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Abstract
Recently, Lahmam-Bennaat al (2010J. Phys. B: At. Mol. Opt. Phy43 105201) have shown that
the second Born approximation is necessary to ibesthe experimental results of the double
ionization of atoms and molecules. The second Bapproximation needs a difficult triple
numerical integration and often many authors finthe controversial results. We now investigate
in a greater detail the application of the secormatnBapproximation for the easier case: the
ionization of atomic hydrogen by electrons. Theization of atomic hydrogen allows us to check
accurately this approximation because the wavetiumg describing the target are known exactly.
Moreover sophisticated models such as CCC and CDW-EIS aritgive closer results leading to
easier comparisons. We report accussteond Born results for differential cross sectitorsthe
ionization of atomic hydrogen using a basis inahgdilO0 discrete states, and another basis
including 32 discrete states and pseudo-statesrédudts of the present method are compared with
other calculations and experiment. The single ianin of helium is also investigated in order to

answer to an old controversy between two diffeteabretical results. Finally an application of the

second Born approximation to the double ionizatbhelium has been performed.
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1. Introduction

The ionization of atoms and molecules by electmmgositrons is of great interest in astrophysics,
plasma physics and radiation physics. The knowledgingle and double ionization is also needed
in other sciences such as life science. Recentsagtied theories such as exterior complex scaling
(Rescigncet al 1999), time-dependent close coupling (Colgan andZ®la 2006), convergent close
coupling (Bray 2002), R matrix theory (Reatl d 1998) are mostly successful in predicting cross
sections for the ionization of hydrogen or heliuat bre not yet able to describe fully differential
cross section for the double ionization of helilbuif et al 2007, Pindzolat al 2008). Moreover
these theories can be applied, up to now and amiydmerical reasons, to light atoms and to the
simplest molecule K In the other cases it is necessary to apply getion theories like the Born
series.

lonization of the atomic hydrogey fast projectiles is a good check for a pertudmatheory
because experimental results exist, particulanytiie triple differential cross sections (Weigeid

al 1979, Lohmanret al 1984, Ehrhardet al 1985, Ehrhardet al 1986). In such an experiment the
ejected electron is detected in coincidence wighsttattered electron and it is well known (Ehrhardt
et al 1986) that this kind of experiment, called (e, @e)eriments, is very sensitive to the details of
the theory. It is due to the fact that the case of triple differential cross sectidme theory is
directly comparable to the experiments without averagingr emobserved parameters (unlike for
the double or single differential cross sectioms,ihstance). Weigolet al (1979) performed the
first (e,2e) experiment on atomic hydrogen at ianidenergies of 100, 113.6, 250 and 413.6 eV
while the energy of the ejected electron variednfi2b eV to 200 eV. Lohmanret al (1984) used
more asymmetric conditions (250 eV for the incomamgl 5, 10 and 14 eV respectively, for the
ejected electron). Finally Ehrhardt al (1985) reported the firsibsolutetriple differential cross
sections for asymmetric geometries (250 eV for ittmdent electron and 5 eV for the ejected

electron). In all these experiments the kinemasicoplanar.



Byron et al (1980) were the first to apply the second Bornrapination for the ionization of
atomic hydrogen. Pathak and Srivastava (1981) ukedsecond Born approximation for the
ionization of the atomic hydrogen and comparedrthesults to the first (e,2e) experiments of
Weigold et al (1979) (at the incident energy of 250 eV and egalectrons of 50 eV). Then they
also made calculations for the ionization of heliloy using the closure approximation and
compared their results to those of Ehrhadal (1982). Byronet al (1982) also calculated triple
differential cross sections for the ionization efiom by using the closure approximation and found
results which disagreed with those of Pathak ameaStava. Later gnByron et al (1985) applied
the second Born approximation by using very fewcrdite states as intermediate states and by
taking into account the closure approximation awidiray the contribution of the third Born
approximation calculated with the Glauber approsiora It is time now to answer to several
guestions about the second Born approximation.fiféteis the number of discrete states which are
necessary to be included in the calculation ofséa@nd Born approximation. A second question is
the role played by the continuum states. We alsstisee what happens when we add pseudo-states
as intermediate states.

In the present investigation we have performed kutation by using the second Born
approximation which includes 1@Xactdiscrete states corresponding to n=1 to n=10. T¥eealso
perform another calculation which uses both exadt@seudo-states. Finally we shall compare our
results to those given by the 3C model (or BBK nip(Brauneret al 1989) which is considered as
of infinite order when treating the interaction weéen the two outgoing electrons but in an
approximate way.

We have also applied the second Born approximaimothe double ionization of helium and
compared our results to those of Lahmam-Benatai(2010) and Lahmam-Bennagi al (2002).

Atomic units are used throughout unless otherwtised.



2. Theory
We first consider the ionization of atomic hydrod®snelectrons

erH - 26e+H", 1)
In the second Born approximation, the triple difetial cross section (TDCS) is given by

d’c k_k
o = dagagE, kel @)

where dQ_ and dQ_ denote, respectively, the elements of solid anfyieshe scattered and the

ejected electron whereas the energy interval ofefeeted electron is represented 8k, . The

momenta of the incident, scattered, and ejectedtretes are denoted b, , ks and K, ,

respectively.

The first Born termf, is given by
1 - o o .
far = = 5 —(exp( IK,.7)We (K. 1)V [exp( ik .F)® (7). (3)

where @, (I; )s theexactwave function of the initial state of the atomimhogen ancwg(lze,rj) is

alsothe exactwave function for the continuum state of the atohydrogen given by

Wi (k,,F )= Wla,zequﬁe.rl)r(l— i) exp(—ga)lFl (ial-i(k,F,+kr)), with a=-Z/k,,

andZ =1.
The potentiaV represents the coulomb interaction between thaniieg electron and the target and
is written as

1 1
Vs ——- = (@)
I"01 IFO

We neglect the exchange effects by consideringstiattered electron as the fast electron and the
ejected electron as the slow electron. We canyepsiform the integration ovef, analytically and

get



Ko, 1) [exp( iK 7)) = 1|® (1)), (5)
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whereK =k, -k, is the momentum transfer.

Following Joachain (1983) the second Born tefign is given by

Zn:j —k2—|£

<exp( nks.rowc‘(ke,rl)wexp( iG.5)® (1)), (6)

with £ - 0" and

k2
2

S (E. - E)) (7)

5 n i
if we only consider the contributions of thexactdiscrete states of the atomic hydrogen (n varying
from n=1to n- «), E, being the eigenvalue of the atomic hydrogen Hamién corresponding to
the eigenfunctiord , .

We also perform the integration ovgrand get

1
- k2 -ie K?K?
<wc (K., ) -1, (1)) ®)

<CD n(rl) |eXp( iK i'rl) - 1|¢ i(r1)>

— —

where K, =k -§ and K, =g-k,, K =K, +K,. When we consider n different from n=1 we

s
have the orthogonality of the initial state andeotbtates (final or intermediate) and the term -1
(corresponding to the interaction of the electrathhe target nucleus) present in (5) and (8) does
not contribute.

When the contribution of the final continuum steteonsidered in the second Born ten®a must

add the following term (Byroet al 1983)
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with £ - 0" and

-k _pt 1 (10)

As pointed out by Byroret al (1983) the calculation of the off-shell free-frematrix element is a
difficult task. Two ways are now possible to avoiee direct calculation off,: the first is to
consider the closure approximation and the sec®taadnly use (8) but with pseudo-states.

The closure approximation consists in replacingténget energy differencg, — E, by an average

excitation energyw and summing overall the intermediate statesZ:j|¢n><¢n|=l
Consequently we get
°2  m?d g - p?P-ig K?K? (11)
(Vo (Koo 1) |exp( iK (1) = 2exp( iK,.1) - 10 (F))
with £ -~ 0" and
p® _ k>
= 1 - W 12
> > (12)
We can rewrite (11) as
52 g2l g?-p?-ie K?K? (13)
(W (Keom) [exp( iK i) = exp( K (.R) = exp( iK,.1,) +1]® (1))

Byron and Joachain (1966) have also proposed anfiihraulation of the closure approximation:
they exactly include some contributions from the-lging discrete states (generally n=1 and n=2).

To perform this task they have to calculate



f_BBé] = f_B2 - anzzl(VT) + an2=1 - anZ:Z(W) + anZ:2 o (14)
In (14) f2>' (W) corresponds to (8) with n=1 (it is an elasticisahs as a first collision) with

2
kn=l

2

= k2—iz- (W) (15)

The term 5% (W) means
foo” (W) = fo5 (W) + fo3° (W) + o> (W) + £33 (W), as for £,
Secondly we consider the single ionization of takum atom by electrons
erHe -~ 2€+H¢€, (16)
for which the final state of the ion Hes in its ground state (1s).
The first Born termf;, is now given by

for = = s (exp( iK, L)W (R F) M [exp( IKLR)@ (FR)), @)

where @, (1,1, )is the wave function of the initial state of thdiln® atom andW¥, (i;,r,)is the

wave function of the final target system consistifigh HE (1s) ion and an unbound electron. The
potentialV represents the Coulomb interaction between themintg electron and the target and is
written as

12
P (18)

1
Vo= =+
I’.Ol r.02 I’.O

For the initial state we use an analytical fitte Hartree-Fock wave function (Byron and Joachain

1966)

®,(7,.1,) = 4 (F) (7,) Wheregy(F ) = (47) 2 (Aexp(-ar) + BexpA1))
with A= 260505 B=2.08144, a = 14land = 261

The final state wave function is a symmetrised povaf the Hé ground-state wave function for
the bound electron multiplied by a Coulomb wavection orthogonalized to the helium ground

state as in Byroet al (1986)
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Performing the integration ory in equation (17) one can write the first Born texs

23/2
for = - [ (Wc(K) |exp( iK.F)|g,) | a9
- <‘Pc‘(ke)\¢o><¢o|exp( iK1 |@,) Kon o)
Following Joachain (1983) the second Born tefrgn is given by
- - k2 -ie
<exp( nks-rowf(rl,rz)rv |exp( iG.T)P (1, F,)), (20)
(exp( 1G.5,)® (1, F) V |exp( iK.To)® ((1,,7,))
with € -~ 0" and
k 2 k2
n - Ki _ - E. 21
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where E, is the eigenvalue of the helium atom Hamiltoni@mresponding to the eigenfunction

0}

n-

Performing the integration ovej} in equation (20) one can write the second Bonm t@s

1
ZZI kz—igKisz
. iK T - (22)
<LIJ P (1, 1) ‘exp( iK ,.F) + exp( iK,.F,) - 2|q> n(rl,r2)>'
(P, (1, 1,) |exp( iK,.F}) + exp( iK,.[,) = 2|® (1))

Now, by applying the closure approximation we get

52 m?d g’ - p?-ie KPK?
(W, (r,,1,)|exp( iK .F,) + exp( iK,.T,) - 2| (23)

|exp( K ,.1}) + exp( iK,.T,) = 2|0 (T}, F,))

with £ - 0" and
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p
2

2
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W being the average excitation energy. After somagitforward algebra the expression (23) can

be reduced to

_ B 23/2 dq 1

o=
°2  m? ) g?- p?-ie KPK?

[ <LIJC“exp( iK 1)@, Y@, |@,) + <Wc“exp( iK .7)| @ Y@, [exp( iK,.7)]@, )+

<Wc‘ ‘exp( K, .7)| @, Y@, [exp( 1K .7)]@,) - 2<WC‘ ‘exp( iK .72 Y@, |@0)

= 2{W ¢ exp( 1K 7))@ )@, [@0) = (W& |00 @6 [exp( iK .T)|@g )@, |90 (25)
+ 2{W & | @ )Xo |exp( iK1 | @, Y@, |9,

+ 2{W & |@ X@o lexp( iK (.F)|g X, @)

- <WC‘ ‘¢70><¢)0|exp( iK,.7)|@, @, [exp( iK ;.T)|@,)

- <WC‘ ‘¢70><¢)0|exp( iK .7 Yo, |lexp( iK..F)|e,) ]

This last expression is simpler than that foundBlgson et al (1986).

Finally we consider the double ionization of helibgnelectrons
erHe -~ 3€é+He™. (26)
In the second Born approximation the fivefold difietial cross section (FDCS) is given by

d°o k_k_k
= |f + fy,| (27)
dQ,dQ,dQ dE, dE, K.

® —

where dQ_,dQ_ and dQ, denote, respectively, the elements of solid anfjleshe scattered and
the ejected electrons and b whereas the energy intervals of the ejected elestare represented

by dE, and dE,. The momenta of the incident, scattered, and &jeefectrons are denoted ky,

ks, k, andk, , respectively.

The first Born termf, is given here by

fo, = —%<exp( iIZS,ro)qJE(Ea,rl,ﬁb,rz)r\/‘exp( iIZi.FO)¢i(F1,F2)>, (28)

10



where ®, (F,,T, )is the wave function of the initial state of thditma atom and¥! (k_,F,,k,.F, Is

the wave function for the double continuum statéhefhelium atom which is orthogonalized to the
initial state. The potentidl represents the coulomb interaction between themireg electron and
the target and is given by (18).

For the initial state we use an accurate Hylletgps-wave function given by Bonham and Kohl
(1966)

@, (F,,F,) = Ny[exp(ar, —br,) + exp(ar, —br,) + Sexplyr,,)expEa(r, +r,)] = o

N, being a normalization factor arg, the electron-electron distance=1. 39%il= 2.097,

a =163, f=-0.4431and y = 0. 4134 The energy of the initial state given by this wdunction

is E=-2.903115 au. We also use a wave function lwbidy includes a part of the radial correlation
o, (7,1, = N(')[exp(—a'rl -b'r,)+explar, - b'rl)] =

wherea =1. 1885 b = 2.1832 and which is often used actually (Ciappétal 2008). The energy
of the initial state given by this wave functiorbs-2.875661 au.

The final state wave function is the approximate<BBave function (Dal Cappellet al 1993) such

et 9;) <[, ) -(o[v o

W, (K, F Ky ) :%[wg(ﬁa,mwg(ﬁb,m G AT (A

lza - lzb‘)

where ¢(

k, - Rb\) is the repulsive Gamow factai(

K, =k, = expt- ) -ix,,) and

1 .
=

a b

Xab:

If we neglect the exchange effects by consideregsicattered electron as the fast electron and the

ejected electrons as the slow electrons we catygasiform the integration over, analytically

and get

for = = — (W (K., 1K, ) [exp( iK 1) + exp( K .F,) = 2|@ ), (29)

11



The second Born ternfi;, is given by

1 dqg
fBz:87'[“2,:‘-[qz—ktjz—i‘s
(exp( iK M)W {1 (Ko1K, F) V [exp( 16.7) @ (1, T,)) (30)
(exp( 1G.7)® (1, 1)V [exp( iK,.[)® (F,,F,))
where the summation over n means that we takeaictount all the contributions of the n discrete
and continuum states of the helium atom. It mehasthe incident electron collides twice with the

target and corresponds to the well-known two-stepe2hanism (TS2) (Carlson and Krause 1965).

Performing the integration orj, in equation (30) and applying the closure appration we get

(Grin et al2000)

°2 g2l q?- p?-ig K2K?
0Ok F K F S &y (31)
<LPf (ka,rl,kb,rz)‘exp( iK (.F) + exp( iK.F,) - 2]

|exp( iK,.1}) + exp( iK.F) = 2|® (F,,T,))

and

p? _ k?* __
= 1 - W 32
> ) (32)

W being the average excitation energy.

It is important to note that all integrals aig must be performed numerically with great care (see

appendix).

3. Resultsand discussion

a) lonization of atomic hydrogen by electrons

We investigate the ionization of atomic hydrogerelgctrons by comparing the results of our
second Born approximatiomith the absolute data of Ehrhagttal (1985, 1986). The incident

energy is 250 eV and the ejected electron has amggiof 5 eV. First, we consider the case where

the incoming electron is scatteredét= 3° which corresponds to a low momentum transfer

12



(K=0.27 au). Nextwe need to know if it is necessary to include mdisgrete states as

intermediate states in the second Born approximatiofigure 1a we compare the results of the
first Born treatment with those of the second Baynncluding successively n=1, n=2 and n=3 as
intermediate states. It is clear that the contrdoubf the elastic case (n=1) plays no importatd ro
here. We only notice a small rise of the amplitafithe recoil peak. When we add the contribution
of the excited states corresponding to n=2 (2s2madve observe a fall of the binary lobe amplitude
and a rise of the recoil lobe amplitude. As a maifdact the most important contribution is due to
the2p excited state (see table 1). This result is aasypderstand because it corresponds to the

dipolar transitionls — 2p which is important for low momentum transfer. Trasult was also

noticed by Byroret al (1985). Now if we add the contribution of the erditstates corresponding to
n=3 we clearly see that the increasing of the tdobe amplitude continues as the decreasing of the
binary peak amplitude. It is true that the conttidmu of n=2 is the most important but not suffidien
and that the contribution from n=3 must be added.

Figure 1b shows the contributions of the excitediest corresponding to n=4 and n=5. We only see
a small contribution from these excited statesaflyethe n=5 excited state gives no contribution
for the binary peak and shows a very small deangasd the recoil peak amplitude. It seems that we
have reached the convergence limit of the contivbudf the discrete states. In order to check this
point we draw in figure 1c the contributions of nx&7, n=8, n=9, and n=10 (which correspond to
100 discrete states). It is conspicuthet the contributions from n=7 to n=10 play nangigant

role here and can be neglected (see table 2).

If we consider another case where the momentunsfeais bigger (for examplé, =8° which
corresponds to a momentum transfer K=0.61 au )ethe same results as before and conclude
that the convergence is reached by adding conibitsiup to n=6.

Now we investigate the closure approximation with same kinematical conditions. Figure 2
shows the results of the closure approximation.obd&erve that the closure approximation using

equation (13) or equation (14) gives close resuiteur case equation (14) is calculated with n=1

13



to n=6 (Byronet al (1985) only include n=1 and n=2). From this figurappears that the results
given by the closure approximation are differentirthose given by the contributions of the
discrete states (from n=1 to n=6). It means thatareot neglect the contributions of the
continuum states. It was also the conclusion obBt al (1985). It was written in the paper of
Byron et al (1985) that their results of their second Borrcektion were insensitive to the
variation of w . We find that it is not the case with our calcuaas: figure 3 shows that the change
of the value of the parameter changes the valudseakesults of our second Born calculation. We
also perform, like Byrort al (1985), calculations witiv =0.5 au andv =1 au but by including
more discrete states. We can conclude from thdtsesithe closure approximation that the
contributions due to the continuum states are sacgsnd that, unhappily the closure
approximation depends on the choice of the paranvetel his result was also found by Lahmam-
Benanniet al (2003) for the double ionization of helium by é¢feas. Another way to include these
contributions from the continuum states is to coesa basis with pseudo-states. Hence we
consider two pseudo-states basis which includeCallgway 1978) and 32 (Callaway 1993) states,
respectively. The eigenvalues vary from -0.5 au.02 hu (Callaway 1978) and from -0.5 au to 4.8
au (Callaway 1993). Further details of these twaid@an be found in Rouet (1996).

Figure 4 shows the results of the second Born amiatdion calculated with pseudo-states basis.
We see that the contributions due to the continatates are important for the binary peak as well
for the recolil peak. A basis which only includbscreteexcited states and pseudo-states is never
able to fully reproduce the decrease of the bipaak and the increase of the recoil peak. The two
basis of Callaway (1978 and 1993) including positigenvalues give close results particularly for
the binary peak.

From the results of the closure approximation &odé of the pseudo-states basis it is now clear
that the continuum states play a role in the idioneof the atomic hydrogen for these particular

kinematical conditions (large incident energy conepao the energy of the ejected electron).

14



It is now time to compare our theoretical resudtshie well-known BBK model (Braunet al 1989)
and to the absolute data of Ehrhardt (1985, 198&) h&e followed the recommendation of Jones
and Madison (2002) and multiplied all the data Isgaling factor of 0.88. Jones and Madison
(2000) find a very good agreement between their CBI& model (Crothers and Mc Cann 1983,
Jones and Madison 1998), which contains the saméB&/e function for the final state with an
eikonal initial state instead of the plane wavetfa incident electron, with the nonperturbative
Convergent Close Coupling model (CCC) (Bedyal 1994, Jones and Madison 2000). From this
good agreement between the two theories (CDW-EH#SCEC) they conclude that the
experimental data of Ehrharelt al (1985, 1986) must be multiplied by a scaling factio0.88. For
the incident energy considered here (250 eV) thK Bi®del and CDW-EIS yield results which are

in close agreement with those of the most sophitstcc Convergent Close Coupling model (CCC)
(Jones and Madison 2000). Figure 5 shows such a@aason forg, = 3°. The agreement is very

good between the results of the BBK model, thosh@kecond Born approximation with the
closure approximation and the experiments. As abene the second Boapproximation
calculated only with the discrete states (n=1 t6,rer n=1 to n=10) is insufficient: the contributio
of the continuum states is necessary. This contabus included in the BBK model because the
interaction between the scattered electron andjdated electron is treated to an infinite orddr bu
in an approximate way.

Figure 6 shows a comparison between our second tBeatment with pseudo-states, the BBK
model and experiment®( = 3°). We notice a very good agreement between the BBKel, our
second Born approximation with pseudo-states apédraxents. Here the contributions of the
continuum states are important, particularly fa& binary peak.

Figures 7 and 8 show the results of the second Bppnoximation and the BBK model for the
ionization of the hydrogen atom for an incidentrgyeof 250 eV and an ejected energy of 50 eV.

The relative experiments of Weigadd al (1979) have been normalized to the BBK model at

6, =25 and g, =60°. These experiments are interesting because Patlla®ravastava (1981)

15



conclude that the second Born approximation isabde to bring about a general improvement in
the values of the TDCS over the first Born resultgese authors use the closure approximation
with a high average excitation energy=1 au It was the start of a controversy with Byreinal
(1982) who claimed that the closure approximatian only be justified if the energy of the ejected
electron is small (and the scattering angle is ktoa). Figure 7a shows our results of the second

Born approximation with the contributions of thelpsa=2 and n=3 intermediate states for
6. =15°. Once again we notice that the contribution of is=tery small but, in this case, the other

contributions (n=2 and n=3) are small too. Figuresiiows that the second Born approximation
calculated by including only the contributions ddatete states (n=1 to n=6) is insufficient to
describe the experiments. The closure approximétialculated withw =0.5 au) completely fails

as claimed by Byroet al (1982). The shift of the binary peak is not repistlicontrary to the

BBK model which predicts significant shift. In figure 7c we see that the@etBorn

approximation calculated by including discreteestand pseudo-states brings no improvement. We

also notice that the exchange effects are smadl {BBK model with exchange) and can be
neglected. Figure 8a fd, = 25° confirms that the closure approximation fails. Thead Born

approximation calculated by including only the adnitions of discrete states (n=1 to n=6) gives a
magnitude which is less than those given by tlst Born approximation (contrary to the closure
approximation). In figure 8b we notice that thew®tBorn approximation calculated by including
discrete states and pseudo-states overestimagxpleements. Finally the BBK model or the BBK
model with exchange give the best agreement wiglegments (the exchange effects are small
too). Pathak and Srivastava (1981) and Bybal (1982) were right: the second Born
approximation is not working when the energy of éfected electrons is not small. If the BBK
model gives a good agreement it means that we toetafte into account higher order of the

interaction between the scattered electron anéjdted electron.
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b) lonization of atomic hydrogen by positrons

The ionization of atomic hydrogen by positrons mare difficult problem because rearrangement
collisions are possible due to positronium formatidence the ionization of atomic hydrogen by
positrons is a two-center collision system while itbnization of atomic hydrogen is a single-center
one. Although much progress has been made (s&estance Kadyroet al2007) we observe that
the problem of the ionization of atomic hydrogenpmgitrons is not yet solved. Brauratral

(1989) have applied their BBK model to the ioniaatof atomic hydrogen by positrons and obtain
the TDCS. Bandyopadhyagt al (1994) and Fiol and Olson (2002) also used the BRilel for the
calculations of the triple differential cross sens and double differential cross sections. Butoup
now, none has applied the second Born approximébiothe ionization of atomic hydrogen by
positrons (Sharma and Srivastava (1988) have aptiezesecond Born approximation for the
ionization ofheliumby electrons and positrons). In our Born approxiomeplane waves are used
for the incident and scattered particles. It maybied that the first Born amplitude term has
opposite signs for positron and electron impaétael only consider the first Born approximation
we find the same cross section for electron impagiositron impact because the triple differential
cross section is directly connected to the squtieedfirst Born term (see equation (2)). The sifn o
the second Born term does not depend on the clodtbe particle but now the sign of the first
Born term plays a role because the first Born tsradded to the second Born term, explaining the
change of behaviour when the second Born approlomé applied for electron impact and
positron impacts.

Figure 9 shows the results of our BBK model (whyadds the same values as those found by

Brauneret al (1989)) along with our second Born treatment. Bor 3° we observe the same

trends: the second Born approximation with thewlespproximation or with the pseudo-states
gives a good agreement with the BBK model and etoisd Born treatment, which only includes

the contributions of the eigenstates n=1 to n=@euestimates the binary peak. Generally speaking
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the second Born approximation gives an enhanceahbjpeak and a reduced recoil peak in contrast

to the results of the first Born approximationisiexactly the inverse result for electron impact.

¢) Singleionization of helium by electrons

We now investigate the single ionization of helibynelectrons by comparing the results of our
second Born approximation with the relative dat&lfhardtet al (1982) and a first theoretical
calculation of Pathak and Srivastava (1981) udnegctosure approximation witw =1.3 au and a
second theoretical calculation of Byrehal (1982) using the same closure approximation btit wi
w =0.9 au. These two groups use the same theoretipedssion (25). Figure 10 shows the results
of the first and second Born approximation with tlve values of the paramet@r. We only notice
small differences between the two calculationsfartiresults close to those of Byrehal (1982):
the first and second Born triple differential crggstions differ by only 17% at the binary peak,
with the second Born result being smaller thanfitise Born result (as in the case of atomic
hydrogen).We also find that the ratio of the binpegk to the recoil peak is reduced from the first
Born value of 8.43 to the second Born value of Bn68etter agreement with experiment. Thus, as
written by Byronet al (1982), the results of Pathak and Srivastava (LB8Bthis case arcorrect
The results of the BBK model are also drawn in Fegl®. Binary to recoil peak ratio of 4.21 given
by the BBK model is approaching the experimentéleaOnce again we can conclude that the
contributions of the continuum states are necedsarguse these contributions are assumed in the
BBK model.

Figure 11 shows that all the terms of equationr(@ppendix contribute to the second Born
approximation: if we neglect, for instance (likengaand Bartschat 2001), the most difficult term

(the triple numerical integral, equation (4) in apdix) we see practically no shift for the recoll

lobe. We find that the maximum of the recoil lobddcated at), =105’ (first born
approximation),d, =110° (second born approximation without the triple nuos integral) while
the second Born approximation and the BBK modetgithe maximum close #, =130°. As a
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matter of fact the large shift of the recoil pesigenerally due to the triple numerical integral in

equation (4) and can never be deleted.

d) Doubleionization of helium by electrons and positrons
We finally investigate the double ionization ofineh by electrons (or by positrons) by comparing
the results of our second Born approximation with relative data of Lahmam-Bennatial

(2002) and Lahmam-Bennaet al (2010). In these experiments the slow ejectedreleds not
detected and we must integrate the equation (251 the solid anglelQ, . The large angular shifts

of the forward and backward lobes with respeche®orhomentum transfer direction were
guestioned by Gotet al (2003). Figure 12 shows that the second Born aqpiation is now able

to reproduce the shift of the binary peak and desgartially the shift of the recoil peak. We also
see that the results of the second Born approximakepend on the choice of the wave function
used: the BK14 wave function reproduces a minimunrad 316 as the experiments, contrary to
the BK7 wave function which exhibits a maximum. Botmodel has yet been able to reprocalte
the data. Furthermore, we notice that even the sastisticated model DS6C of Gatzal (2006)
fails to describe the strong violation of the fiBzirn symmetry seen in the experiment. The relative
good agreement between our model and the experimegs that the TS2 mechanism (which is
implicitly included in the second Born approximafjglays an important role here. Figure 13
shows the results of our second Born approximdbgrusing the closure approximation) with the
latest results of Lahmam-Bennaatial (2010). We notice a good agreement, particulantythe

large angular shift of the binary peak. We alsalgtilne double ionization of helium by positrons.

In this case the amplitude of the binary peak iases while the amplitude of the recoil peak
decreases. This is exactly what we observe whemwvestigate the single ionization of atomic
hydrogen by electrons and positrons. In figure ®4study the role played by the average excitation
energyw . As for the case of the ionization of atomic hygkn we find that the results depend on

this value: we notice a change of the shapanfe30 eV. In this case the maximum at 210
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disappears and becomes a minimum. These resulisnaghbse found by Lahmam-Benaratial
(2003). It means that it is here important to ideuhe contributions of all states before using the
closure approximation but it is a difficult probleparticularly when we want to take into account

of the single and double continuum states anddbenances.

4. Conclusion

The second Born approximation has been first stufiethe ionization of atomic hydrogen using a
large number of intermediate states. The resulte shat the contributions from the discrete states
are insufficient and the continuum states mustdated. We confirm the first results of Byron,
Joachain and Piraux: the contribution of the n=arasmtermediate state is the most important one.
Neverthelesst is necessary to add the n=3, n=4, n=5 and ma@ributions and those of the
continuum states. The closure approximation, wisabften used (Marchalaat al 1999,
Marchalantet al 2000, Kheifets 2004, Griet al 2000, Choubisat al 2003), works very well for
small energy of the ejected electrons. For higieaten energies this approximation completely
fails. The second Born approximation using discséges irconjunction with pseudo-states gives
better agreement in some cases but is not alwdiysient to describe experiments. This result
proves again that the contributions of the contimwstiates must be added and itestainly
necessary to consider more and more pseudo-sté@esecond Born approximation works for the
ionization of targets by positrons as the BBK modéhough the BBK model gives here a good
agreement with experiments it was noticed by Biegl (2008) that the recent experiments of the
ionization of helium by electrons (Catoigeal 2006, Stevensoet al 2007) are not well described
by this model which overestimates the differentialss sections in the recoil region. Moreover Dal
Cappelloet al (2008) show that the ionization-excitation of belicannot be described by the BBK
model, contrary to a model using the second Boprtagmation (Watanabet al 2007). The

second Born approximation works quite well for tmible ionization of helium by using the

closure approximation with particular values of #werage excitation energy . The big shift of
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the binary peak found experimentally by Lahmam-Bemet al (2010) is well reproduced showing

that the TS2 mechanism is very important in thiecas
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Appendix

As pointed out by Byroet al (1985)great caremust be taken while carrying out the integratian o

dg sincetheintegrand is singulaat g = p (equations (11), (13), (23), and (25))®r Kk,

=~

(equations (6), (8), (20), and (22)) 9=k (equation (9)) ané also singulamt § =k, andq =Kk .
The last two singularities are not difficult for narical integration. Interestingly, as written by
Marchalantet al (1998), these singularities are only apparentcamdbe overcome by using prolate
spheroidal coordinates. We calso use the well-known integration formulas of &aan type to

avoid these two particular singularities. The faistgularity is more difficult for numerical

integration. As proposed by Piraux (1983) the gainategral

—

_ dg \
| _jqz m_— _igv'\/(q,é’q,m) 1)

with £ — 0" can be performed by using

12 . =P(%)+iﬂ5(q2-p2) 2)
- p--ie€ q° - p

2

q

where P stands for the principal value. Then we rewtites
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:Pj'4qu(q eq,¢)+—pjdqW(p 6,.¢,) (3)

The second term is easy to calculate contrary tgtineipal value which is sometimes neglected
(Fang and Bartschat 2001) or approximated by usipgaking approximation (Franz and Altick
1995).

Following Piraux (1983) the principal part is weitt as

3= p[_9°99 Tg , 6 ))d 6 4
jqz_ pj (q,cos( 8,))d (cos( 6,)) &)

and
G (d.cos( 6,)) = [W (a,0,.4,)d¢, (5)

Finally, after some algebra (Piraux 1983)

JZ(I + T J%JG(q cos(H))d(cos(H))+(£2Jp0+g'\]lj (6)

with
= TH (p,cos( 8,))d (cos( 6,)) , (7)
= ]'d (cos( 6,)) aa_qH (q,cos( 8,)) 4=, (8)

and
H (q,cos( 6,)) = aG (q,cos( &,)) 9)

Marchalantet al (1998) adopt a subtraction procedure to evaligtar{d introduce an exponential

factor to make the integrals convergenigas
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2

(piem(-a(q-p))qcm_+wwjjw(pgq¢ 144

-p
I(W(q 04,0 4) — exp( -a(q- pP)*)W (p,8,.9, )
q? - p°?

(10)

The parameter in (10) is free of choice and the results sho@dnalependent of it (Marchalaet

al 1998).

As a check on the accuracy of our numerical proesiwe have calculated the most singular

integral contained in the above expressions folhguByronet al (1985)

IZJ’ dg 1
0 q® - p?-ie K’K?Z'

with € - 0".
This integral can be exactly evaluated by usingdselts of Lewis (1956)

if kK (p(k;, then

_in? { (pK + ~/B)* ]

lo = K\/_ ‘kiz_ p2Hp2 2

whereA = K?p? +(p* -k?)(p* —kZ )

If p(k,, then

o =

i 7T ? (pK + ~/A)? N Vi
k- p*[p® - k| K~A

If p=Kk,, then the imaginary part df tends to infinity and the real part is

T 3

R, (I = —F,
e( 0) 2 pK 2

And if p=k;, the imaginary part of ;tends to the infinity and the real part is
T 3

R.(l,) = _ZpT’

(11)

(12)

(13)

(14)

(15)
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Generally we have to deal with the expression &) we get an accuracy of 1By using

typically 500000quadrature points for the triple numerical inteigrat
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Figure captions
Figure la: Triple differential cross section (TDCS) for ioniwa of atomic hydrogen by 250 eV

electron impact fo,=3" as a function of the ejected electron angeelative to the incident
electron direction. The ejected electron energlf js= 5 eV. The results of the first Born

approximation are represented by a full curve,eéhmfshe second Born approximation calculated

by including only the contribution of the targebgnd state (n=1) by a dashed line, those of the
second Born approximation calculated by includintydhe contributions n=1 and n=2 by a dotted
line and those of the second Born approximatioowtated by including only the contributions n=1,
n=2 and n=3 by a dash-dotted line.

Figure 1b: Same as figure la but the results of the secomuth Bpproximation calculated by
including only the contribution of n=1, n=2 and naf® represented by a dashed line, those of the
second Born approximation calculated by includingydhe contributions n=1, n=2 , n=3 and4

by a dotted line and those of the second Born apmetion calculated by including only the
contributions n=1, n=2 , n=3, n=4 and n=5 by aheldatted line.

Figure 1c: Same as figure la but the results of the secomth Bpproximation calculated by
including only the contributions of n=1, n=2 and3nare represented by a dashed line, those of the
second Born approximation calculated by includintydhe contributions n=1, n=2, n=3 , n=4, n=5
andn=6 by a dotted line and those of the second Bppnaximation calculated by including all the
contributions frorm=1 to n=10 by a dash-dotted line.

Figure 2: Triple differential cross section (TDCS) for ioniiwen of atomic hydrogen by 250 eV

electron impact fo,=3" as a function of the ejected electron angeelative to the incident
electron direction. The ejected electron energlf js= 5 eV. The results of the first Born

approximation are represented by a full curve,eéhmfshe second Born approximation calculated
by including only the contributions n=1, n=2, na34, n=5 and=6 by a dashed line, those of the

second Born approximation calculated by using thsure approximation (equation (13)) by a
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dotted line and those of the second Born approxanatalculated by using the closure
approximation (equation (14)) by a dash-dotted. line
Figure 3: Triple differential cross section (TDCS) for iontiwan of atomic hydrogen by 250 eV

electron impact fo,=3" as a function of the ejected electron angeelative to the incident
electrondirection The ejected electron energyls =5 eV. The results of the first Born

approximation are represented by a full curve,eéhmfshe second Born approximation calculated
by including only the contributions n=1, n=2, na34, n=5 and n=6 by a dashed line, those of the
second Born approximation calculated by using thsure approximation (equation (13),

w = 05au) by a dotted line and those of the second Bppnaximation calculated by using the
closure approximation (equation (13y,=1au) by a dash-dotted line.

Figure 4: Triple differential cross section (TDCS) for iontima of atomic hydrogen by 250 eV

electron impact f0u95=3° as a function of the ejected electron angleelative to the incident
electron direction. The ejected electron energl js=5 eV. The results of the first Born

approximation are represented by a full curve, géhafgshe second Born approximation calculated
by including onlydiscreteeigenstates and pseudo-states (Callaway 1978)agleed line and by a
short-dashed line (Callaway 1993), those of thersg@®orn approximation calculated by including
all the eigenstates and pseudo-states (Callawa8) 187a dotted line and by a short-dotted line
(Callaway 1993).

Figure5: Triple differential cross section (TDCS) for iontima of atomic hydrogen by 250 eV

electron impact fo,=3° as a function of the ejected electron anfjjeelative to the incident
electron direction. The ejected electron energl js=5 eV. The results of the first Born

approximation are represented by a full curve, géhafgshe second Born approximation calculated
by including only discrete states (n=1 to n=6) laahed line, those of the second Born
approximation calculated by the closure approxiama{iv = 0.5au) by a dotted line, those of the

BBK model by a dash-dotted line and experimentdtjplied by 0.88) by squares.
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Figure6: Triple differential cross section (TDCS) for ioniiwan of atomic hydrogen by 250 eV

electron impact fo,=3" as a function of the ejected electron angeelative to the incident
electron direction. The ejected electron energlf js= 5 eV. The results of the first Born

approximation are represented by a full curve,eéhmfshe second Born approximation calculated
by including onlydiscreteeigenstates and pseudo-states (Callaway 1993phgleed line, those of
the second Born approximation calculated by inclgdill the eigenstates and pseudo-states
(Callaway 1993) by a dotted line, those of the Badel by a dash-dotted line and experiments
(multiplied by 0.88) by squares.

Figure 7a: Triple differential cross section (TDCS) for ioniwa of atomic hydrogen by 250 eV

electron impact fo, =15’ as a function of the ejected electron angjeelative to the incident
electron direction. The ejected electron energlf is- 50 eV. The results of the first Born

approximation are represented by a full curve,eéhmfshe second Born approximation calculated
by including only the contribution of the targebgnd state (n=1) by a dashed line, those of the
second Born approximation calculated by includintydhe contributions n=1 and n=2 by a dotted
line and those of the second Born approximatiooutated by including only the contributions n=1,
n=2 and n=3 by a dash-dotted line.

Figure 7b: Triple differential cross section (TDCS) for ioniwen of atomic hydrogen by 250 eV

electron impact fo, =15’ as a function of the ejected electron angjeelative to the incident
electron direction. The ejected electron energlf is- 50 eV. The results of the first Born

approximation are represented by a full curve,eéhmfshe second Born approximation calculated
by including only the contribution of the discratates (n=1 to n=6) by a dashed line, those of the
second Born approximation calculated by using thsure approximation (equation (13)) by a
dotted line, those of the second Born approximateloulated by using the closure approximation
(equation (14)) by a dash-dotted line, those oBB& model by a short dotted line and

experiments (multiplied by 0.00224) by squares.
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Figure 7c: Triple differential cross section (TDCS) for iontimen of atomic hydrogen by 250 eV
electron impact fo, =15’ as a function of the ejected electron angjeelative to the incident
electron direction. The ejected electron energlf is- 50 eV. The results of the first Born
approximation are represented by a full curve,eéhmfshe second Born approximation calculated
by including only the contribution of the discratates (n=1 to n=6) by a dashed line, those of the
second Born approximation calculated by includilhghe eigenstates and pseudo-states (Callaway
1993) by a short dashed line, those of the BBK rhby@ dotted line and those by the BBK model
with exchange by a dash-dotted line. Experimentdt{pphed by 0.00224) are represented by
squares.

Figure 8a: Same as figure 7b except f@;:25°.
Figure 8b: Same as figure 7c except f@;:25°.

Figure9: Triple differential cross section (TDCS) for ioniiwan of atomic hydrogen by 250 eV
positron impact forz9$=3° as a function of the ejected electron anfjleelative to the incident
positrondirection The ejected electron energyks =5 eV. The results of the first Born
approximation are represented by a full curve,eéhmfshe second Born approximation calculated
by including only discrete states (n=1 to n=6) lashed line, those of the second Born
approximation calculated by using the closure axpmation by a dotted line, those of the second
Born approximation calculated by including all #igenstates and pseudo-states (Callaway 1993)
by a short dashed line, and those of the BBK mbygel dash-dotted line.

Figure 10: Triple differential cross section (TDCS) for thagle ionization of helium by 500 eV

electron impact fo,=10.5 as a function of the ejected electron angeelative to the incident
electron direction. The ejected electron energlf js= 5 eV. The results of the first Born

approximation are represented by a full curve,eéhmfshe second Born approximation calculated
by using the closure approximation (equation (¥8)h w = 0.9au) by a dashed line, those of the

second Born approximation calculated by using theure approximation (equation (13)) with
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w = 13au by a dotted line and those of the BBK model biash-dotted line. Experiments
(Ehrhardtet al 1982) are represented by squares and are noroh&diskee second Born
approximation (v = 09au) atd,=280.

Figure 11: Triple differential cross section (TDCS) for ioniiwan of helium by 500 eV electron
impact forHS:10.§ as a function of the ejected electron anfjleelative to the incident electron
direction The ejected electron energyks =5 eV. The results of the first Born approximatioa ar
represented by a full curve, those of the second Bpproximation calculated by using the closure
approximation (equation (13)) wittv = 1.3au) by a dashed line, those of the second Born
approximation calculated by using the closure appration without the triple numerical integral
as (Fang and Bartschat 2001) (equation (13)) with 1.3au by a dotted line.

Figure 12: Fourfold differential cross section (4DCS) foetfe,3-1e) double ionization of helium

by 640 eV electron impact f<)5'5=1.50 and ¢S:18d’ as a function of the (fast) ejected electron
angle g, relative to the incident electron direction. Thstfejected electron energyks =51 eV
while the slow ejected electron energybs =10 eV. The results of the first Born approximation

are represented by a full curve, those of the se8mmn approximation calculated by using the
closure approximation (equation (31)) with= 79eV and the BK14 initial wave function by a
dotted line, those of the second Born approximateloulated by using the closure approximation
(equation (31)) withw = 79eV and the BK?7 initial wave function by a dashextliThe full squares
are the experimental results of Lahmam-Beneaiai (2002).

Figure 13: Fourfold differential cross section (4DCS) foetfe, 3-1e) double ionization of helium
by 621 eV electron and positron impact. Ejectedtedecenergies are 37 eV and 5 eV. The

scattering angle i8,=6° (#,=180). The 4DCS is plotted in polar coordinates as atfon of the

direction Ra of the fast ejected electron. The incident electsanoving along the x-axis. The x-
axis and y-axis represent (4DC&)sf, and (4DCS$ind, respectively. The results of the first
Born approximation are represented by a full cutlrese of the second Born approximation for
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electron impact and calculated by using the cloappgroximation (equation (31)) witw = 79eV

and the BK14 initial wave function by a dotted litleose of the second Born approximation for
positron impact and calculated by using the closg@roximation (equation (31)) witlw = 79eV

and the BK14 initial wave function by a dashed lifke full squares are the experimental results of
Lahmam-Bennaret al (2010).

Figure 14: Fourfold differential cross section (4DCS) foetfe, 3-1e) double ionization of helium

by 621 eV electron impact. Ejected electron energies37 eV and 5 eV. The scattering angle is

(95:60 (¢s:18d)). The results of the first Born approximation apresented by a full curve, those

of the second Born approximation calculated by gisie closure approximation (equation (31))
with w = 79eV and the BK14 initial wave function by a dashieé | those of the second Born
approximation calculated by using the closure axpration (equation (31)) witiw = 30eV and

the BK14 initial wave function by a dotted linepte of the second Born approximation calculated
by using the closure approximation (equation (34 w =116eV and the BK14 initial wave

function by a dash-dotted line.
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6,(deg) | B1 B2(1s) | B2(2s) | B2(2p) | SB2(0.55B2(1.0)| B2(0.5) | B2(1.0)
10 1.363 1.409 1.323 1.362 0.597 0.974 0.594 1.019
30 0.247 0.261 0.235 0.250 0.296 0.443 0.28¢ 0.433
50 0.666 0.660 0.670 0.620 0.808 0.885 0.79( 0.897
70 1.581 1.576 1.573 1.495 1.577 1.695 1.552 1.758
90 2.400 2.427 2.340 2.334 2.489 2.578 2.446 2.619
110 2.906 2.996 2.834 3.037 3.467 3.354 3.40] 3.129
130 3.050 3.210 2.985 3.418 4.248 3.895 4.28] 3.701
150 2.830 3.026 2.712 3.229 4.456 4.010 4.61¢ 4.225
170 2.253 2.438 2.106 2.556 3.830 2.438 4.030 2.106
190 1.387 1.521 1.270 1.589 2.455 2.355 2.60% 2.758
210 0.510 0.567 0.458 0.630 0.932 1.010 1.000 1.207
230 0.313 0.286 0.314 0.370 0.446 0.442 0.489 0.538
250 1.885 1.800 1.932 2.100 2.265 1.876 2.369 1.978
270 5.823 S5.747 5.995 6.272 6.139 5.502 6.113 5.077
290 10.54 10.53 10.64 10.44 9.302 9.185 9.183 8.982
310 12.41 12.46 12.39 11.74 9.058 9.811 9.034 10.19
330 9.675 9.756 9.600 9.129 5.934 6.948 5.948 7.376
350 4.847 4.922 4.779 4.665 2.504 3.234 2.511 3.445
Table2
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6.(deg) | B1 B2(2) B2(3) B2(4) B2(5) B2(6) B2(8) B2(10)

10 1.363 1.366 1.349 1.352 1.347 1.349 1.346 1.346
30 0.247 0.252 0.250 0.249 0.248 0.248 0.247 0.24j7
50 0.666 0.618 0.598 0.588 0.583 0.579 0.576 0.574
70 1.581 1.482 1.433 1.410 1.394 1.386 1.377 1.374
90 2.400 2.302 2.283 2.296 2.307 2.297 2.282 2.291
110 2.906 3.056 3.099 3.131 3.152 3.153 3.148 3.150
130 3.050 3.515 3.609 3.640 3.662 3.676 3.692 3.697
150 2.830 3.312 3.474 3.561 3.609 3.640 3.672 3.686
170 2.253 2.598 2.736 2.810 2.852 2.878 2.907 2.921
190 1.387 1.608 1.703 1.755 1.784 1.801 1.820 1.829
210 0.510 0.638 0.692 0.723 0.742 0.756 0.763 0.774
230 0.313 0.346 0.396 0.423 0.438 0.447 0.456 0.460
250 1.885 2.068 2.172 2.194 2.196 2.204 2.214 2.220
270 5.823 6.370 6.408 6.411 6.424 6.416 6.376 6.388
290 10.54 10.52 10.54 10.55 10.56 10.56 10.56 10.55
310 12.41 11.77 11.46 11.29 11.20 11.15 11.09 11.06
330 9.675 9.135 8.879 8.755 8.685 8.651 8.611 8.590
350 4.847 4.670 4.573 4.530 4.507 4.493 4.477 4.469
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Table 1 Triple differential cross section (in au) for thaimation of atomic hydrogen as obtained

from the second Born expressions (8), (13) and, {Isthg various approximations fdt,, :
SB2(0.5), f_B2 :calculated by the closure approximation usingagrage excitation energy = 0.5
au, SB2(1.0),f,, :calculated by the closure approximation usinguegrage excitation energy

w =10 au ; B2(1s),f;, calculated by including only the contribution béttarget ground state
(1s) as an intermediate state; B2(2s) (B2(2p)),eseahculation, in which only the contribution of
the 2s(2p) state is includedfig, ; B2(0.5), full second Born approximation resittsvhich 2 is
calculated by including exactly the 1s, 2s andri?ermediate target states, and the closure
approximation (withw = 05au) is used to include the other target states] .BY(full second Born
approximation results in which is calculated by including exactly the 1s, 2s apd
intermediate target states, and the closure appaiion (withw = 1.0au) is used to include the
other target states.B1: results of the first Bgypraximation (5). The incident electron energy is
250 eV, the ejected electron energy is 5 eV anddtaéering anglé, =3

Table 2 Triple differential cross section (in au) for thaimation of atomic hydrogen as obtained
from the second Born expression (8), using varagmoximations forf,, : B2(2) calculated by
including only the contributions of n=1 and n=2;(BRcalculated by including only the
contributions of n=1, n=2 and n=3; B2(4) calculabgdncluding only the contributions of n=1,
n=2, n=3 and n=4; B2(5) calculated by includingyathle contributions of n=1, n=2, n=3, n=4 and
n=5; B2(6) calculated by including only the contilons of n=1, n=2, n=3, n=4, n=5 and n=6;
B2(8) calculated by including only the contributsoof n=1, n=2, n=3, n=4, n=5, n=6, n=7 and n=8;
B2(10) calculated by including only the contribuisoof n=1, n=2, n=3, n=4, n=5, n=6, n=7, n=8,
n=9 and n=10. B1: results of the first Born appnexiion (5). The incident electron energy is 250

eV, the ejected electron energy is 5 eV and theesaay angle65=3°.
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