formally, if w = a1a2 · · · an then w(s, t) =
(Ma1Ma2 · · ·Man)(s, t).

Definition 2 (Value and acceptance probability). The acceptance probability of a word w ∈ A∗

by A is PA(w) =
∑

f∈F w(i, f). The value of A, denoted val(A), is the supremum acceptance
probability over all possible input words:

val(A) = sup
w∈A∗

PA(w) . (1)

1.2 The value 1 problem for probabilistic automata

We are interested in the following decision problem:

Problem 1 (Value 1 Problem). Given a probabilistic automaton A, decide whether val(A) = 1.

The value 1 problem can be reformulated using the notion of isolated cut-point introduced
by Rabin in his seminal paper [Rab63]: an automaton has value 1 if and only if the cut-point
1 is not isolated.

1.2.1 Parallel convergence rates and undecidability

Whereas the formulation of the value 1 problem only relies qualitatively on the asymptotic
behaviour of probabilities (the probability to be in non-final states should be arbitrarily small)
the answer to the value 1 problem depends quantitatively on the transition probabilities.

0L1

L2

L3

R1

R2

R3

a

b, 1

2

b

a, x

b

a, 1 − x

a, b

a

b, 1

2

b

a, 1 − x

b

a, x

a, b

a

Figure 1: This automaton has value 1 if and only if x > 1
2 .

For example, the automaton depicted on Fig. 1 has value 1 if and only if x > 1
2 . The

input alphabet is A = {a, b}, the initial state is the central state 0 and the final states are
F = {L3, R2}. In order to maximize the probability to reach F , playing two b’s in a row is
certainly not a good option: from any of the three left states, this ensures to reach the non-
accepting absorbing state L2, thus any word in A∗bbA∗ is accepted with probability less than 1

2 .
A smarter strategy consists in playing long sequences of a’s followed by one letter b. If x ≤ 1

2 ,
there is still no hope to play a word accepted with probability greater than 1

2 , because playing
letter a gives more chance to stay in L1 than in R1 thus playing banb from state 0 gives more
chance to reach the sink L2 than the final state R2. However, if x > 1

2 then cleverly chosen

3

sequences ban1ban2 · · · bankb are accepted with arbitrarily high probability (details can be found
in [GO10], see also [BBG08] for a similar example).

The undecidability of the value 1 problem comes from the necessity to compare parallel
convergence rates in order to track down vanishing probabilities. Comparing two convergence
rates may require to compare the decimals of the rates up to an arbitrary precision, which in
turn can encode a Post correspondence problem, hence the undecidability.

1.2.2 Informal description of the leaktight property

One of the phenomena that makes tracking vanishing probabilities difficult are leaks. A leak
occurs in an automaton when a sequence of words turns a set of states C ⊆ Q into a recurrence
class C on the long run but on the short run, some of the probability of the recurrence class is
“leaking” outside the class.

Such leaks occur in the automaton of Fig. 1 with the input sequence (anb)n∈N. As n grows
large, the probability to reach L2 and R2 while reading the input word anb vanishes, thus the
sets {L1} and {R1} are asymptotically recurrent. However there are leaks from L1 to L2 and
symmetrically from R1 to R2. As a consequence, the real asymptotic behaviour is complex and
depends on the compared speeds of these leaks.

An automaton without leak is called a leaktight automaton. In the next section we prove
that the value 1 problem is decidable when restricted to the subclass of leaktight automata.

1.2.3 Leaktight automata

The definition of a leaktight automaton relies on two key notions, idempotent words and word-
recurrent states.

A finite word u is idempotent if reading once or twice the word u does not change qualitatively
the transition probabilities:

Definition 3 (Idempotent words). A finite word u ∈ A∗ is idempotent if for every states
s, t ∈ Q,

u(s, t) > 0 ⇐⇒ (u · u)(s, t) > 0 .

Idempotent words are everywhere: every word, if iterated a large number of times, becomes
idempotent.

Lemma 1. For every word u ∈ A∗, the word u|Q|! is idempotent.

A finite word u induces naturally a Markov chain, which splits the set of states into two
classes: recurrent states and transient states.

Definition 4 (Recurrent states). Let u ∈ A∗ be a finite word. A state s is u-recurrent if it is
recurrent in the finite Markov chainMu with states Q and transitions probabilities (u(s, t))s,t∈Q.

In the case of idempotent words, recurrence of a state can be easily characterized:

Lemma 2. Let s be a state and u be an idempotent word. Then s is u-recurrent if and only if

∀t ∈ Q,u(s, t) > 0 =⇒ u(t, s) > 0 .

The formal definition of a leak is as follows:

Definition 5 (Leaks). A leak from a state r ∈ Q to a state q ∈ Q is a sequence (un)n∈N of
idempotent words such that:

1. for every s, t ∈ Q, the sequence (un(s, t))n∈N converges to some value u(s, t).We denote
Mu the Markov chain with states Q and transition probabilities (u(s, t))s,t∈Q,

4

2. state r is recurrent in Mu,

3. ∀n ∈ N, un(r, q) > 0,

4. and r is not reachable from q inMu.

Condition 2. states that state r is asymptotically recurrent and conditions 3. and 4. express
that some probability is “leaking” from outside the recurrence class of r without coming back.

Definition 6 (Leaktight automata). A probabilistic automaton is leaktight if it has no leak.

Several examples of leaktight automata are given in Section 4.

2 The value 1 problem is decidable for leaktight automata

In this section we establish our main result:

Theorem 3. The value 1 problem is decidable for leaktight automata.

2.1 The Markov monoid algorithm

Our decision algorithm for the value 1 problem computes iteratively a set G of directed graphs
called limit-words. Each limit-word is meant to represent the asymptotic effect of a sequence
of input words, and some particular limit-words can witness that the automaton has value 1.

Algorithm 1 The Markov monoid algorithm.

Input: A probabilistic automaton with initial state i and final states F .
Output: Correct answer to the value 1 problem.
1 G ← {a | a ∈ A}.
2 repeat

3 if there is u,v ∈ G such that u · v /∈ G then

4 add u · v to G
5 if there is u ∈ G such that u = u · u and u♯ /∈ G then

6 add u♯ to G
7 until there is nothing to add
8 if there is a value 1 witness in G then

9 return true

10 else

11 return false

In the rest of the section, we explain the algorithm in details.

Definition 7 (limit-words). A limit-word is a map u : Q2 → {0, 1}.

Initially, G only contains those limit-words a that are induced by input letters a ∈ A of the
automaton, where the limit-word a is defined by:

∀s, t ∈ Q, (a(s, t) = 1 ⇐⇒ a(s, t) > 0) .

The algorithm repeatedly adds new limit-words to G. There are two ways for that: concate-
nating two limit-words in G or iterating an idempotent limit word in G.

5

Concatenation of two limit-words. The concatenation of two limit-words u and v is the
limit-word u · v such that:

(u · v)(s, t) = 1 ⇐⇒ ∃q ∈ Q,u(s, q) = 1 and v(q, t) = 1 .

In other words, concatenation coincides with the multiplication of matrices with coefficients in
the semiring ({0, 1},max,min). The concatenation of two limit-words intuitively corresponds
to the concatenation of two sequences (un)n∈N and (vn)n∈N of input words into the sequence
(un · vn)n∈N.

Iteration of an idempotent limit-word. Intuitively, if a limit-word u represents a sequence

(un)n∈N then its iteration u♯ represents the sequence
(

u
f(n)
n

)

n∈N
for an arbitrarily large function

f : N→ N.
The iteration u♯ of a limit-word u is only defined when u is idempotent i.e when u ·u = u.

It relies on the notion of u-recurrent state.

Definition 8 (u-recurrence). A state s is u-recurrent if for every state t,

u(s, t) = 1 =⇒ u(t, s) = 1 .

According to Lemma 2, this definition is consistent with the notion of recurrent state in
Markov chains induced by finite words.

The iterated limit-word u♯ removes from u any edge that does not lead to a recurrent state:

u♯(s, t) = 1 ⇐⇒ u(s, t) = 1 and t is u-recurrent .

2.2 The Markov monoid and value 1 witnesses

The set G of limit-words computed by Algorithm 1. is called the Markov monoid.

Definition 9 (Markov monoid). The Markov monoid is the smallest set of limit-words con-
taining {a | a ∈ A} and closed under concatenation and iteration.

Two key properties, consistency and completeness, ensure that the limit-words of the Markov
monoid reflect exactly every possible asymptotic effect of a sequence of input words.

On one hand, consistency ensures that every limit-word in G abstracts the asymptotic effect
of an input sequence.

Definition 10 (Consistency). A set of limit-words G ⊆ {0, 1}Q
2

is consistent with a probabilistic
automaton A if for each limit-word u ∈ G, there exists a sequence of input words (un)n∈N such
that for every states s, t ∈ Q:

u(s, t) = 1 ⇐⇒ lim inf
n

un(s, t) > 0 . (2)

Conversely, completeness ensures that every input sequence reifies one of the limit-words.

Definition 11 (Completeness). A set of limit-words G ⊆ {0, 1}Q
2

is complete for a probabilistic
automaton A if for each sequence of input words (un)n∈N, there exists u ∈ G such that for every
states s, t ∈ Q:

lim sup
n

un(s, t) = 0 =⇒ u(s, t) = 0 . (3)

limit-words are useful to decide the value 1 problem because some of these words are wit-
nesses that the automaton has value 1.

6

Definition 12 (Value 1 witnesses). Let A be a probabilistic automaton. A value 1 witness is a
limit-word u such that for every state s ∈ Q,

u(i, s) = 1 =⇒ s ∈ F . (4)

Thanks to value 1 witnesses, the answer to the value 1 problem can be read in a consistent
and complete set of limit-words:

Lemma 4 (A criterion for value 1). Let A be a probabilistic automaton and G ⊆ {0, 1}Q
2

be a
set of limit-words. Suppose that G is consistent with A and complete for A. Then A has value
1 if and only if G contains a value 1 witness.

In order to illustrate the interplay between limit-words of the Markov monoid and sequences
of input words, we give a detailed proof of Lemma 4.

Proof. Assume first that A has value 1. Then for every n ∈ N, there exists an input word
un ∈ A∗ such that PA(un)−→n 1. We know that

∑

f∈F un(i, f) = PA(un)−→n 1. Since for all
n ∈ N, we have

∑

q∈Q un(i, q) = 1, then for all s′ /∈ F , un(i, s
′)−→n 0. Since G is complete,

there exists a limit-word u such that (3) holds. Then u is a value 1 witness: let s ∈ Q such
that u(i, s) = 1, then according to (3), lim supn un(i, s) > 0, hence s ∈ F .

Conversely, assume now that G contains a value 1 witness u. Since G is consistent, there
exists a sequence (un)n∈N such that (2) holds. Without loss of generality, since [0, 1]Q×Q is com-
pact, we can assume (by considering a convergent subsequence) that for every s, t ∈ Q,un(s, t)
converges to some limit u(s, t). It follows from (2) and (4), for all s 6∈ F , we have un(i, s)−→n 0.
Thus PA(un) =

∑

f∈F un(i, f)−→n 1 i.e A has value 1.

The following theorem proves that the Markov monoid of aleaktight automaton is consistent
and complete, thus according to Lemma 4 it can be used to decide the value 1 problem.

Theorem 5. The Markov monoid associated with an automaton A is consistent. Moreover if
A is leaktight then the Markov monoid is complete.

The proof of this theorem relies on a subtle algebraic argument based on the existence of
factorization forests of bounded height [Sim90]. The same kind or argument was used by Simon
to prove the decidability of the boundedness problem for distance automata [Sim94].

2.3 Correctness of the Markov monoid algorithm

Proposition 6. The Markov monoid algorithm solves the value 1 problem for leaktight au-
tomata.

In case the Markov monoid algorithm outputs “true”, then for sure the input automaton
has value 1. This positive result holds for every automaton, leaktight or not.

Proposition 7. If the Markov monoid algorithm outputs “true”, the input probabilistic au-
tomaton has value 1.

In case the Markov monoid algorithm outputs “false” and the automaton is leaktight then
the value of the automaton can be bounded from above:

Theorem 8. Let A be a probabilistic automaton whose minimal non-zero transition probability
is denoted pmin. If the Markov monoid algorithm outputs “false” and if moreover A is leaktight,

then val(A) ≤ 1− p3·2
4|Q|2

min .

In the “false” case, one surely wishes to know whether the input automaton is leaktight or
not. Fortunately, the leaktight property is decidable, as proved in the next section.

7

2.4 Complexity of the Markov monoid algorithm

Proposition 9. The value 1 problem for leaktight automata is PSPACE-complete.

The Markov monoid algorithm terminates in less than 2|Q|2 iterations, since each iteration
adds a new limit-word in the monoid and there are less than 2|Q|2 different limit-words. This
EXPTIME näıve upper bound can be improved to PSPACE.

A better complexity can be achieved by looking for the value 1 witness in a non-deterministic
way. The algorithm guesses the value 1 witness and its decomposition by the product and
iteration operations. The key observation made by Kirsten [Kir05] is that the ♯-height (the
number of nested applications of the iteration operation) can be restricted to at most |Q|. While
Kirsten’s proof was for desert automata, its adaptation to probabilistic automata can be roughly
described as follows: idempotents in the same J -class have the same number of connected
components, and this quantity strictly decreases when iterating an unstable idempotent. The
claim then follows from the remark that the number of connected components is bounded by
|Q|, the number of states of the automaton.

Consequently, the value 1 problem can be decided in PSPACE. Conversely, there is a simple
reduction from the emptiness problem for non-deterministic universal automata to the value
1 problem for leaktight automata: in fact, a non-deterministic universal automaton has value
1 if and only if there exists a word whose runs are all accepting. The first problem being
PSPACE-hard [Koz77], the same applies to the value 1 problem for leaktight automata.

3 Deciding whether an automaton is leaktight

At first sight, the decidability of the leaktight property is not obvious: to check the existence
of a leak one would need to scan the non-countable set of all possible sequences of input words.
Still:

Theorem 10. The leaktight property is decidable in polynomial space.

Algorithm 2 The leak-finder algorithm.

Input: A probabilistic automaton with initial state i and final states F .
Output: Decides whether an automaton is leaktight.
1 G+ ← {(a,a) | a ∈ A}.
2 repeat

3 if there is (u,u+), (v,v+) ∈ G+ such that (u · u,v+ · v+) 6∈ G+ then

4 add (u · v,u+ · v+) to G+
5 if there is (u,u+) ∈ G+ such that u = u ·u and u+ = u+ ·u+ and (u♯,u+) 6∈ G+ then

6 add (u♯,u+) to G+
7 until there is nothing to add
8 if there is a leak witness in G+ then

9 return false

10 else

11 return true

The leak-finder algorithm deciding the leaktight property is very similar to the Markov
monoid algorithm, except for two differences. First, the algorithm keeps track of those edges
that are deleted by successive iteration operations. For that purpose, the algorithm stores to-
gether with each limit-word u another limit-word u+ to keep track of strictly positive transition
probabilities. Such a pair (u,u+) is called an extended limit-word and the set of pairs of ex-
tended limit-words computed by the algorithm is called the extended Markov monoid. Second,
the algorithm looks for leak witnesses.

8

Definition 13 (Leak witness). An extended limit-word (u,u+) is idempotent if both u and u+

are idempotent. An extended limit-word (u,u+) is a leak witness if it is idempotent and there
exists r, q ∈ Q such that:

1. u+(r, q) = 1,

2. r is u-recurrent,

3. u(q, r) = 0,

The correctness of the leak-finder algorithm is a consequence of:

Theorem 11. An automaton A is leaktight if and only if its extended Markov monoid does not
contain a leak witness.

Although we chose to present Theorem 5 and Theorem 11 separately, their proofs are tightly
linked.

4 A few leaktight automata

In this section, we present several properties and examples of leaktight automata.

4.1 Two basic examples

The automaton on Fig. 2 is leaktight. Its extended Markov monoid is depicted on the right-
hand side. Each of the four directed graphs represents an extended limit-word (u,u+), the
edges marked + are the edges that are in u+ but not in u.

The initial state of the automaton is state 0, and the unique final state is state 1. This
automaton has value 1 and this can be checked using the extended Markov monoid: the two
value 1 witnesses are a♯ and b · a♯.

0 1

a, 1

2

b

a

a, 1

2

b

a

0 1

a
♯

0 1

+

b

0 1

b · a
♯

0 1

+

+

Figure 2: A leaktight automaton and its extended Markov monoid.

The automaton on Fig. 3 is leaktight. The initial state of the automaton is state 0, and
the unique final state is state F . The Markov monoid has too many elements to be represented
here. This automaton does not have value 1.

4.2 The class of leaktight automata is rich and stable

The class of leaktight automata contains all known classes of probabilistic automata with a
decidable value 1 problem, in particular hierarchical automata defined in [CSV09] and ♯-acyclic
automata defined in [GO10].

9

0

L R

F

a, 1

2
a, 1

2

b

a

a

b, 1

2

b

a, 1

2

b, 1

2
a, 1

2

.

Figure 3: A leaktight automaton which does not have value 1.

Proposition 12. Deterministic automata, hierarchical probabilistic automata and ♯-acyclic au-
tomata are leaktight.

Another witness of the interest of the class of leaktight automata is its stability under two
natural composition operators: parallel composition and synchronized product. An automaton
A||B is the parallel composition of two automata A and B if its state space is the disjoint union
of the state spaces of A and B plus a new initial state. For every input letter, the possible
successors of the initial state are itself or one of the initial state of A and B. An automaton
A× B is the synchronized product of two automata A and B if its state space is the cartesian
product of the state spaces of A and B, with induced transition probabilities.

Proposition 13. The leaktight property is stable by parallel composition and synchronized prod-
uct.

4.3 About ♯-height

An adaptation of a result by Kirsten (Lemma 5.7 in [Kir05]) shows that only |Q| nested ap-
plications of the iteration operation are sufficient to compute the whole Markov monoid of an
automaton.

A natural question is whether this bound is tight? The answer is positive, a simple computa-
tion shows that the only value 1 witness of the automaton of Fig. 4 is u = (· · · ((a♯0a1)

♯a2)
♯a3)

♯ · · · an−1)
♯,

whose ♯-height is n = |Q| − 2.
The following proposition shows a crucial difference between ♯-acyclic automata on one hand

and deterministic and ♯-acyclic automata on the other hand.

Proposition 14. Deterministic automata and ♯-acyclic automata have ♯-height 1.

As a consequence, every value 1 witness u can be rewritten: u = u0v
♯
0u1v

♯
1 · · ·ukv

♯
kuk+1,

where u0,v0,u1, . . . ,uk+1 are obtained by concatenation of letters. By contrast, the value 1
witness of the automaton in Fig. 4 is more complex.

Acknowledgment

We thank Thomas Colcombet for having pointed us to the work of Leung and Simon.

10

0 1 2 n− 1 n

⊥

a0,
1
2

(ai)i≥0

(ai)i≤0 (ai)i≤1 (ai)i≤n−2

(ai)i≥0

a0,
1
2

a1,
1
2 a1,

1
2

a2,
1
2

a2,
1
2

an−1,
1
2

an−1,
1
2

(ai)i≥1

(ai)i≥2 (ai)i≥3

(ai)i≥n

.

.

Figure 4: A leaktight automaton with value 1 and ♯-height n.

Conclusion

We introduced a subclass of probabilistic automata, called leaktight automata, for which we
proved that the value 1 problem is PSPACE-complete.

In the present paper we considered automata over finite words. Next step is the adaptation
of our results to infinite words and probabilistic Büchi automata [BBG08, CSV09], as well as
partially observable Markov decision processes.

References

[BBG08] Christel Baier, Nathalie Bertrand, and Marcus Größer. On decision problems for
probabilistic Büchi automata. In Foundations Of Software Science And Computa-
tion Structures, pages 287–301, 2008.

[Ber74] Alberto Bertoni. The solution of problems relative to probabilistic automata in the
frame of the formal languages theory. In GI Jahrestagung, pages 107–112, 1974.

[CDHR07] Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François
Raskin. Algorithms for omega-regular games of incomplete information. Logical
Methods in Computer Science, 3(3), 2007.

[CK97] Karel Culik and Jarkko Kari. Digital images and formal languages, pages 599–616.
Springer-Verlag New York, Inc., 1997.

[CL89] Anne Condon and Richard J. Lipton. On the complexity of space bounded in-
teractive proofs (extended abstract). In Foundations of Computer Science, pages
462–467, 1989.

[CL04] Jérémie Chalopin and Hing Leung. On factorization forests of finite height. Theo-
retical Computer Science, 310(1-3):489–499, 2004.

[CMR07] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. Lp distance and equivalence of
probabilistic automata. International Journal of Foundations of Computer Science,
18(4):761–779, 2007.

11

[CMRR08] Corinna Cortes, Mehryar Mohri, Ashish Rastogi, and Michael Riley. On the com-
putation of the relative entropy of probabilistic automata. International Journal of
Foundations of Computer Science, 19(1):219–242, 2008.

[Col10] Thomas Colcombet. Factorization forests for infinite words and applications to
countable scattered linear orderings. Theoretical Computer Science, 411(4-5):751–
764, 2010.

[CSV09] Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. Power of randomization
in automata on infinite strings. In International Conference on Concurrency Theory,
pages 229–243, 2009.

[DEKM99] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge
University Press, July 1999.

[FGO11] Nathanaël Fijalkow, Hugo Gimbert, and Youssouf Oualhadj. Pushing undecidability
of the isolation problem for probabilistic automata. CoRR, abs/1104.3054, 2011.

[GO10] Hugo Gimbert and Youssouf Oualhadj. Probabilistic automata on finite words:
Decidable and undecidable problems. In International Colloquium on Automata,
Languages and Programming, pages 527–538, 2010.

[How95] John M. Howie. Fundamentals of semigroup theory. Clarendon Press, Oxford, 1995.

[Kir05] Daniel Kirsten. Distance desert automata and the star height problem. ITA,
39(3):455–509, 2005.

[Koz77] Dexter Kozen. Lower bounds for natural proofs systems. In Proceedings of 18th
Symposium on the Foundations of Computer Science, pages 254–266, 1977.

[Lal79] Gérard Lallement. Semigroups and Combinatorial Applications. Wiley, 1979.

[Moh97] Mehryar Mohri. Finite-state transducers in language and speech processing. Com-
putational Linguistics, 23:269–311, June 1997.

[Paz71] Azaria Paz. Introduction to probabilistic automata. Academic Press, 1971.

[Rab63] Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245,
1963.

[Sch61] Marcel-Paul Schützenberger. On the definition of a family of automata. Information
and Control, 4, 1961.

[Sim90] Imre Simon. Factorization forests of finite height. Theoretical Computer Science,
72(1):65–94, 1990.

[Sim94] Imre Simon. On semigroups of matrices over the tropical semiring. Informatique
Théorique et Applications, 28(3-4):277–294, 1994.

[Tze92] Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of probabilistic
automata. SIAM Journal on Computing, 21(2):216–227, 1992.

12

Appendix

A Tool lemmata

We start with a few tool lemmata.

Lemma 1 For every word u ∈ A∗, the word u|Q|! is idempotent. For every limit-word u ∈
{0, 1}Q

2

, the limit-word u|Q|! is idempotent.

Proof. The two statements are equivalent, we prove the second one.
Let n = |Q|! and s, t ∈ Q such that un(s, t) = 1. We want to prove that u2n(s, t) = 1. Since

un(s, t) = 1, there exists q ∈ Q and k, l < |Q| such that uk(s, q) = 1, un−k−l(q, q) = 1 and
ul(q, t) = 1. Consequently, there exists k′ < |Q| such that uk′(q, q) = 1, and since k′|n = |Q|!,
this implies un(q, q) = 1, thus u2n−k−l(q, q) = 1 and finally u2n(s, t) = 1.

The proof of u2n(s, t) = 1 =⇒ un(s, t) = 1 is similar.

Lemma 2 Let s be a state and u be an idempotent word. Then s is u-recurrent if and only if

∀t ∈ Q,u(s, t) > 0 =⇒ u(t, s) > 0 .

Proof. Suppose first that s is u-recurrent, and let t ∈ Q such that u(s, t) > 0. Then t is
accessible from s in Mu and by definition of recurrence, s is accessible from t in Mu thus
there exists k ∈ N such that uk(t, s) > 0. Since u is idempotent, an easy induction shows that
∃l > 0, ul(t, s) > 0 =⇒ u(t, s) > 0.

Suppose now that for every t ∈ Q, u(s, t) > 0 =⇒ u(t, s) > 0. Let t be a state accessible
from s, then there exists k ∈ N such that uk(s, t) > 0. The same easy induction shows that
u(s, t) > 0 thus by hypothesis u(t, s) > 0 and s is accessible from t inMu. Since this holds for
every t accessible from s, the state s is recurrent inMu.

The following lemma provides two simple yet useful properties.

Lemma 15. Let A be a probabilistic automaton.

i) Let u be an idempotent limit-word. Then for each state s ∈ Q, there exists t ∈ Q such
that u(s, t) = 1 and t is u-recurrent.

ii) Let (v,v+) be an element of the extended Markov monoid of A. Then:

∀s, t ∈ Q, (v(s, t) = 1 =⇒ v+(s, t) = 1) . (5)

Proof. We prove i). Let C ⊆ Q be a strongly connected component of the graph (Q,u) reachable
from s. Then for every t, q ∈ C there exists k and a path t = t1, t2, . . . , tk = q from t to q in
(Q,u). Thus, (uk)(t, q) = 1 and since u is idempotent, u(t, q) = 1. Thus, C is a clique of the
graph (Q,u) and all states of C are recurrent. Since C is reachable from s in (Q,u) then the
same argument proves that for every t ∈ C, u(s, t) = 1.

We prove ii). By definition, the extended Markov monoid is the smallest monoid containing
{(a,a) | a ∈ A} and stable by concatenation and iteration. Property (5) holds for every pair
(a,a) where a ∈ A. Moreover this property is stable by concatenation and iteration. This
completes the proof.

B Correctness of the Markov monoid algorithm

Theorem 5 The Markov monoid associated with an automaton A is consistent. Moreover if
A is leaktight then the Markov monoid is complete.

Proof. The proof is split between Lemma 16 and Lemma 17.

13

B.1 The input sequence associated with a limit-word

Definition 14. A sequence (un)n∈N of input words reifies a limit-word u if

u(s, t) = 1 ⇐⇒ lim inf
n

un(s, t) > 0 . (6)

In particular, a set of limit-words G is consistent for A if each limit-word in G is reified by some
sequence of input words.

Lemma 16. Let G ⊆ {0, 1}Q
2

be a set of limit-words. Suppose that G is consistent. Then for
every u,v ∈ G the set G ∪ {u · v} is consistent. If moreover u is idempotent then G ∪ {u♯} is
consistent as well.

Proof. Let u,v ∈ G.
We build a sequence (wn)n∈N which reifies u ·v. By induction hypothesis on u and v, there

exists (un)n and (vn)n which reify u and v respectively. Let wn = un · vn. Then (wn)n∈N reifies
u · v, because

wn(s, t) =
∑

r∈Q

un(s, t) · vn(t, r)

and by definition of the concatenation of two limit-words.
Suppose now that u is idempotent, we build a sequence (zn)n∈N which reifies u♯. By induc-

tion hypothesis, there exists a sequence (un)n∈N which reifies u. Since [0, 1]Q×Q is compact, we
can suppose (by considering subsequences if needed) that for every s, t ∈ Q, un(s, t) converges
to some value u(s, t). Since u is idempotent then u is idempotent as well. As a consequence,
the Markov chainMu with state space Q and transition probabilities (u(s, t))s,t∈Q is aperiodic,
and according to standard results about finite Markov chains, the sequence of matrices (uk)k∈N
has a limit z ∈ [0, 1]Q×Q such that transient states of z are asymptotically left forever. This
implies:

∀s, t ∈ Q, z(s, t) > 0 =⇒ t is z-recurrent. (7)

Since (un)n∈N converges to u and since matrix product is continuous, for every k ∈ N there
exists φ(k) ∈ N such that ||uk − uk

φ(k)||∞ ≤
1
k
. Then the sequence of matrices zn = un

φ(n)
converges to z.

Now we prove that (zn)n∈N reifies u♯ because,

u♯(s, t) = 1 ⇐⇒ t is u-recurrent and u(s, t) = 1

⇐⇒ t is u-recurrent and u(s, t) > 0

⇐⇒ t is z-recurrent and z(s, t) > 0

⇐⇒ z(s, t) > 0

⇐⇒ lim
n

zn(s, t) > 0 ,

where the first equivalence is by definition of the iteration, the second holds because (un)n∈N
reifies u, the third because the iterated Markov chain z = limk u

k has the same recurrent states
than the Markov chain u, the fourth holds by (7), and the fifth by definition of z.

Proposition 9 The Markov monoid algorithm solves the value 1 problem for leaktight au-
tomata.

Proof. Termination of the Markov monoid algorithm is straightforward because each iteration
adds a new element in G and there are at most 2|Q|2 elements in G.

The correctness is a corollary of Theorem 5: since the Markov monoid is consistent and
complete then according to Lemma 4, A has value 1 if and only if G contains a value 1 witness,
if and only if the Markov monoid algorithm outputs “true”.

14

Proposition 7 If the Markov monoid algorithm outputs “true”, the input probabilistic automa-
ton has value 1.

Proof. According to Theorem 5, the Markov monoid is consistent. If it contains a value 1
witness, then according to the first part of the proof of Lemma 4, A has value 1.

Theorem 8 If the Markov monoid algorithm outputs “false” and if moreover the input proba-

bilistic automaton A is leaktight, then val(A) ≤ 1− p3·2
4|Q|2

min .

Proof. If the algorithm outputs “false”, then for every pair (u,u+) ∈ G+, the limit-word u is
not a value 1 witness, because by definition of the Markov monoid G and the extended Markov
monoid G+,

G = {u | ∃u+, (u,u+) ∈ G+} .

Let u ∈ A∗ be any finite word. According to the Lower Bound Lemma (Lemma 18), there
exists a pair (u,u+) ∈ G+ such that for every s, t ∈ Q,

u(s, t) = 1 =⇒ u(s, t) ≥ p3·2
4|Q|2

min . (8)

Since u is not a value 1 witness, there exists q 6∈ F such that u(i, q) = 1 then according to (8),

u(i, q) ≥ p3·2
4|Q|2

min , thus
∑

f∈F u(i, f) ≤ 1− p3·2
4|Q|2

min .

Since this holds for every u ∈ A∗, val(A) ≤ 1− p3·2
4|Q|2

min .

B.2 The limit-word associated with an input sequence

In this section, we show how to associate a limit-word with each infinite sequence of input words.
Our goal is to prove:

Lemma 17. Suppose that A is leaktight. Then the Markov monoid of A is complete for A.

The proof relies on two lemmata, Lemma 23 and the Lower Bound Lemma (Lemma 18),
which are proved in the next section.

Proof of Lemma 17. Let (un)n∈N be an input sequence.
According to Lemma 23, the extended Markov monoid of A contains no leak witness, thus

we can apply the Lower Bound Lemma to each input word un: for each n ∈ N there exists a
pair (un,u+,n) ∈ G+ in the extended Markov monoid such that:

u+,n(s, t) = 1 ⇐⇒ un(s, t) > 0 ,

un(s, t) = 1 =⇒ un(s, t) ≥ p3·2
4|Q|2

min . (9)

The set of limit-words is finite, thus there exists N ∈ N such that {n ∈ N | uN = un} is infinite.
To complete the proof, we prove that uN has the property (3) defining completeness:

∀s, t ∈ Q, lim supun(s, t) = 0 =⇒ uN (s, t) = 0 . (10)

If lim supun(s, t) = 0 then un(s, t) < p3·2
4|Q|2

min for every n sufficiently large. Since uN = un for
infinitely many n ∈ N, then according to (9) this implies uN (s, t) = 0, which completes the
proof of Lemma 17.

15

C The Lower Bound Lemma

The Lower Bound Lemma is the key to our decidability result.

Lemma 18 (Lower Bound Lemma). Let A be a probabilistic automaton whose extended Markov
monoid contains no leak witness. Let pmin the smallest non-zero transition probability of A.
Then for every word u ∈ A∗, there exists a pair (u,u+) in the extended Markov monoid such
that, for all states s, t ∈ Q,

u+(s, t) = 1 ⇐⇒ u(s, t) > 0 , (11)

u(s, t) = 1 =⇒ u(s, t) ≥ p3·2
4|Q|2

min . (12)

To prove Lemma 18, we rely on the notion of Ramseyan factorization trees and decomposi-
tion trees introduced by Simon [Sim90, Sim94].

Definition 15. Let A be a finite alphabet, (M, ·, 1) a monoid and φ : A∗ → M a morphism.
A Ramseyan factorization tree of a word u ∈ A∗ for φ is a finite unranked ordered tree, whose
nodes are labelled by pairs (w,φ(w)) where w is a word in A∗ and such that:

(i) the root is labelled by (u, φ(u)),

(ii) every internal node with two children labelled by (u1, φ(u1)) and (u2, φ(u2)) is labelled by
(u1 · u2, φ(u1 · u2)),

(iii) leaves are labelled by pairs (a, φ(a)) with a ∈ A,

(iv) if an internal node t has n children t1, . . . , tn where n is greater or equal to three, labelled
by (u1, φ(u1)), . . . , (un, φ(un)), then there exists e ∈ M such that e is idempotent and
e = φ(u1) = φ(u2) = . . . = φ(un). In this case t is labelled by (u1 · · · un, e).

Internal nodes with one or two children are concatenation nodes, the other internal nodes are
iteration nodes.

Not surprisingly, every word u ∈ A∗ can be factorized as a Ramseyan factorization tree,
using only concatenation nodes: any binary tree whose leaves are labelled from left to right by
the letters of u and whose internal nodes are labelled consistently is a Ramseyan factorization
tree. Notice that if u has length n then such a tree has height log2(n), with the convention that
the height of a leaf is 0. As a consequence, with this naive factorization of u, the longer the
word u, the deeper its factorization tree.

The following powerful result of Simon states that every word can be factorized with a
Ramseyan factorization tree whose depth is bounded independently of the length of the word:

Theorem 19 ([Sim90, CL04, Col10]). Every word u ∈ A∗ has a Ramseyan factorization tree
of height at most 3 · |M |.

In [Sim94], Simon used the tropical semiring (N ∪ {∞},min,+) to prove the decidability of
the boundedness problem for distance automata. Similarly to the Markov monoid, the tropical
semiring is equipped with an iteration operation ♯. Following the proof scheme of Simon, we
introduce the notion of decomposition tree relatively to a monoid M equipped with an iteration
operation ♯.

Definition 16. Let A be a finite alphabet, (M, ·, 1) a monoid equipped with an iteration operation
♯ that maps every idempotent e ∈ M to another idempotent element e♯ ∈ M and φ : A∗ → M
a morphism. A decomposition tree of a word u ∈ A∗ is a finite unranked ordered tree, whose
nodes have labels in (A∗,M) and such that:

16

i) the root is labelled by (u,u), for some u ∈M ,

ii) every internal node with two children labelled by (u1,u1) and (u2,u2) is labelled by (u1 ·
u2,u1 · u2),

iii) every leaf is labelled by (a,a) where a is a letter,

iv) for every internal node with three or more children, there exists e ∈ M such that e

is idempotent and the node is labelled by (u1 . . . un, e
♯) and its children are labelled by

(u1, e), . . . , (un, e).

Internal nodes with one or two children are concatenation nodes, the other internal nodes are
iteration nodes.

An iteration node labelled by (u, e) is discontinuous if e♯ 6= e. The span of a decomposition
tree is the maximal length of a path that contains no discontinuous path.

Remark that decomposition and factorization trees are closely related:

Lemma 20. A Ramseyan factorization tree is a decomposition tree if and only if it contains
no discontinuous nodes.

Proof. The definitions 15 and 16 are similar except for condition iv). If there are no discontin-
uous nodes then e = e♯ in iv) of Definition 16.

The following theorem is adapted from [Sim94, Lemma 10].

Theorem 21. Let A be a finite alphabet, (M, ·, 1) a monoid equipped with an iteration operation
♯ that maps every idempotent e ∈ M to another idempotent element e♯ ∈ M and φ : A∗ → M
a morphism. Every word u ∈ A∗ has a decomposition tree whose span is less than 3 · |M |.

Proof. Let K be the cardinal of M . We start with adding a few letters to A, together with
their transition matrices. For every idempotent e ∈ M , we add a letter e to the alphabet A,
and extend φ by φ(e) = e. We do not lose generality because this operation does not modify
the semigroup M , and a decomposition tree for a word with letters from the original alphabet
cannot use the new letters of the extended alphabet A = A ∪ {e | e ∈M, e = e2}.

We proceed by induction on the length of u.
First, if u is a letter a, the decomposition tree whose only node is labelled by (a, φ(a)) has

span 1.
Consider now a word u with at least two letters. According to Theorem 19, there exists

a Ramseyan factorization tree Tu of u of height less than 3 · K. According to Lemma 20,
this factorization tree is in general not a decomposition tree, except in the very special case
where it has no discontinuous nodes. The rest of the proof shows how to transform Tu into a
decomposition tree of span less than 3 · |M | in the following way. The proof technique consists
in taking care of the discontinuous nodes of Tu in a bottom-up fashion.

If Tu has no discontinuous node then it is already a decomposition tree. Moreover its span
is equal to its height, which is less than 3 · |M |.

If Tu has at least one discontinuous node, and let t be such a node with maximal depth.
By definition, t has at least three children t1, . . . , tk labelled by (v1, φ(v1)), . . . , (vk, φ(vk)) and
t itself is labelled by (v, φ(v)) = (v1 · · · vk, φ(v1 · · · vk)). We have φ(v1) = . . . = φ(vk) = e and
since t is discontinuous, e 6= e♯. We distinguish two cases.

• Either t is the root of Tu. In that case v = u and we can construct directly a decomposition
tree Tu of u of span less than 3 · |M |. Let T1, . . . , Tk the subtrees of Tu whose roots are
respectively t1, . . . , tk. Then, since t is a discontinuous node of maximal depth in Tu, each
subtree T1, . . . , Tk contains no discontinuous node at all. Consequently, each subtree Ti

17

is a decomposition tree whose span is equal to its height, which is less than 3 · |M | − 1.
Then a decomposition tree for u is the tree with the root labelled by (u, e♯) and children
T1, . . . , Tk. Since e 6= e♯, the root is discontinuous and the span of this tree is less than
3 · |M |.

• Or t is not the root of Tu. Since t is labelled by (v, e♯), there exist two words w,w′ ∈ A∗

such that u = w · v · w′. Let replace the subword v in u by the letter e♯ and obtain the
word u′ = w · e♯ · w′. Since t is a discontinuous node, it is an iteration node and has
at least three children, thus v has length at least 3. Thus, u′ is strictly shorter than u
and we can apply the induction hypothesis to u′: let T ′ be a decomposition tree for u′,
whose span is less than 3 · |M |. One of the leaf of T ′ corresponds to the letter e♯ of u′

and is labelled by (e♯, e♯). Let replace this leaf by the decomposition tree Tv of v given by
induction hypothesis. Since Tv is labelled by (v, e♯), we obtain a decomposition tree for
u = w · v · w′, whose span is less than 3 · |M |. This completes the induction step.

The following lemma proves that every discontinuous node of a decomposition tree strictly
decreases the J -class of the second label of the node. The notion of J -class of a monoid M is a
classical notion in semigroup theory, derived from one of the four Green’s relations (for details
about Green’s relations, see [Lal79, How95]). The J -preorder between elements of a monoid
M is defined as follows:

∀a, b ∈M,a ≤J b if a ∈MbM ,

where MbM denotes the set {ubv | u, v ∈M}.
The following lemma is adapted from [Sim94, Lemma 3].

Lemma 22. Let A be a finite alphabet, and M a monoid equipped with an iteration operation
♯ that maps every idempotent e ∈ M to another idempotent element e♯ ∈ M . Suppose that for
every idempotent e ∈M ,

e♯ · e = e♯ = e · e♯ . (13)

Then for every idempotent element e ∈M , either e♯ = e or e♯ <J e.

Proof. Equation (13) implies that e♯ = e♯ee♯ thus e♯ ≤J e. Now, we suppose that e ≤J e♯ and
prove that e = e♯. Since M is finite, we have eDe♯. Since e · e♯ = e♯, it follows eRe♯. By a dual
argument, we have eLe♯; hence eHe♯. Both e and e♯ and idempotents, so according to Green’s
theorem (see e.g. [How95], Theorem 2.2.5.) e = e♯.

Now we are ready to complete the proof of the Lower Bound lemma.

Proof of Lemma 18. LetM be the extended Markov monoid G+ associated withA and equipped
with the concatenation operation:

(u,u+) · (v,v+) = (u · v,u+ · v+) ,

and for idempotent pairs the iteration operation:

(u,u+)
♯ = (u♯,u+) .

We apply Theorem 21 to the word u, the extended Markov monoid M = G+ and the
morphism φ : A→M defined by φ(a) = (a,a). Let u ∈ A∗, according to Theorem 21, u has a
decomposition tree T of span less than 3 · |G+|, labelled by (u,u) for some limit-word u.

We prove that:
the depth of T is less than 3 · |G+|

2-1. (14)

18

Let t0, t1, . . . tn be a path from the root to a leaf in T and for each i denote (ui,ui) the label of
ti (in particular, (u0,u0) = (u,u)). Then, for every k ∈ N such that tk is a discontinuous node,
by Lemma 22 uk <J uk+1. Moreover, for every k ∈ N such that tk is a continuous node, by
definition of a decomposition tree, uk ≤J uk+1. Since the span is less than 3 · |G+|, and since
there are less J -classes than there are elements in the monoid G+, this gives (14).

To complete the proof of Lemma 18, we prove that for every word u ∈ A∗ with a decompo-
sition tree of depth h, there exists a pair (u,u+) in the extended Markov monoid such that, for
all states s, t ∈ Q,

u+(s, t) = 1 ⇐⇒ u(s, t) > 0 , (15)

u(s, t) = 1 =⇒ u(s, t) ≥ p2
h+1

min . (16)

We prove (15) and (16) by induction on h.
If h = 0 then the decomposition tree is a leaf, hence u is a letter a and u = u+ = a.

Then (15) holds by definition of a and (16) holds by definition of pmin.
If h > 0, there are two cases.
First case, t is a concatenation node labelled by (u, (u,u+)) with two sons labelled

by (u1, (u1,u+,1)) and (u2, (u2,u+,2)). We first prove that (15) holds. Let s, t ∈ Q such that
u+(s, t) = 1. By definition of a decomposition tree, u+ = u+,1 · u+,2. Since u+(s, t) = 1 then
by definition of the concatenation there exists q ∈ Q such that u+,1(s, q) = 1 and u+,2(q, t) =
1. Then u(s, t) ≥ u1(s, q) · u2(q, t) and by induction hypothesis u1(s, q) · u2(q, t) > 0, which
proves (15). Now we prove that (16) holds. Let s, t ∈ Q such that u(s, t) = 1. By definition of a
decomposition tree, u = u1 ·u2. Since u(s, t) = 1 then by definition of limit-words concatenation
there exists q ∈ Q such that u1(s, q) = 1 and u2(q, t) = 1. Then u(s, t) ≥ u1(s, q) · u2(q, t) ≥

p2
h

min · p
2h
min = p2

h+1

min where the first inequality is by definition of the matrix product and the
second inequality is by induction hypothesis. This completes the proof of (16).

Second case, t is an iteration node labelled by (u, (u♯,u+)) with k sons labelled by
(u1, (u,u+)), . . . , (uk, (u,u+)). The proof that (15) holds is similar to the concatenation node
case. Now we prove that (16) holds.

Let s, r ∈ Q such that u♯(s, r) = 1. By definition of a decomposition tree, u = u1 · · ·uk.
Since t is an iteration node, k ≥ 3 thus:

u(s, t) ≥ u1(s, r) ·
∑

q∈Q

(u2 · · · uk−1)(r, q) · uk(q, t) . (17)

To establish (16) we prove that:

u1(s, r) ≥ p2
h

min, (18)

∀q ∈ Q, (u2 · · · uk−1)(r, q) > 0 =⇒ uk(q, t) ≥ p2
h

min. (19)

First we prove (18). Since u♯(s, r) = 1 then by definition of the iteration operator, r is
u-recurrent and u(s, r) = 1. By induction hypothesis applied to t1, according to (16), it implies

u1(s, r) ≥ p2
h

min i.e (18).
Now we prove (19). For that we use the hypothesis that (u,u+) is not a leak witness. Let

q ∈ Q such that (u2 · · · uk−1)(r, q) > 0. Then by induction hypothesis applied to t2, . . . , tk−1,
according to (15), uk−2

+ (r, q) = 1. Thus by idempotence of u+, u+(r, q) = 1. Since r is
u-recurrent and since (u,u+) is not a leak witness then necessarily u(q, r) = 1. Thus, by

induction hypothesis and according to (16), uk(q, t) ≥ p2
h

min i.e (19).

19

Now, putting (17), (18) and (19) altogether,

u(s, t) ≥ u1(s, r)
∑

q∈Q

(u2 · · · uk−1)(r, q) · uk(q, t)

≥ p2
h

min

∑

q∈Q

(u2 · · · uk−1)(r, q) · p
2h

min

≥ p2
h+1

min ,

where the second inequality holds because
∑

q∈Q(u2 · · · uk−1)(r, q) = 1. This completes the
proof of (16).

To conclude, according to (14) the depth of a decomposition tree can be bounded by 3·|G+|
2,

and since G+ has less than 22|Q|2 elements the depth h is less than 3 · 24|Q|2 Then according
to (15) and (16) this completes the proof of Lemma 18.

D About the extended Markov monoid and leak witnesses

Theorem 11 An automaton A is leaktight if and only if its extended Markov monoid contains
no leak witness.

The proof is split in two parts, the direct implication (Lemma 23) and the converse impli-
cation (Lemma 24).

Lemma 23. If the extended Markov monoid of an automaton A contains a leak witness then
A has a leak.

Proof. Suppose that there is a leak witness (u,u+) in the extended Markov monoid.
By definition of a leak witness, u and u+ are idempotent and there exists r, q ∈ Q such that

r is u-recurrent, u+(r, q) = 1 and u(q, r) = 0.
We prove now that there exists a leak from r to q.
By induction, the proof of Lemma 16 proves that for each (u,u+) in the extended Markov

monoid, there exists a sequence (un)n∈N such that ∀s, t ∈ Q,

u(s, t) = 1 ⇐⇒ lim inf
n

un(s, t) > 0 , (20)

u+(s, t) = 0 ⇐⇒ ∀n ∈ N, un(s, t) = 0 , (21)

u+(s, t) = 1 ⇐⇒ ∀n ∈ N, un(s, t) > 0 . (22)

Since the set [0, 1]Q×Q is compact, we can extract from (un)n∈N a subsequence (u′n)n∈N such
that for every s, t ∈ Q, (u′n(s, t))n∈N converges to some limit u(s, t).

To complete the proof, we show that (u′n)n∈N is a leak in A from r to q. According to
Definition 5, there are four conditions to be met.

First, convergence of (u′n)n∈N is by choice of (u′n)n∈N. Moreover, since u+ is idempotent
then according to (20) and (21) all the u′n are idempotent. Second, let Mu the Markov chain
associated with transition probabilities (u(s, t))s,t∈Q. We prove that r is Mu-recurrent. Since
r is u-recurrent, and according to (20), ∀s ∈ Q,u(r, s) > 0 =⇒ u(s, r) > 0. But u is
idempotent because u is idempotent and (20). Thus according to Lemma 2, r is u-recurrent.
Third, ∀n ∈ N, u′n(r, q) > 0, this holds because of (22) and u+(r, q) = 1. Fourth, r is not
accessible from q inMu. Since u = limn u

′
n and according to (20), u(s, t) = 1 ⇐⇒ u(s, t) > 0,

thus accessibility in the directed graph (Q,u) and in the Markov chain Mu coincide. Since
u(r, q) = 0 and u is idempotent, then r is not accessible from q in u, thus neither accessible in
Mu.

20

Lemma 24. If the extended Markov monoid of an automaton A contains no leak witness then
A is leaktight.

Proof. By contradiction, suppose there is a leak (un)n∈N from a state r to a state q in A, and
for each s, t ∈ q, denote u(s, t) the limit of the sequence (un(s, t))n∈N andMu the Markov chain
induced by (u(s, t))s,t∈Q. By definition of a leak:

r is recurrent inMu, (23)

∀n ∈ N, un(r, q) > 0, (24)

r is not accessible from q inMu. (25)

To get the contradiction, we use the leak (un)n∈N to build a leak witness (v,v+) in the
extended monoid G+ of A.

The first task is to define the pair (v,v+). By hypothesis, we can apply the Lemma 18 to
each word un of the leak, which gives for each n ∈ N a pair (un,u+,n) ∈ G+ such that:

u+,n(s, t) = 1 ⇐⇒ un(s, t) > 0 , (26)

un(s, t) = 1 =⇒ un(s, t) ≥ p3·2
4|Q|2

min . (27)

Since the extended Markov monoid is finite, there exists N ∈ N such that:

for infinitely many n ∈ N, (uN ,u+,N) = (un,u+,n) . (28)

Let (v,v+) = (uN ,u+,N)|G+|!. Then according to Lemma 1, (v,v+) is idempotent. Note also
that according to (26) and since the un are idempotent (by definition of leaks),

u+,N is idempotent and v+ = u+,N . (29)

Now, we prove that (v,v+) is a leak witness. According to i) of Lemma 15, since v is
idempotent, there exists r′ such that v(r, r′) = 1 and r′ is v-recurrent. By definition of a leak
witness, if we prove that (a) v+(r

′, q) = 1, (b) v(q, r′) = 0 then (v,v+) is a leak witness.

We first prove (a). Let η = p3·2
4|Q|2

min and K = |G+|!. Then:

v(r, r′) = 1 (by definition of r′)

=⇒ uK
N (r, r′) = 1 (by definition of v)

=⇒ uK
n (r, r′) = 1, for infinitely many n (by definition of N)

=⇒ uKn (r, r′) ≥ ηK , for infinitely many n (by (27))

=⇒ uK(r, r′) ≥ ηK (because u = lim
n

un)

=⇒ r′ is u-recurrent (because r is u-recurrent)

=⇒ ∃l, ul(r′, r) > 0 (30)

(because r and r′ are in the same class of u-recurrence)

=⇒ ∃l, ul+1(r′, q) > 0 (because u(r, q) > 0)

=⇒ ∃l,∃N ′,∀n ≥ N ′, ul+1
n (r′, q) > 0 (because u = lim

n
un)

=⇒ ∃N ′,∀n ≥ N ′, un(r
′, q) > 0 (the un are idempotent)

=⇒ ∃N ′,∀n ≥ N ′,u+,n(r
′, q) = 1 (by (26))

=⇒ u+,N (r′, q) = 1 (by definition of N)

=⇒ v+(r
′, q) = 1 (according to (29)).

21

Now we prove b). By contradiction, suppose that v(q, r′) = 1. Then:

v(q, r′) = 1

=⇒ uK
N (q, r′) = 1 (by definition of v)

=⇒ uK
n (q, r′) = 1, for infinitely many n (by definition of N)

=⇒ uKn (q, r′) ≥ ηK , for infinitely many n (by (27))

=⇒ uK(q, r′) ≥ ηK , (because u = lim
n

un)

=⇒ r′ is reachable from q inMu

=⇒ r is reachable from q inMu (according to (30))

which contradicts (25).
This completes the proof of b), thus (v,v+) is a leak witness, which completes the proof of

Lemma 24.

E A few leaktight automata

Proposition 12 Deterministic automata, hierarchical probabilistic automata and ♯-acyclic au-
tomata are leaktight.

Proof. It is obvious that deterministic automata are leaktight. We give an algebraic proof. For
deterministic automata the iteration operation has no effect on limit-words. As a consequence,
the extended Markov monoid only contains pair (u,u) whose both components are equal, and
none of them can be a leak witness. The characterization given by Theorem 5, allows us to
conclude that deterministic automata are leaktight.

The proof for hierarchical automata is given in Proposition 25.
The proof for ♯-acyclic automata is given in Proposition 26.

Proposition 13 The leaktight property is stable by parallel composition and synchronized prod-
uct.

Proof. For parallel product, this is easy. Let i be the new initial state. If there is a leak in
A||B from a state q 6= i then this a leak either in A or B. There can be no leak (un)n∈N from i
because i is u-recurrent only for those words u that are written with letters stabilizing i.

For synchronized product, the proof is easy as well: the extended Markov monoid of the
synchronized product A × B is the product of the extended Markov monoids of A and B.
If there was a leak in A × B, then according to Theorem 11 there would be a leak witness
(u,u+) = ((uA,uB), (u+,A,u+,B)) in the extended Markov monoid of A × B from a state
(rA, rB) to a state (qA, qB). Then rA is uA-recurrent and u+,A(rA, qA) = 1 thus since A is
leaktight uA(qA, rA) = 1. Similarly, uB(qB, rB) = 1 thus u((qA, qB), (rA, rB)) = 1 hence a
contradiction.

E.1 Leaktight automata strictly contain hierarchical automata

The class of hierarchical automata has been defined in [CSV09].
The states Q of a hierarchical automaton are sorted according to levels such that for each

letter, at most one successor is at the same level and all others are at higher levels. Formally,
there is a mapping rank : Q → [1, . . . , l] such that ∀a ∈ A,∀s, t ∈ Q such that a(s, t) > 0,
rank(t) ≥ rank(s) and the set {t | a(s, t) > 0, rank(t) = rank(s)} is either empty or a singleton.

Proposition 25. Every hierarchical automata is leaktight.

22

Proof. We prove by induction that for every extended limit word (u,u+) in the extended Markov
monoid of a hierarchical automata, for every state r:

(r is u-recurrent) =⇒ (∀q 6= r,u+(r, q) = 0) . (31)

Property (31) obviously holds for base elements (a,a).
Property (31) is stable by product: let (u,u+) and (v,v+) with property (31) and let r ∈ Q

be uv-recurrent. By definition of hierarchical automata the recurrence classes of the limit words
u,v and uv are singletons thus r is necessarily both u-recurrent and v-recurrent. According
to (31), ∀q 6= r, u+(r, t) = 0 thus ∀q 6= r, (u+v+)(r, q) = 0.

Property (31) is obviously stable by iteration, which terminates the proof.

The inclusion is strict, an example is given by Fig. 2.

E.2 Leaktight automata strictly contain ♯-acyclic automata

The class of ♯-acyclic automata has been defined in [GO10].
Let A be a probabilistic automaton, to define ♯-acyclic automata, we define an action on

non-empty subsets of states. Given S ⊆ 2Q and a letter a, by definition S · a = {t | ∃s ∈
S,a(s, t) = 1}. If S · a = S, then we define the iteration of a: S · a♯ = {t | ∃s ∈ S,a♯(s, t) = 1}.
Consider now the graph whose vertices are non-empty subsets of states and there is an edge
from S to T if S ·a = T or S ·a = S and S ·a♯ = T . The automaton A is ♯-acyclic if the unique
cycles in this graph are self loops.

We extend the action on any limit-word: given S ⊆ Q and a limit-word u, by definition
S · u = {t | ∃s ∈ S,u(s, t) = 1}.

Definition 17. A is not ♯-acyclic if and only if there exists S, T subsets of states, S 6= T , u,v
two limit-words such that S · u = T and T · v = S.

Proposition 14 Deterministic automata and ♯-acyclic automata have ♯-height 1.

Proof. For deterministic automata, this is obvious because there are no unstable idempotent in
the Markov monoid so the iteration operation is useless and the ♯-heigth is actually 0.

For ♯-acyclic automata, this is a corollary of results in [GO10]: if a ♯-acyclic automaton has
value 1 then there exists a sequence of letters a0, b0, a1, . . . , an, bn, an+1 ∈ (A ∪ {ǫ})∗ such that

a0b
♯
0a1b

♯
1 . . . anb

♯
nan+1 is a value 1 witness.

Proposition 26. Every ♯-acyclic automata is leaktight.

Proof. We prove that for all extended limit-word (u,u+), we have (u(s, t) = 0,u+(s, t) = 1)⇒
s is transient, which implies the leaktight assumption, by induction on u. The case u = a is
clear. Consider the case u = v♯, and let s, t states such that (u(s, t) = 0,u+(s, t) = 1). Then
either (v(s, t) = 0,v+(s, t) = 1) or v(s, t) = 1 and t is transient in v. In the first case, the
induction hypothesis ensures that s is transient in v. In the second case, s would be transient
in v. In both cases, s is transient in v, so also in u.

Consider now the case u = u1 · u2, and let s, t states such that (u(s, t) = 0,u+(s, t) = 1).
Assume toward contradiction that s is recurrent in u. Let C = {q | u(s, q) = 1} be the
recurrence class of s, so we have C · u = C. The ♯-acyclicity implies that C · u1 = C and
C · u2 = C.

There are two cases: either there exists p such that (u1(s, p) = 0,u1+(s, p) = 1), or such

that u1(s, p) = 1 and (u2(s, p) = 0,u2+(s, p) = 1). Consider the first case, and T = C · u♯
1. We

have T (C, so T ·u♯ = C, which defines a ♯-cycle over C, contradiction. In the second case, let
T = C · u♯

2, we have T (C so T · u♯ = C, which defines a ♯-cycle over C, contradiction. This
completes the proof.

23

The inclusion is strict: Fig. 4 provides an example of leaktight automaton which is not
♯-acyclic.

24

