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Cell type-dependent, infection-induced, aberrant DNA

methylation in gastric cancer

Dimitri Perrin∗,a, Heather J. Ruskina, Tohru Niwab

aCentre for Scientific Computing & Complex Systems Modelling,

Dublin City University, Ireland
bCarcinogenesis Division, National Cancer Center, Tokyo, Japan

Abstract

Epigenetic changes correspond to heritable modifications of the chromatin
structure, which do not involve any alteration of the DNA sequence but
nonetheless affect gene expression. These mechanisms play an important
role in cell differentiation, but aberrant occurrences are also associated with
a number of diseases, including cancer and neural development disorders.
In particular, aberrant DNA methylation induced by H. Pylori has been
found to be a significant risk factor in gastric cancer. To investigate the
sensitivity of different genes and cell types to this infection, a computational
model of methylation in gastric crypts is developed.
In this article, we review existing results from physical experiments and out-
line their limitations, before presenting the computational model and inves-
tigating the influence of its parameters.

Key words: Cancer, Computational model, DNA methylation, Epigenetics

1. Introduction

Early advances in Genetics led to the all-genetic paradigm: the phenotype
is a deterministic consequence of the genotype. Obvious counter-examples
were outlined and this was later amended: visible characteristics of a liv-
ing organism (phenotype, P ) combine hereditary genetic (genotype, G) and
environmental factors (E). This is sometimes summarised as P = G + E.
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However, differences between monozygotic twins can be seen even for
high heritability diseases such as schizophrenia, while identification of envi-
ronmental factors, e.g. smoking and air quality for lung cancer, (Spurny,
1996; Mucha et al., 2006), is relatively rare.

Early work by Waddington (1949), and more recently over the last decade,
e.g. Bird (2002); Wilkins (2005), has emphasised that genotype expression
can be altered without changing DNA sequence itself, a phenomenon called
Epigenetics : P = G + E + EpiG.

Epigenetic mechanisms involve heritable alterations in chromatin struc-

ture, (e.g. DNA methylation and histone acetylation), amongst other epige-
netic “signatures”. In turn these regulate gene expression, but do not involve
changes in DNA sequence. These “stable alterations” arise during prolifer-
ation and persist through cell division (Feinberg and Tycko, 2004). While
information within the genetic material is not changed, instructions for its
assembly and interpretation may be.

Such alterations have, in particular, been linked with tumor-suppressor
inactivation and cancer initiation (Esteller, 2007). In this study, we focus on
aberrant DNA methylation induced by H. Pylori infection. This modification
has recently been associated with higher cancer risk. We summarise the
results obtained from physical experiments, and propose a computational
model to complement these.

2. Infection-induced epigenetic perturbations and cancer initiation

2.1. DNA methylation

DNA methylation corresponds to the addition of a methyl group to a cy-
tosine. In humans, only 1% of DNA bases undergo DNA methylation. In dif-
ferentiated cells, DNA methylation is typically limited to CpG dinucleotides,
while non-CpG methylation can be found in embryonic stem cells, (Dodge
et al., 2002).

Of particular interest are CpG islands. These correspond to areas with
higher proportion of CpG, and are formally defined as follows (Gardiner-
Garden and Frommer, 1987):

• Length of the considered region is at least 200 base pairs.

• GC percentage is greater than 50%, (i.e. more than half of amino-acids
are cytosine or guanine).
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• Observed/expected CpG ratio is greater than 60%.

In humans, these islands are found in or near to 70% of gene promoters, (Sax-
onov et al., 2006). While most CpG dinucleotides are methylated over the
genome, methylation of a CpG island is specifically associated to silencing
of the associated gene. Aberrant changes in CpG island methylation are,
therefore, linked with abnormal gene expression.

2.2. Infection-induced methylation in gastric cancers

Epigenetic alterations in non-disease tissues can be used as markers for
disease risk and past exposure to some disease-inducing factors. In particular,
current focus is on detection of aberrant DNA methylation in non-cancerous
gastric mucosae, as the presence of such patterns can be used as a marker for
both the risk of gastric cancers and for past exposure to Helicobacter pylori.
A detailed presentation in the context of this study is proposed by Nakajima
et al. (2008). For convenience, main points are summarised here.

In cancer development, aberrant DNA methylation is involved at two
levels:

• Overall hypomethylation, which affects repetitive DNA sequences and
causes both chromosomal instability, and, hence, tumours, (Gaudet
et al., 2003), as well as aberrant expression of normally methylated
genes, (Smet et al., 1999).

• Regional hypermethylation, most of which affects CpG islands and
causes, (if these islands are located in gene promotion region), tran-
scriptional silencing of the downstream gene. In the context of cancer,
methylation affecting tumour suppressor genes is well documented, see
e.g. (Jones, 2002; Baylin and Ohm, 2006). This is sometimes referred
to as driver methylation, because of causal involvement in carcinogene-
sis, (as opposed to passenger methylation, which refers to genes whose
methylation is a consequence of cancer development, and therefore re-
quires careful analysis of newly detected genes (Ushijima, 2005)).

In the context of gastric cancers, gene inactivation, (e.g. for tumour sup-
pressor gene p16), is more frequently a consequence of aberrant promoter
methylation than of defaults at the genetic level, (Ushijima and Sasako,
2004), but Kaneda et al. (2002) also observed that low levels of aberrant
methylation occur in non-cancerous mucosae of cancer patients. This was
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tested against tissues from healthy individuals, and it was found that methy-
lation levels for these patients were one to two orders of magnitude higher in
H. pylori -positive individuals than H. pylori-negative individuals (Maekita
et al., 2006). This is a very significant finding, since H. pylori is known to
be a major risk factor for gastric cancers.

It was also highlighted that part of this hypermethylation is temporary

and will decrease after eradication of infection. This is not due to active
demethylation, but simply to cell turnover. The structure of the gastric
crypt, (one stem cell, multiple progenitor cells and many differentiated cells,
as shown in Figure 1), is the cause for this two-part methylation, where:

• The permanent component is due to methylation of stem cells. Since
methylation is conserved during cell division, progenitor and differen-
tiated cells, obtained from an aberrantly methylated stem cell, will
exhibit identical abnormal patterns.

• The temporary component is due to methylation in progenitor and dif-
ferentiated cells. This, if the stem cell of the crypt is not methylated,
will disappear because of cell turnover and creation of new, unmethy-
lated, cells.

3. Experimental limitations and computational alternative

3.1. Issues: experimental cost and granularity of the results

Investigation of infection-induced methylation relies on a time-consuming
experimental protocol. Based on fixed infection dynamics, several lines of
rodents are used: one line is infected for an extended period, (for instance
from week 5 to week 55), a second is used as a control, (no infection), while a
third is subjected to the eradication procedure only, (at week 55 in the current
instance), in case this itself induces aberrant methylation. As the experiment
progresses, samples are regularly taken from each population, and the average
methylation level is obtained for the genes under investigation. Each sample
contains an average of thirty cells, and requires termination of the sampled
rodent.

This protocol provides a suitable proxy to investigate aberrant methy-
lation in humans, as the behaviour for cell types of interest is similar, (see
e.g. Nakajima et al. (2009); Niwa et al. (2010) for details). Yet, while this
experimental protocol provides essential results, (see Nakajima et al. (2008)
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for a more comprehensive presentation), there are a number of limitations.
These include reproducibility : each experiment lasts over a year, and requires
large rodent populations. This is an obstacle to more comprehensive studies,
for instance involving multiple infection dynamics. Investigating these would
be particularly interesting, as the clearance rate then becomes crucial, but
this is not immediately feasible, at least not in vivo.

The experimental contraints also limit the number of sampling time-
points. To satisfy statistical assumptions, each time-point requires multiple
samples, taken from each sub-population, which implies a rapid increase, over
the extended period, of the overall population required for the experiment.
Given this, the sampling intervals is subject to practical limitation: typically
every five to ten weeks under “stable” conditions, and every week at most
during transitions, (initiation and eradication of the infection).

This, in addition to being able to obtain only the average methylation
level, results in low granularity of the results. The “real-time” dynamics of
epigenetic changes at the cell level, or even crypt level, are not accessible.

Gaining a better insight into these methylation dynamics, both during
infection, (summarised in Figure 2a), and in the long term, (Figure 2b), is
the objective of the prototype model we have developed. This is detailed in
the following.

Figure 1: Structure of a gastric crypt, with one stem cell (black), a few
progenitor cells (grey), and, approximately, one hundred differentiated cells
on each side
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(a) During H. Pylori infection, cells can
be methylated, with different probabil-
ities, depending on their type. Methy-
lation status is conserved through cell
division, (from stem to progenitor cell,
and from progenitor to differentiated
cell).

(b) After eradication, only crypts where
the stem cell was methylated conserve
aberrant methylation, (which is propa-
gated through the whole crypt, during
cell divisions).

Figure 2: Methylation dynamics in gastric crypts. Colour represents cell
type, (black for stem cells, grey for progenitor cells, white for differentiated
cells). Aberrant methylation is shown with a cross inside the cell.

3.2. Computational model

3.2.1. Structure and typical iteration

To investigate the dynamics of infection-induced aberrant methylation in
the crypt, we implement an object-oriented model of the entities involved,
(samples, crypts, cells). Each entity corresponds to a computing object, and
may inherit other objects, (e.g. a crypt contains cells). Each object has a
number of attributes which characterise it further, (e.g. each cell has a type:
stem cell, progenitor cell, or differentiated cell).

A sample, which mimics in silico the samples obtained in vivo during the
physical experiments described above, is implemented as an array of crypts.
Each crypt is initialised with one stem cell, six progenitor cells, and one
hundred differentiated cells on each “wall” of the crypt. Initially, no cell is
aberrantly methylated.

At each time step, (fixed at one minute for future inclusion of histone
modifications), each crypt is updated, as follows. First, cells at the top of
both “walls” are analysed and, as these have a finite life span, are removed
if necessary. This is followed by update of the bottom of the crypt. A new
cell may be created on each side, and progenitor cells may be replaced, (as
these are limited in terms of number of differentiated cells produced prior
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to replacement by a new progenitor cell). Newly-created cells inherit the
epigenetic status of the cell from which they derive through the differentiation
process.

Finally, the methylation status of the progenitor and stem cells is up-
dated, depending on cell type and infection status.

The parameters used during this iterative process are described next.

3.2.2. Parameters

Key attributes in control of the cell renewal dynamics in the crypt are the
life span of each cell type, and the probability that a new cell is created at the
bottom of the crypt. In order to realistically reproduce observed dynamics,
the life span, under normal conditions, is 3 days for differentiated cells (i.e.
4320 time steps). When the infection is established, this is reduced to 2.5
days, (3600 time steps). For progenitor cells, the life span is taken to be
equivalent to the total number of differentiated cells they can produce, at
unit intervals; set at 25 each. Stem cells in the model are considered to have
an infinite life span.

To balance the limited life span of differentiated cells, new cells are pro-
duced at the bottom of the crypt. At each time step, this occurs with a
probability p of 2.3 × 10−3 under normal conditions. This maintains the
crypt size to approximately 200 cells. During an infection, this size is in-
creased by a factor ranging from 2 to 4, and this is reflected in the model by
increasing p to a value between 7.0× 10−3 and 1.2× 10−2, (randomly chosen
for each crypt).

In order to investigate aberrant methylation, as described above, probabil-
ities that this change occurs are required, both under normal conditions and
during the infection, for both stem cells and progenitor cells. The influence
of these parameters is analysed in Section 4.

3.2.3. Transition function

Most model parameters vary depending on the infection status. To ac-
count for a progressive transition between the two parameter values, (from
normal conditions to established infection), a sigmoid function is used. Equa-
tion 1 represents a generic transition between values a and b. In the context
of cell production, for instance, a would correspond to p = 2.3× 10−3, and b

to p = 7.0× 10−3. A typical sigmoid function is shown in Figure 3.
Using this sigmoid function introduces two extra parameters, λ and T ,

(with λ < 0 and T ≥ 0). After eradication of the infection, initial values are

7



Acc
ep

te
d m

an
usc

rip
t 

� � � � �

�

�

�

�

�

�

�

Figure 3: Typical sigmoid function, with a = 1, b = 5, λ = −2, and T = 4.

restored, (Equation 2). In both equations, units for t are weeks.

f(t) = a + (b− a)×
1

1 + eλ(t−T )
(1)

f(t) = a + (b− a)× (1−
1

1 + eλ(t−T )
) (2)

4. Results and discussion

4.1. Reproduction of two-part methylation

The hypothesis, based on physical experimentation, is that, under normal
conditions, aberrant stem cell methylation does not occur and that, during H.

Pylori infection, the probability for methylation of these remains significantly
lower than that for progenitor cells.

To validate this, a series of simulations was run, with a range of values
for these probabilities, and infection dynamics were set to reproduce experi-
mental conditions: infection, if included, starts at week 5, and is eradicated
at week 55.
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Figure 4: Simulated methylation level. Without infection, methylation is al-
most absent. H. Pylori infection leads to progenitor cell methylation. Unless
the stem cell is methylated, this results in rapid but limited fluctuations of
the methylation level, since these cells have a finite life span and are rou-
tinely replaced with unmethylated cells. The infection also leads, with lower
probability, to stem cell methylation, which results in permanent and com-

plete methylation of the corresponding crypt, (and a correspondingly sharp
increase of the methylation level of the sample).

Three typical runs are shown in Figure 4, and correspond to the three pop-
ulations used during the physical experiments. These results clearly indicate
that significant methylation levels can only be obtained through infection
and that, after eradication, only part of this aberrant methylation remains.
This permanent level is equal to the proportion of methylated stem cells in
the sample.

The results from the physical experiments have been successfully repro-
duced, and the model hypothesis validated. The remainder of this section
analyses the sensitivity of this model to its various parameters, and the im-
plications of this sensitivity with respect to the observed phenomena. Be-
cause aberrant methylation is modelled as a stochastic process, this analysis
is based on multiple simulations for each model configuration. In order to
obtain statistically significant values, averages are calculated over twenty sim-
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ulations. A similar protocol is used during the in vivo experiments, in that
several rodents are used to obtain values for each time and each configuration.

4.2. Impact of cell-type dependency

The model is based on specific cell types having different sensitivity to
H. Pylori infection. In particular, the main conclusion of the physical exper-
iments is that infection-induced aberrant methylation is significantly more
likely to occur on progenitor cells than on stem cells, and has a relatively
short lifetime.

To account for this, four parameters are necessary. α and β represent
the probability of aberrant methylation once the infection is established,
for stem cells and progenitor cells respectively. Under normal conditions,
the respective probabilities are denoted α0 and β0. A first assumption, as
mentioned, is that α � β. Based on the experimental information, we can
also assume that α0 = 0.

Sensitivity to α is shown in Figure 5. This probability of stem cell methy-
lation at each time step has two consequence for model behaviour: higher
values of α increase both (i) the methylation level, at any given point during
the infection, and (ii) the level of permanent methylation after eradication.
In physical experiments, the level of permanent methylation for various genes
was observed to be between 0.04 and 1.02%. This corresponds, in our model,
to α between 0 and 0.9× 10−8.

Sensitivity to β is shown in Figure 6. Increasing the probability of methy-
lation for progenitor cells only affects the methylation level at a given time-
point during the infection. This is increased, but both the rate of increase
during infection and the methylation level after eradication are unchanged.

These results are significant, as they imply that accurate values for α and
β for any gene can be extracted from the model. Using data from physical
experiments, we initially obtain α, by focusing on the level of permanent
methylation after eradication of the infection. Then, once α is fixed, the
methylation level at several time-points during the infection can be used to
deduce β. Finally, variations about the average values both before and after
the infection are sufficient to estimate β0.

4.3. Impact of infection dynamics

4.3.1. Sensitivity to transition periods

Neither the initial size of the crypt nor the size it reaches once the infection
is established have any impact on the observed methylation level. This is
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Figure 5: Sensitivity to α. Each curve corresponds to the average methylation
level over 20 simulations, for a specific value of α, (probability of stem cell
methylation at each time step).

a consequence of the methylation level being a proportion of methylation
cells rather the number of such cells, (and has been verified experimentally).
However, the transition between these two values does have a significant
impact, which we investigate in detail.

Two parameters are used in the sigmoid functions which describe this
transition: λ and T . Two sets of values are used during each simulation: λs

and Ts, (for changes with respect to cell renewal dynamics in the crypt); λg

and Tg, (for modifications of the methylation probabilities). Figures 4 to 6
were shown for λc = λg = −4, and Tc = Tg = 2. Here, we analyse the impact
of these values on the model behaviour.

Figure 7 summarises the effect of reducing λg compared to λs, (which
must coincide with an increase of Tg, so that the transition function remains
realistic). This corresponds to a situation where the impact of the infec-
tion on aberrant methylation of a specific gene is established more slowly
than the effect on crypt size, (through perturbed cell renewal dynamics). In
such a case, the average methylation level over the sample is slower to rise,
but the most significant difference occurs when the infection is eradicated.
Cells are still likely to be methylated, since this transition is slower, but the
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Figure 6: Sensitivity to β. Each curve corresponds to the average methylation
level over 20 simulations, for a specific value of β, (probability of progenitor
cell methylation at each time step).

crypt size is already decreasing. This results in a brief but sharp increase
of the methylation level, as most destroyed cells are unmethylated, (due to
low methylation level overall). Such an increase was observed for several
genes during the physical experiments, and a difference between λs and λg

is one plausible explanation of this phenomenon. As the observed increase is
generally slow, this would correspond to a small difference between the two
values.

Figure 8 summarises the effect of reducing λs, (which, similarly to before,
must coincide with an increase in Ts, so as to maintain realism of the tran-
sition function). This occurs when aberrant methylation starts before the
crypt size has reached its maximum infected level. The effect is, therefore,
opposite to that of reducing λs, and a temporary, sharp increase of the overall
methylation level is observed when the H. Pylori infection begins.

Due to experimental limitations, it was possible to test in vivo only one
infection configuration, (starting at week 5, and eradicated at week 55). How-
ever, shorter infections are not only possible, but can also occur repeatedly.
These conditions give rise to another series of simulations.
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Figure 7: Sensitivity to λg and Tg. Each curve corresponds to the average
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4.3.2. Sensitivity to repeated infections

We first considered two infections, from weeks 5 to 25 and 35 to 55.
Figure 9 summarises the results, for λg < λs, λg = λs, and λg > λs. We then
simulated a succession of shorter infections, from weeks 5 to 13, 21 to 29, 37
to 45, and 53 to 61, (summarised in Figure 10 for similar configurations of
the transition period). As expected from the earlier results, configurations
where there is a significant difference between λg and λg create distortions of
the methylation level during transition periods. However, if each occurrence
of the infection is long enough, and if there is a sufficient time between these,
the parameters related to the transition period have no impact on the long-

term methylation level. This is of the same order as that for a single infection
for which the length would be equal to the combined length of these shorter
occurrences.

A significant observation, for short infections, is that the distortions cre-
ated by differences between λg and λg may persist for most of the infection
period. During physical experiments, (which have to yet to be performed
for infection dynamics such as these), this would lead to a significant over-

estimation of the size of actual changes in methylation.
For clarity, it must be noted that, in Figures 9 and 10, the difference

between the long-term methylation level of the three configurations is not a
consequence of the values for λg and λs. In Figure 9, the lower methylation
level for the first configuration is a consequence of the methylation of fewer
stem cells during the first infection phase for some simulations. In Figure 10,
a similar slight underestimation exists, and is a result of fewer methylations
during the third infection phase. These differences occurred after the in-
fection was fully established, and are an artefact of the finite number of
simulations: the shorter the infection length, the greater the standard vari-
ation in the number of methylated stem cells between simulations, (because
of very low probability, at each time step, to methylate a stem cell).

A similar increase in the variation can be expected for in vivo experiments.
Given the limited number of samples at each time-point, this would further
reduce the reliability of the measurements under these infection dynamics.

Increasing the number of simulations permits the reduction of this effect
in the computational model, but is not a realistic for the in vivo counterpart,
because of cost and space constraints associated with increasing the rodent
population.
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4.4. Applications

From a single series of physical experiments, it is possible, with the com-
putational model proposed, to extract parameters controlling the aberrant
methylation of the genes under consideration. Using these parameters, we
can estimate the level of aberrant methylation resulting from any infection
pattern, without requiring a biological cell or a sample from the individual,
for all genes investigated during the in vivo experiments. Further develop-
ment of the model will focus on other genes of potential interest.

These results offer crucial insights towards a better understanding of the
initiation of gastric cancers: methylation levels have been observed to be
significantly higher in cases of gastric cancer compared to healthy volun-
teers (Maekita et al., 2006), and significantly higher in patients with multi-
ple gastric cancers compared to those with a single gastric cancer (Nakajima
et al., 2006).

The ability to model such features represents an important milestone
in establishing DNA methylation as a marker for gastric cancer risk. This
is likely to be generalised to other types of cancer and tissues: aberrant
DNA methylation in non-cancerous tissues was also identified e.g. in the
colon, (Issa et al., 1994), the liver, (Kondo et al., 2000), and the stom-
ach, (Waki et al., 2002).

A limitation of current in vivo and in vitro studies is that, while suc-
cessful in investigating specific phenomena, such experiments so far fail to
explain system-wide complex interactions. These may reflect overall system
complexity, but technical constraints lead most research groups to focus on a
single epigenetic change in a given context. The need for integration of these
partial results is crucial to understanding the overall biological system, and
computer-based modelling can provide a useful complementary framework in
this, as in other fields, (Dove, 2006).

5. Conclusion

The model, developed here, is able to reproduce and complement in vivo

experiments on cell type-dependent aberrant DNA methylation during H.

Pylori infection. As such, it provides useful insights on the dynamics of
infection-induced aberrant epigenetic changes, which have been linked to
gastric cancer initiation.

Costly and time-consuming lab-testing is intrinsic to in vivo epigenetic
research. This computer-based study demonstrates that in silico modelling

16



Acc
ep

te
d m

an
usc

rip
t 

can facilitate quantitative methylation analysis and the investigation of key
factors influencing disease initiation. The model can thus play a significant
role in developing better understanding of gastric cancers. Notably, as an
important milestone in establishing DNA methylation as a marker for gastric
cancer risk, it contributes to a better identification of at-risk patients.

Furthermore, as the first to successfully reproduce epigenetic events in sil-

ico, the current version can be seen as a proof of concept for more advanced
models, incorporating several epigenetic changes and the complex interac-
tions between them. In particular, future model versions will take partial
methylation levels into account, and will include histone modifications.
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