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Abstract 

Recently, Lahmam-Bennani et al (2010 J. Phys. B: At. Mol. Opt. Phys. 43 105201) have shown that 

the second Born approximation is necessary to describe the experimental results of the double 

ionization of atoms and molecules. The second Born approximation needs a difficult triple 

numerical integration and often many authors find some controversial results. We now investigate 

in a greater detail the application of the second Born approximation for the easier case: the 

ionization of atomic hydrogen by electrons. The ionization of atomic hydrogen allows us to check 

accurately this approximation because the wave functions describing the target are known exactly. 

Moreover, sophisticated models such as CCC and CDW-EIS exist and give closer results leading to 

easier comparisons. We report accurate second Born results for differential cross sections for the 

ionization of atomic hydrogen using a basis including 100 discrete states, and another basis 

including 32 discrete states and pseudo-states. The results of the present method are compared with 

other calculations and experiment. The single ionization of helium is also investigated in order to 

answer to an old controversy between two different theoretical results. Finally an application of the 

second Born approximation to the double ionization of helium has been performed.  

 

PACS:34.80.Dp         Keywords: single ionization, double ionization, second Born approximation. 
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1. Introduction 

The ionization of atoms and molecules by electrons or positrons is of great interest in astrophysics, 

plasma physics and radiation physics. The knowledge of single and double ionization is also needed 

in other sciences such as life science. Recent sophisticated theories such as exterior complex scaling 

(Rescigno et al 1999), time-dependent close coupling (Colgan and Pindzola 2006), convergent close 

coupling (Bray 2002), R matrix theory (Reid et al 1998) are mostly successful in predicting cross 

sections for the ionization of hydrogen or helium but are not yet able to describe fully differential 

cross section for the double ionization of helium (Durr et al 2007, Pindzola et al 2008). Moreover, 

these theories can be applied, up to now and only for numerical reasons, to light atoms and to the 

simplest molecule H2. In the other cases it is necessary to apply perturbation theories like the Born 

series. 

Ionization of the atomic hydrogen by fast projectiles is a good check for a perturbation theory 

because experimental results exist, particularly for the triple differential cross sections (Weigold et 

al 1979, Lohmann et al 1984, Ehrhardt et al 1985, Ehrhardt et al 1986). In such an experiment the 

ejected electron is detected in coincidence with the scattered electron and it is well known (Ehrhardt 

et al 1986) that this kind of experiment, called (e, 2e) experiments, is very sensitive to the details of 

the theory. It is due to the fact that in the case of triple differential cross section, the theory is 

directly comparable to the experiments without averaging over unobserved parameters (unlike for 

the double or single differential cross sections, for instance). Weigold et al (1979) performed the 

first (e,2e) experiment on atomic hydrogen at incident energies of 100, 113.6, 250 and 413.6 eV 

while the energy of the ejected electron varied from 25 eV to 200 eV. Lohmann et al (1984) used 

more asymmetric conditions (250 eV for the incoming and 5, 10 and 14 eV respectively, for the 

ejected electron). Finally Ehrhardt et al (1985) reported the first absolute triple differential cross 

sections for asymmetric geometries (250 eV for the incident electron and 5 eV for the ejected 

electron). In all these experiments the kinematics is coplanar. 
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Byron et al (1980) were the first to apply the second Born approximation for the ionization of 

atomic hydrogen. Pathak and Srivastava (1981) used the second Born approximation for the 

ionization of the atomic hydrogen and compared their results to the first (e,2e) experiments of 

Weigold et al (1979) (at the incident energy of 250 eV and ejected electrons of 50 eV). Then they 

also made calculations for the ionization of helium by using the closure approximation and 

compared their results to those of Ehrhardt et al (1982). Byron et al (1982) also calculated triple 

differential cross sections for the ionization of helium by using the closure approximation and found 

results which disagreed with those of Pathak and Srivastava. Later on, Byron et al (1985) applied 

the second Born approximation by using very few discrete states as intermediate states and by 

taking into account the closure approximation and adding the contribution of the third Born 

approximation calculated with the Glauber approximation. It is time now to answer to several 

questions about the second Born approximation. The first is the number of discrete states which are 

necessary to be included in the calculation of the second Born approximation. A second question is 

the role played by the continuum states. We also must see what happens when we add pseudo-states 

as intermediate states. 

In the present investigation we have performed a calculation by using the second Born 

approximation which includes 100 exact discrete states corresponding to n=1 to n=10. Then we also 

perform another calculation which uses both exact and pseudo-states. Finally we shall compare our 

results to those given by the 3C model (or BBK model) (Brauner et al 1989) which is considered as 

of infinite order when treating the interaction between the two outgoing electrons but in an 

approximate way.  

We have also applied the second Born approximation to the double ionization of helium and 

compared our results to those of Lahmam-Bennani et al (2010) and Lahmam-Bennani et al (2002). 

Atomic units are used throughout unless otherwise stated. 
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2. Theory 

We first consider the ionization of atomic hydrogen by electrons 

                e- + H →   2 e- + H+, (1) 

In the second Born approximation, the triple differential cross section (TDCS) is given by  

ese dEdd

d

ΩΩ
=

σ
σ

3
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21 BB
i

es ff
k

kk
+= , (2) 

where sdΩ  and edΩ  denote, respectively, the elements of solid angles for the scattered and the 

ejected electron whereas the energy interval of the ejected electron is represented by edE . The 

momenta of the incident, scattered, and ejected electrons are denoted by ik
r

, sk
r

 and ek
r

, 

respectively. 

The first Born term 1Bf  is given by 
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where )( 1ri

rΦ is the exact wave function of the initial state of the atomic hydrogen and ),( 1rkeC

rr
−Ψ is 

also the exact wave function for the continuum state of the atomic hydrogen given by  
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The potential V represents the coulomb interaction between the incoming electron and the target and 

is written as 
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We neglect the exchange effects by considering the scattered electron as the fast electron and the 

ejected electron as the slow electron. We can easily perform the integration over 0r
r

 analytically and 

get 
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−=  is the momentum transfer.  

Following Joachain (1983) the second Born term 2Bf  is given by 
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with +→ 0ε  and  
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if we only consider the contributions of the n exact discrete states of the atomic hydrogen (n varying 

from n=1 to n ∞→ ), nE  being the eigenvalue of the atomic hydrogen Hamiltonian corresponding to 

the eigenfunction nΦ . 

We also perform the integration over 0r
r

 and get 
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where qkK ii

rrr
−=  and sf kqK

rrr
−= , fi KKK

rrr
+= . When we consider n different from n=1 we 

have the orthogonality of the initial state and other states (final or intermediate) and the term -1 

(corresponding to the interaction of the electron with the target nucleus) present in (5) and (8) does 

not contribute. 

When the contribution of the final continuum state is considered in the second Born term we must 

add the following term (Byron et al 1983) 
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with +→ 0ε  and  
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As pointed out by Byron et al (1983) the calculation of the off-shell free-free matrix element is a 

difficult task. Two ways are now possible to avoid the direct calculation of C
Bf 2 : the first is to 

consider the closure approximation and the second is to only use (8) but with pseudo-states. 

The closure approximation consists in replacing the target energy difference in EE −  by an average 

excitation energy w  and summing over all the intermediate states 1=ΦΦ∑∫
n

nn  . 

Consequently we get 
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We can rewrite (11) as 
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Byron and Joachain (1966) have also proposed another formulation of the closure approximation: 

they exactly include some contributions from the low-lying discrete states (generally n=1 and n=2). 

To perform this task they have to calculate 
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Secondly we consider the single ionization of the helium atom by electrons 

                e- + He →   2 e- + He+, (16) 

for which the final state of the ion He+ is in its ground state (1s). 

The first Born term 1Bf  is now given by 
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where ),( 21 rri

rrΦ is the wave function of the initial state of the helium atom and ),( 21 rrf

rrΨ is the 

wave function of the final target system consisting of a He+ (1s) ion and an unbound electron. The 

potential V represents the Coulomb interaction between the incoming electron and the target and is 

written as 

00201

211
rrr

V −+=  (18) 

For the initial state we use an analytical fit to the Hartree-Fock wave function (Byron and Joachain 

1966) 

 )()(),( 201021 rrrri

rrrr φφ=Φ  where ))exp()exp(()4()( 2
1

0 rBrAr βαπφ −+−= −r
 

with 60505.2=A , 08144.2=B , 41.1=α  and 61.2=β . 

The final state wave function is a symmetrised product of the He+ ground-state wave function for 

the bound electron multiplied by a Coulomb wave function orthogonalized to the helium ground 

state as in Byron et al (1986) 
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Performing the integration on 0r
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 in equation (17) one can write the first Born term as 
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Following Joachain (1983) the second Born term 2Bf  is given by 
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with +→ 0ε  and  
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where nE  is the eigenvalue of the helium atom Hamiltonian corresponding to the eigenfunction 

nΦ . 

Performing the integration over 0r
r

 in equation (20) one can write the second Born term as 
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Now, by applying the closure approximation we get   
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with +→ 0ε  and  
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w  being the average excitation energy. After some straightforward algebra the expression (23) can 

be reduced to 
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This last expression is simpler than that found by Byron et al (1986). 

 

Finally we consider the double ionization of helium by electrons 

                e- + He →   3 e- + He++. (26) 

In the second Born approximation the fivefold differential cross section (FDCS) is given by  
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where sdΩ , adΩ  and bdΩ  denote, respectively, the elements of solid angles for the scattered and 

the ejected electrons a  and b  whereas the energy intervals of the ejected electrons are represented 

by adE  and bdE . The momenta of the incident, scattered, and ejected electrons are denoted by ik
r

, 

sk
r

, ak
r

 and bk
r

, respectively. 

The first Born term 1Bf  is given here by 
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where ),( 21 rri

rrΦ is the wave function of the initial state of the helium atom and ),,,( 21 rkrk baf

rrrr
⊥Ψ is 

the wave function for the double continuum state of the helium atom which is orthogonalized to the 

initial state. The potential V represents the coulomb interaction between the incoming electron and 

the target and is given by (18). 

For the initial state we use an accurate Hylleraas-type wave function given by Bonham and Kohl 

(1966) 
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0N  being a normalization factor and 12r  the electron-electron distance, 3991.1=a , 097.2=b , 

63.1=α , 4431.0−=β  and 4134.0=γ . The energy of the initial state given by this wave function 

is E=-2.903115 au. We also use a wave function which only includes a part of the radial correlation 
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where 1885.1' =a , 1832.2' =b  and which is often used actually (Ciappina et al 2008). The energy 

of the initial state given by this wave function is E=-2.875661 au. 

The final state wave function is the approximate BBK wave function (Dal Cappello et al 1993) such 

that ififf ΦΨΦ−Ψ=Ψ ⊥  
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If we neglect the exchange effects by considering the scattered electron as the fast electron and the 

ejected electrons as the slow electrons we can easily perform the integration over 0r
r

 analytically 

and get 
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The second Born term 2Bf  is given by 
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where the summation over n means that we take into account all the contributions of the n discrete 

and continuum states of the helium atom. It means that the incident electron collides twice with the 

target and corresponds to the well-known two-step 2 mechanism (TS2) (Carlson and Krause 1965). 

Performing the integration on 0r
r

 in equation (30) and applying the closure approximation we get 

(Grin et al 2000)  
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and  

w
kp i −=
22

22

 (32) 

w  being the average excitation energy.  

It is important to note that all integrals on qd
r

 must be performed numerically with great care (see 

appendix). 

 

3. Results and discussion 

a) Ionization of atomic hydrogen by electrons 

We investigate the ionization of atomic hydrogen by electrons by comparing the results of our 

second Born approximation with the absolute data of Ehrhardt et al (1985, 1986). The incident 

energy is 250 eV and the ejected electron has an energy of 5 eV. First, we consider the case where 

the incoming electron is scattered at 03=sθ  which corresponds to a low momentum transfer 
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(K=0.27 au). Next, we need to know if it is necessary to include many discrete states as 

intermediate states in the second Born approximation. In figure 1a we compare the results of the 

first Born treatment with those of the second Born by including successively n=1, n=2 and n=3 as 

intermediate states. It is clear that the contribution of the elastic case (n=1) plays no important role 

here. We only notice a small rise of the amplitude of the recoil peak. When we add the contribution 

of the excited states corresponding to n=2 (2s and 2p) we observe a fall of the binary lobe amplitude 

and a rise of the recoil lobe amplitude. As a matter of fact the most important contribution is due to 

the 2p excited state (see table 1). This result is easy to understand because it corresponds to the 

dipolar transition ps 21 →  which is important for low momentum transfer. This result was also 

noticed by Byron et al (1985). Now if we add the contribution of the excited states corresponding to 

n=3 we clearly see that the increasing of the recoil lobe amplitude continues as the decreasing of the 

binary peak amplitude. It is true that the contribution of n=2 is the most important but not sufficient, 

and that the contribution from n=3 must be added.  

Figure 1b shows the contributions of the excited states corresponding to n=4 and n=5. We only see 

a small contribution from these excited states. Clearly, the n=5 excited state gives no contribution 

for the binary peak and shows a very small decreasing of the recoil peak amplitude. It seems that we 

have reached the convergence limit of the contribution of the discrete states. In order to check this 

point we draw in figure 1c the contributions of n=6, n=7, n=8, n=9, and n=10 (which correspond to 

100 discrete states). It is conspicuous that the contributions from n=7 to n=10 play no significant 

role here and can be neglected (see table 2).  

If we consider another case where the momentum transfer is bigger (for example 08=sθ  which 

corresponds to a momentum transfer K=0.61 au ) we find the same results as before and conclude 

that the convergence is reached by adding contributions up to n=6. 

Now we investigate the closure approximation with the same kinematical conditions. Figure 2 

shows the results of the closure approximation. We observe that the closure approximation using 

equation (13) or equation (14) gives close results. In our case equation (14) is calculated with n=1 
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to n=6 (Byron et al (1985) only include n=1 and n=2). From this figure it appears that the results 

given by the closure approximation are different from those given by the contributions of the 

discrete states (from n=1 to n=6). It means that we cannot neglect the contributions of the 

continuum states. It was also the conclusion of Byron et al (1985). It was written in the paper of 

Byron et al (1985) that their results of their second Born calculation were insensitive to the 

variation of w . We find that it is not the case with our calculations: figure 3 shows that the change 

of the value of the parameter changes the values of the results of our second Born calculation. We 

also perform, like Byron et al (1985), calculations with w =0.5 au and w =1 au but by including 

more discrete states. We can conclude from the results of the closure approximation that the 

contributions due to the continuum states are necessary and that, unhappily the closure 

approximation depends on the choice of the parameter w . This result was also found by Lahmam-

Benanni et al (2003) for the double ionization of helium by electrons. Another way to include these 

contributions from the continuum states is to consider a basis with pseudo-states. Hence we 

consider two pseudo-states basis which include 31 (Callaway 1978) and 32 (Callaway 1993) states, 

respectively. The eigenvalues vary from -0.5 au to 1.02 au (Callaway 1978) and from -0.5 au to 4.8 

au (Callaway 1993). Further details of these two basis can be found in Rouet (1996). 

Figure 4 shows the results of the second Born approximation calculated with pseudo-states basis. 

We see that the contributions due to the continuum states are important for the binary peak as well 

for the recoil peak. A basis which only includes discrete excited states and pseudo-states is never 

able to fully reproduce the decrease of the binary peak and the increase of the recoil peak. The two 

basis of Callaway (1978 and 1993) including positive eigenvalues give close results particularly for 

the binary peak. 

From the results of the closure approximation and those of the pseudo-states basis it is now clear 

that the continuum states play a role in the ionization of the atomic hydrogen for these particular 

kinematical conditions (large incident energy compared to the energy of the ejected electron).  
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It is now time to compare our theoretical results to the well-known BBK model (Brauner et al 1989) 

and to the absolute data of Ehrhardt (1985, 1986). We have followed the recommendation of Jones 

and Madison (2002) and multiplied all the data by a scaling factor of 0.88. Jones and Madison 

(2000) find a very good agreement between their CDW-EIS model (Crothers and Mc Cann 1983, 

Jones and Madison 1998), which contains the same BBK wave function for the final state with an 

eikonal initial state instead of the plane wave for the incident electron, with the nonperturbative 

Convergent Close Coupling model (CCC) (Bray et al 1994, Jones and Madison 2000). From this 

good agreement between the two theories (CDW-EIS and CCC) they conclude that the 

experimental data of Ehrhardt et al (1985, 1986) must be multiplied by a scaling factor of 0.88. For 

the incident energy considered here (250 eV) the BBK model and CDW-EIS yield results which are 

in close agreement with those of the most sophisticated Convergent Close Coupling model (CCC) 

(Jones and Madison 2000). Figure 5 shows such a comparison for 03=sθ . The agreement is very 

good between the results of the BBK model, those of the second Born approximation with the 

closure approximation and the experiments. As seen above the second Born approximation 

calculated only with the discrete states (n=1 to n=6, or n=1 to n=10) is insufficient: the contribution 

of the continuum states is necessary. This contribution is included in the BBK model because the 

interaction between the scattered electron and the ejected electron is treated to an infinite order but 

in an approximate way. 

Figure 6 shows a comparison between our second Born treatment with pseudo-states, the BBK 

model and experiments ( 03=sθ ). We notice a very good agreement between the BBK model, our 

second Born approximation with pseudo-states and experiments. Here the contributions of the 

continuum states are important, particularly for the binary peak.  

Figures 7 and 8 show the results of the second Born approximation and the BBK model for the 

ionization of the hydrogen atom for an incident energy of 250 eV and an ejected energy of 50 eV. 

The relative experiments of Weigold et al (1979) have been normalized to the BBK model at 

025=sθ  and 060=eθ . These experiments are interesting because Pathak and Srivastava (1981) 
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conclude that the second Born approximation is not able to bring about a general improvement in 

the values of the TDCS over the first Born results. These authors use the closure approximation 

with a high average excitation energy w =1 au. It was the start of a controversy with Byron et al 

(1982) who claimed that the closure approximation can only be justified if the energy of the ejected 

electron is small (and the scattering angle is small too). Figure 7a shows our results of the second 

Born approximation with the contributions of the n=1, n=2 and n=3 intermediate states for 

015=sθ . Once again we notice that the contribution of n=1 is very small but, in this case, the other 

contributions (n=2 and n=3) are small too. Figure 7b shows that the second Born approximation 

calculated by including only the contributions of discrete states (n=1 to n=6) is insufficient to 

describe the experiments. The closure approximation (calculated with w =0.5 au) completely fails 

as claimed by Byron et al (1982). The shift of the binary peak is not reproduced contrary to the 

BBK model which predicts a significant shift. In figure 7c we see that the second Born 

approximation calculated by including discrete states and pseudo-states brings no improvement. We 

also notice that the exchange effects are small here (BBK model with exchange) and can be 

neglected. Figure 8a for 025=sθ confirms that the closure approximation fails. The second Born 

approximation calculated by including only the contributions of discrete states (n=1 to n=6) gives a 

magnitude which is less than those given by the first Born approximation (contrary to the closure 

approximation). In figure 8b we notice that the second Born approximation calculated by including 

discrete states and pseudo-states overestimate the experiments. Finally the BBK model or the BBK 

model with exchange give the best agreement with experiments (the exchange effects are small 

too). Pathak and Srivastava (1981) and Byron et al (1982) were right: the second Born 

approximation is not working when the energy of the ejected electrons is not small. If the BBK 

model gives a good agreement it means that we need to take into account higher order of the 

interaction between the scattered electron and the ejected electron.  
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b) Ionization of atomic hydrogen by positrons 

The ionization of atomic hydrogen by positrons is a more difficult problem because rearrangement 

collisions are possible due to positronium formation. Hence the ionization of atomic hydrogen by 

positrons is a two-center collision system while the ionization of atomic hydrogen is a single-center 

one. Although much progress has been made (see for instance Kadyrov et al 2007) we observe that 

the problem of the ionization of atomic hydrogen by positrons is not yet solved. Brauner et al 

(1989) have applied their BBK model to the ionization of atomic hydrogen by positrons and obtain 

the TDCS. Bandyopadhyay et al (1994) and Fiol and Olson (2002) also used the BBK model for the 

calculations of the triple differential cross sections and double differential cross sections. But, up to 

now, none has applied the second Born approximation for the ionization of atomic hydrogen by 

positrons (Sharma and Srivastava (1988) have applied the second Born approximation for the 

ionization of helium by electrons and positrons). In our Born approximation plane waves are used 

for the incident and scattered particles. It may be noted that the first Born amplitude term has 

opposite signs for positron and electron impacts. If we only consider the first Born approximation 

we find the same cross section for electron impact or positron impact because the triple differential 

cross section is directly connected to the square of the first Born term (see equation (2)). The sign of 

the second Born term does not depend on the charge of the particle but now the sign of the first 

Born term plays a role because the first Born term is added to the second Born term, explaining the 

change of behaviour when the second Born approximation is applied for electron impact and 

positron impacts. 

Figure 9 shows the results of our BBK model (which yields the same values as those found by 

Brauner et al (1989)) along with our second Born treatment. For 03=sθ  we observe the same 

trends: the second Born approximation with the closure approximation or with the pseudo-states 

gives a good agreement with the BBK model and our second Born treatment, which only includes 

the contributions of the eigenstates n=1 to n=6, underestimates the binary peak. Generally speaking 
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the second Born approximation gives an enhanced binary peak and a reduced recoil peak in contrast 

to the results of the first Born approximation. It is exactly the inverse result for electron impact. 

 

c) Single ionization of helium by electrons 

We now investigate the single ionization of helium by electrons by comparing the results of our 

second Born approximation with the relative data of Ehrhardt et al (1982) and a first theoretical 

calculation of Pathak and Srivastava (1981) using the closure approximation with w =1.3 au and a 

second theoretical calculation of Byron et al (1982) using the same closure approximation but with 

w =0.9 au. These two groups use the same theoretical expression (25). Figure 10 shows the results 

of the first and second Born approximation with the two values of the parameter w . We only notice 

small differences between the two calculations and find results close to those of Byron et al (1982): 

the first and second Born triple differential cross sections differ by only 17% at the binary peak, 

with the second Born result being smaller than the first Born result (as in the case of atomic 

hydrogen).We also find that the ratio of the binary peak to the recoil peak is reduced from the first 

Born value of 8.43 to the second Born value of 5.63 in better agreement with experiment. Thus, as 

written by Byron et al (1982), the results of Pathak and Srivastava (1981) in this case are incorrect.  

The results of the BBK model are also drawn in Figure 10. Binary to recoil peak ratio of 4.21 given 

by the BBK model is approaching the experimental value. Once again we can conclude that the 

contributions of the continuum states are necessary because these contributions are assumed in the 

BBK model. 

Figure 11 shows that all the terms of equation (3) in appendix contribute to the second Born 

approximation: if we neglect, for instance (like Fang and Bartschat 2001), the most difficult term 

(the triple numerical integral, equation (4) in appendix) we see practically no shift for the recoil 

lobe. We find that the maximum of the recoil lobe is located at 0105=eθ  (first born 

approximation), 0110=eθ  (second born approximation without the triple numerical integral) while 

the second Born approximation and the BBK model gives the maximum close to 0130=eθ . As a 
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matter of fact the large shift of the recoil peak is generally due to the triple numerical integral in 

equation (4) and can never be deleted. 

 

d) Double ionization of helium by electrons and positrons 

We finally investigate the double ionization of helium by electrons (or by positrons) by comparing 

the results of our second Born approximation with the relative data of Lahmam-Bennani et al 

(2002) and Lahmam-Bennani et al (2010). In these experiments the slow ejected electron is not 

detected and we must integrate the equation (27) over the solid angle bdΩ . The large angular shifts 

of the forward and backward lobes with respect to the momentum transfer direction were 

questioned by Götz et al (2003). Figure 12 shows that the second Born approximation is now able 

to reproduce the shift of the binary peak and describe partially the shift of the recoil peak. We also 

see that the results of the second Born approximation depend on the choice of the wave function 

used: the BK14 wave function reproduces a minimum around 3100 as the experiments, contrary to 

the BK7 wave function which exhibits a maximum. But no model has yet been able to reproduce all 

the data. Furthermore, we notice that even the most sophisticated model DS6C of Götz et al (2006) 

fails to describe the strong violation of the first Born symmetry seen in the experiment. The relative 

good agreement between our model and the experiment means that the TS2 mechanism (which is 

implicitly included in the second Born approximation) plays an important role here. Figure 13 

shows the results of our second Born approximation (by using the closure approximation) with the 

latest results of Lahmam-Bennani et al (2010). We notice a good agreement, particularly for the 

large angular shift of the binary peak. We also study the double ionization of helium by positrons. 

In this case the amplitude of the binary peak increases while the amplitude of the recoil peak 

decreases. This is exactly what we observe when we investigate the single ionization of atomic 

hydrogen by electrons and positrons. In figure 14 we study the role played by the average excitation 

energy w . As for the case of the ionization of atomic hydrogen we find that the results depend on 

this value: we notice a change of the shape for w =30 eV. In this case the maximum at 2100 
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disappears and becomes a minimum. These results confirm those found by Lahmam-Benanni et al 

(2003). It means that it is here important to include the contributions of all states before using the 

closure approximation but it is a difficult problem, particularly when we want to take into account 

of the single and double continuum states and the resonances. 

 

4. Conclusion 

The second Born approximation has been first studied for the ionization of atomic hydrogen using a 

large number of intermediate states. The results show that the contributions from the discrete states 

are insufficient and the continuum states must be added. We confirm the first results of Byron, 

Joachain and Piraux: the contribution of the n=2 as an intermediate state is the most important one. 

Nevertheless, it is necessary to add the n=3, n=4, n=5 and n=6 contributions and those of the 

continuum states. The closure approximation, which is often used (Marchalant et al 1999, 

Marchalant et al 2000, Kheifets 2004, Grin et al 2000, Choubisa et al 2003), works very well for 

small energy of the ejected electrons. For higher ejection energies this approximation completely 

fails. The second Born approximation using discrete states in conjunction with pseudo-states gives 

better agreement in some cases but is not always sufficient to describe experiments. This result 

proves again that the contributions of the continuum states must be added and it is certainly 

necessary to consider more and more pseudo-states. The second Born approximation works for the 

ionization of targets by positrons as the BBK model. Although the BBK model gives here a good 

agreement with experiments it was noticed by Dey et al (2008) that the recent experiments of the 

ionization of helium by electrons (Catoire et al 2006, Stevenson et al 2007) are not well described 

by this model which overestimates the differential cross sections in the recoil region. Moreover Dal 

Cappello et al (2008) show that the ionization-excitation of helium cannot be described by the BBK 

model, contrary to a model using the second Born approximation (Watanabe et al 2007). The 

second Born approximation works quite well for the double ionization of helium by using the 

closure approximation with particular values of the average excitation energy w . The big shift of 
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the binary peak found experimentally by Lahmam-Bennani et al (2010) is well reproduced showing 

that the TS2 mechanism is very important in this case. 
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Appendix 

 

As pointed out by Byron et al (1985) great care must be taken while carrying out the integration on 

qd
r

 since the integrand is singular at pq =  (equations (11), (13), (23), and (25)) or nkq =  

(equations (6), (8), (20), and (22)) or kq =  (equation (9)) and is also singular at ikq
rr =  and skq

rr = . 

The last two singularities are not difficult for numerical integration. Interestingly, as written by 

Marchalant et al (1998), these singularities are only apparent and can be overcome by using prolate 

spheroidal coordinates. We can also use the well-known integration formulas of Gaussian type to 

avoid these two particular singularities. The first singularity is more difficult for numerical 

integration. As proposed by Piraux (1983) the general integral 
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with +→ 0ε can be performed by using  
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−−
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where P  stands for the principal value. Then we rewrite I as 
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 (3) 

The second term is easy to calculate contrary to the principal value which is sometimes neglected 

(Fang and Bartschat 2001) or approximated by using a peaking approximation (Franz and Altick 

1995). 

Following Piraux (1983) the principal part is written as 

))(cos())cos(,(
1

1
22

2

qq dqG
pq

dqq
PJ θθ∫ ∫

+

−−
=  (4) 

and  

∫=
π

ϕϕθθ
2

0

),,())cos(,( qqqq dqWqG  (5) 

Finally, after some algebra (Piraux 1983) 
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with 
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and 
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Marchalant et al (1998) adopt a subtraction procedure to evaluate (3) and introduce an exponential 

factor to make the integrals convergent as ∞→q : 
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The parameter α  in (10) is free of choice and the results should be independent of it (Marchalant et 

al 1998). 

As a check on the accuracy of our numerical procedures we have calculated the most singular 

integral contained in the above expressions following Byron et al (1985) 
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with +→ 0ε . 

This integral can be exactly evaluated by using the results of Lewis (1956) 
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If skp = , then the imaginary part of 0I tends to infinity and the real part is 
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And if ikp = , the imaginary part of 0I tends to the infinity and the real part is 
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Generally we have to deal with the expression (12) and we get an accuracy of 10-5 by using 

typically 500000 quadrature points for the triple numerical integration. 
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Figure captions 

Figure 1a: Triple differential cross section (TDCS) for ionization of atomic hydrogen by 250 eV 

electron impact for sθ =30 as a function of the ejected electron angle eθ relative to the incident 

electron direction. The ejected electron energy is =eE 5 eV. The results of the first Born 

approximation are represented by a full curve, those of the second Born approximation calculated 

by including only the contribution of the target ground state (n=1) by a dashed line, those of the 

second Born approximation calculated by including only the contributions n=1 and n=2 by a dotted 

line and those of the second Born approximation calculated by including only the contributions n=1, 

n=2 and n=3 by a dash-dotted line.  

Figure 1b: Same as figure 1a but the results of the second Born approximation calculated by 

including only the contribution of n=1, n=2 and n=3 are represented by a dashed line, those of the 

second Born approximation calculated by including only the contributions n=1, n=2 , n=3 and n=4 

by a dotted line and those of the second Born approximation calculated by including only the 

contributions n=1, n=2 , n=3 , n=4 and n=5 by a dash-dotted line.  

Figure 1c: Same as figure 1a but the results of the second Born approximation calculated by 

including only the contributions of n=1, n=2 and n=3 are represented by a dashed line, those of the 

second Born approximation calculated by including only the contributions n=1, n=2, n=3 , n=4, n=5 

and n=6 by a dotted line and those of the second Born approximation calculated by including all the 

contributions from n=1 to n=10 by a dash-dotted line.  

Figure 2: Triple differential cross section (TDCS) for ionization of atomic hydrogen by 250 eV 

electron impact for sθ =30 as a function of the ejected electron angle eθ relative to the incident 

electron direction. The ejected electron energy is =eE 5 eV. The results of the first Born 

approximation are represented by a full curve, those of the second Born approximation calculated 

by including only the contributions n=1, n=2, n=3, n=4, n=5 and n=6 by a dashed line, those of the 

second Born approximation calculated by using the closure approximation (equation (13)) by a 
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dotted line and those of the second Born approximation calculated by using the closure 

approximation (equation (14)) by a dash-dotted line.  

Figure 3: Triple differential cross section (TDCS) for ionization of atomic hydrogen by 250 eV 

electron impact for sθ =30 as a function of the ejected electron angle eθ relative to the incident 

electron direction. The ejected electron energy is =eE 5 eV. The results of the first Born 

approximation are represented by a full curve, those of the second Born approximation calculated 

by including only the contributions n=1, n=2, n=3, n=4, n=5 and n=6 by a dashed line, those of the 

second Born approximation calculated by using the closure approximation (equation (13), 

5.0=w au) by a dotted line and those of the second Born approximation calculated by using the 

closure approximation (equation (13), 1=w au) by a dash-dotted line.  

Figure 4: Triple differential cross section (TDCS) for ionization of atomic hydrogen by 250 eV 

electron impact for sθ =30 as a function of the ejected electron angle eθ relative to the incident 

electron direction. The ejected electron energy is =eE 5 eV. The results of the first Born 

approximation are represented by a full curve, those of the second Born approximation calculated 

by including only discrete eigenstates and pseudo-states (Callaway 1978) by a dashed line and by a 

short-dashed line (Callaway 1993), those of the second Born approximation calculated by including 

all the eigenstates and pseudo-states (Callaway 1978) by a dotted line and by a short-dotted line 

(Callaway 1993).  

Figure 5: Triple differential cross section (TDCS) for ionization of atomic hydrogen by 250 eV 

electron impact for sθ =30 as a function of the ejected electron angle eθ relative to the incident 

electron direction. The ejected electron energy is =eE 5 eV. The results of the first Born 

approximation are represented by a full curve, those of the second Born approximation calculated 

by including only discrete states (n=1 to n=6) by a dashed line, those of the second Born 

approximation calculated by the closure approximation ( 5.0=w au) by a dotted line, those of the 

BBK model by a dash-dotted line and experiments (multiplied by 0.88) by squares.  
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Figure 6: Triple differential cross section (TDCS) for ionization of atomic hydrogen by 250 eV 

electron impact for sθ =30 as a function of the ejected electron angle eθ relative to the incident 

electron direction. The ejected electron energy is =eE 5 eV. The results of the first Born 

approximation are represented by a full curve, those of the second Born approximation calculated 

by including only discrete eigenstates and pseudo-states (Callaway 1993) by a dashed line, those of 

the second Born approximation calculated by including all the eigenstates and pseudo-states 

(Callaway 1993) by a dotted line, those of the BBK model by a dash-dotted line and experiments 

(multiplied by 0.88) by squares.  

Figure 7a: Triple differential cross section (TDCS) for ionization of atomic hydrogen by 250 eV 

electron impact for sθ =150 as a function of the ejected electron angle eθ relative to the incident 

electron direction. The ejected electron energy is =eE 50 eV. The results of the first Born 

approximation are represented by a full curve, those of the second Born approximation calculated 

by including only the contribution of the target ground state (n=1) by a dashed line, those of the 

second Born approximation calculated by including only the contributions n=1 and n=2 by a dotted 

line and those of the second Born approximation calculated by including only the contributions n=1, 

n=2 and n=3 by a dash-dotted line.  

Figure 7b: Triple differential cross section (TDCS) for ionization of atomic hydrogen by 250 eV 

electron impact for sθ =150 as a function of the ejected electron angle eθ relative to the incident 

electron direction. The ejected electron energy is =eE 50 eV. The results of the first Born 

approximation are represented by a full curve, those of the second Born approximation calculated 

by including only the contribution of the discrete states (n=1 to n=6) by a dashed line, those of the 

second Born approximation calculated by using the closure approximation (equation (13)) by a 

dotted line, those of the second Born approximation calculated by using the closure approximation 

(equation (14)) by a dash-dotted line, those of the BBK model by a short dotted line and 

experiments (multiplied by 0.00224) by squares.  
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Figure 7c: Triple differential cross section (TDCS) for ionization of atomic hydrogen by 250 eV 

electron impact for sθ =150 as a function of the ejected electron angle eθ relative to the incident 

electron direction. The ejected electron energy is =eE 50 eV. The results of the first Born 

approximation are represented by a full curve, those of the second Born approximation calculated 

by including only the contribution of the discrete states (n=1 to n=6) by a dashed line, those of the 

second Born approximation calculated by including all the eigenstates and pseudo-states (Callaway 

1993) by a short dashed line, those of the BBK model by a dotted line and those by the BBK model 

with exchange by a dash-dotted line. Experiments (multiplied by 0.00224) are represented by 

squares.  

Figure 8a: Same as figure 7b except for sθ =250. 

Figure 8b: Same as figure 7c except for sθ =250.  

Figure 9: Triple differential cross section (TDCS) for ionization of atomic hydrogen by 250 eV 

positron impact for sθ =30 as a function of the ejected electron angle eθ relative to the incident 

positron direction. The ejected electron energy is =eE 5 eV. The results of the first Born 

approximation are represented by a full curve, those of the second Born approximation calculated 

by including only discrete states (n=1 to n=6) by a dashed line, those of the second Born 

approximation calculated by using the closure approximation by a dotted line, those of the second 

Born approximation calculated by including all the eigenstates and pseudo-states (Callaway 1993) 

by a short dashed line, and those of the BBK model by a dash-dotted line.  

Figure 10: Triple differential cross section (TDCS) for the single ionization of helium by 500 eV 

electron impact for sθ =10.50 as a function of the ejected electron angle eθ relative to the incident 

electron direction. The ejected electron energy is =eE 5 eV. The results of the first Born 

approximation are represented by a full curve, those of the second Born approximation calculated 

by using the closure approximation (equation (13)) with 9.0=w au) by a dashed line, those of the 

second Born approximation calculated by using the closure approximation (equation (13)) with 
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3.1=w au by a dotted line and those of the BBK model by a dash-dotted line. Experiments 

(Ehrhardt et al 1982) are represented by squares and are normalised to the second Born 

approximation ( 9.0=w au) at eθ =2800.  

Figure 11: Triple differential cross section (TDCS) for ionization of helium by 500 eV electron 

impact for sθ =10.50 as a function of the ejected electron angle eθ relative to the incident electron 

direction. The ejected electron energy is =eE 5 eV. The results of the first Born approximation are 

represented by a full curve, those of the second Born approximation calculated by using the closure 

approximation (equation (13)) with 3.1=w au) by a dashed line, those of the second Born 

approximation calculated by using the closure approximation without the triple numerical integral 

as (Fang and Bartschat 2001) (equation (13)) with 3.1=w au by a dotted line.  

Figure 12: Fourfold differential cross section (4DCS) for the (e,3-1e) double ionization of helium 

by 640 eV electron impact for sθ =1.50 and sϕ =1800 as a function of the (fast) ejected electron 

angle aθ  relative to the incident electron direction. The fast ejected electron energy is =aE 51 eV 

while the slow ejected electron energy is =bE 10 eV. The results of the first Born approximation 

are represented by a full curve, those of the second Born approximation calculated by using the 

closure approximation (equation (31)) with 79=w eV and the BK14 initial wave function by a 

dotted line, those of the second Born approximation calculated by using the closure approximation 

(equation (31)) with 79=w eV and the BK7 initial wave function by a dashed line. The full squares 

are the experimental results of Lahmam-Bennani et al (2002). 

Figure 13: Fourfold differential cross section (4DCS) for the (e, 3-1e) double ionization of helium 

by 621 eV electron and positron impact. Ejected electron energies are 37 eV and 5 eV. The 

scattering angle is sθ =60 ( sϕ =1800). The 4DCS is plotted in polar coordinates as a function of the 

direction ak
r

 of the fast ejected electron. The incident electron is moving along the x-axis. The x-

axis and y-axis represent (4DCS) aθcos  and (4DCS) aθsin  respectively. The results of the first 

Born approximation are represented by a full curve, those of the second Born approximation for 
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electron impact and calculated by using the closure approximation (equation (31)) with 79=w eV 

and the BK14 initial wave function by a dotted line, those of the second Born approximation for 

positron impact and calculated by using the closure approximation (equation (31)) with 79=w eV 

and the BK14 initial wave function by a dashed line. The full squares are the experimental results of 

Lahmam-Bennani et al (2010). 

Figure 14: Fourfold differential cross section (4DCS) for the (e, 3-1e) double ionization of helium 

by 621 eV electron impact. Ejected electron energies are 37 eV and 5 eV. The scattering angle is 

sθ =60 ( sϕ =1800). The results of the first Born approximation are represented by a full curve, those 

of the second Born approximation calculated by using the closure approximation (equation (31)) 

with 79=w eV and the BK14 initial wave function by a dashed line, those of the second Born 

approximation calculated by using the closure approximation (equation (31)) with 30=w eV and 

the BK14 initial wave function by a dotted line, those of the second Born approximation calculated 

by using the closure approximation (equation (31)) with 116=w eV and the BK14 initial wave 

function by a dash-dotted line.  
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(deg)eθ  B1 B2(1s) B2(2s) B2(2p) SB2(0.5) SB2(1.0) B2(0.5) B2(1.0) 

10 1.363 1.409 1.323 1.362 0.597 0.974 0.599 1.019 

30 0.247 0.261 0.235 0.250 0.296 0.443 0.289 0.433 

50 0.666 0.660 0.670 0.620 0.808 0.885 0.790 0.897 

70 1.581 1.576 1.573 1.495 1.577 1.695 1.552 1.758 

90 2.400 2.427 2.340 2.334 2.489 2.578 2.446 2.619 

110 2.906 2.996 2.834 3.037 3.467 3.354 3.401 3.129 

130 3.050 3.210 2.985 3.418 4.248 3.895 4.281 3.701 

150 2.830 3.026 2.712 3.229 4.456 4.010 4.618 4.225 

170 2.253 2.438 2.106 2.556 3.830 2.438 4.030 2.106 

190 1.387 1.521 1.270 1.589 2.455 2.355 2.605 2.758 

210 0.510 0.567 0.458 0.630 0.932 1.010 1.000 1.207 

230 0.313 0.286 0.314 0.370 0.446 0.442 0.489 0.538 

250 1.885 1.800 1.932 2.100 2.265 1.876 2.369 1.978 

270 5.823 5.747 5.995 6.272 6.139 5.502 6.113 5.077 

290 10.54 10.53 10.64 10.44 9.302 9.185 9.183 8.982 

310 12.41 12.46 12.39 11.74 9.058 9.811 9.034 10.19 

330 9.675 9.756 9.600 9.129 5.934 6.948 5.948 7.376 

350 4.847 4.922 4.779 4.665 2.504 3.234 2.511 3.445 

 

 

 

 

 

Table 2 
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(deg)eθ  B1 B2(2) B2(3) B2(4) B2(5) B2(6) B2(8) B2(10) 

10 1.363 1.366 1.349 1.352 1.347 1.349 1.346 1.346 

30 0.247 0.252 0.250 0.249 0.248 0.248 0.247 0.247 

50 0.666 0.618 0.598 0.588 0.583 0.579 0.576 0.574 

70 1.581 1.482 1.433 1.410 1.394 1.386 1.377 1.374 

90 2.400 2.302 2.283 2.296 2.307 2.297 2.282 2.291 

110 2.906 3.056 3.099 3.131 3.152 3.153 3.148 3.150 

130 3.050 3.515 3.609 3.640 3.662 3.676 3.692 3.697 

150 2.830 3.312 3.474 3.561 3.609 3.640 3.672 3.686 

170 2.253 2.598 2.736 2.810 2.852 2.878 2.907 2.921 

190 1.387 1.608 1.703 1.755 1.784 1.801 1.820 1.829 

210 0.510 0.638 0.692 0.723 0.742 0.756 0.768 0.774 

230 0.313 0.346 0.396 0.423 0.438 0.447 0.456 0.460 

250 1.885 2.068 2.172 2.194 2.196 2.204 2.214 2.220 

270 5.823 6.370 6.408 6.411 6.424 6.416 6.376 6.388 

290 10.54 10.52 10.54 10.55 10.56 10.56 10.56 10.55 

310 12.41 11.77 11.46 11.29 11.20 11.15 11.09 11.06 

330 9.675 9.135 8.879 8.755 8.685 8.651 8.611 8.590 

350 4.847 4.670 4.573 4.530 4.507 4.493 4.477 4.469 
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Table 1 Triple differential cross section (in au) for the ionization of atomic hydrogen as obtained 

from the second Born expressions (8), (13) and (14), using various approximations for 2Bf  : 

SB2(0.5), 2Bf  :calculated by the closure approximation using an average excitation energy 5.0=w  

au, SB2(1.0), 2Bf  :calculated by the closure approximation using an average excitation energy 

0.1=w  au ; B2(1s), 2Bf  calculated by including only the contribution of the target ground state 

(1s) as an intermediate state; B2(2s) (B2(2p)), same calculation, in which only the contribution of 

the 2s(2p) state is included in2Bf  ; B2(0.5), full second Born approximation results in which BJ
Bf 2  is 

calculated by including exactly the 1s, 2s and 2p intermediate target states, and the closure 

approximation (with 5.0=w au) is used to include the other target states; B2(1.0), full second Born 

approximation results in which BJ
Bf 2  is calculated by including exactly the 1s, 2s and 2p 

intermediate target states, and the closure approximation (with 0.1=w au) is used to include the 

other target states.B1: results of the first Born approximation (5). The incident electron energy is 

250 eV, the ejected electron energy is 5 eV and the scattering angle sθ =30.  

Table 2 Triple differential cross section (in au) for the ionization of atomic hydrogen as obtained 

from the second Born expression (8), using various approximations for 2Bf  : B2(2) calculated by 

including only the contributions of n=1 and n=2; B2(3) calculated by including only the 

contributions of n=1, n=2 and n=3; B2(4) calculated by including only the contributions of n=1, 

n=2, n=3 and n=4; B2(5) calculated by including only the contributions of n=1, n=2, n=3, n=4 and 

n=5; B2(6) calculated by including only the contributions of n=1, n=2, n=3, n=4, n=5 and n=6; 

B2(8) calculated by including only the contributions of n=1, n=2, n=3, n=4, n=5, n=6, n=7 and n=8; 

B2(10) calculated by including only the contributions of n=1, n=2, n=3, n=4, n=5, n=6, n=7, n=8, 

n=9 and n=10. B1: results of the first Born approximation (5). The incident electron energy is 250 

eV, the ejected electron energy is 5 eV and the scattering angle sθ =30.  
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Figure 1a 

 



 38 

0 30 60 90 120 150 180 210 240 270 300 330 360
0

2

4

6

8

10

12

14

T
D

C
S

 (
au

)

θe (deg)

 

 

Figure 1b 

 

 

 

 

 

 

 

 

 

 

 



 39 

0 30 60 90 120 150 180 210 240 270 300 330 360
0

2

4

6

8

10

12

14

T
D

C
S

 (
au

)

θe (deg)

 

Figure 1c 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7a 
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Figure 7c 
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Figure 8a 
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Figure 8b 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 

 

 

 

 

 

 

 

 

 

 



 55 

0 30 60 90 120 150 180 210 240 270 300 330 360
0,00000

0,00001

0,00002

0,00003

0,00004

0,00005

0,00006

4D
C

S
 (

au
)

θ
e
 (deg)

 

 

Figure 14 

 

 

 

 

 


