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Abstract Many factors including pest natural enemy ratios, starting densities,

timings of natural enemy releases, dosages and timings of insecticide applications

and instantaneous killing rates of pesticides on both pests and natural enemies can

affect the success of IPM control programmes. To address how such factors

influence successful pest control, hybrid impulsive pest-natural enemy models with

different frequencies of pesticide sprays and natural enemy releases were proposed

and analyzed. With releasing both more or less frequent than the sprays, a

stability threshold condition for a pest eradication periodic solution is provided.

Moreover, the effects of times of spraying pesticides (or releasing natural enemies)

and control tactics on the threshold condition were investigated with regard to the

extent of depression or resurgence resulting from pulses of pesticide applications.

Multiple attractors from which the pest population oscillates with different

amplitudes can coexist for a wide range of parameters and the switch-like

transitions among these attractors showed that varying dosages and frequencies of

insecticide applications and the numbers of natural enemies released are crucial.

To see how the pesticide applications could be reduced, we developed a model

involving periodic releases of natural enemies with chemical control applied only

when the densities of the pest reached the given Economic Threshold. The results

indicate that the pest outbreak period or frequency largely depends on the initial

densities and the control tactics.

Key-words. Optimum timing; pest control; IPM; Economic threshold;

Augmentation; Predator-prey model
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1 Introduction

Integrated pest management (IPM) involves choosing appropriate tactics from a

range of pest control techniques including biological, cultural and chemical

methods to suit individual cropping systems, pest complexes and local

environments (Flint, 1987; van Lenteren, 1995, 2000; van Lenteren and Woets,

1988). Biological control is often a component of an IPM strategy (Greathead,

1992; Parker, 1971). It is defined as the reduction of pest populations by natural

enemies and typically involves an active human role, such as augmentation which

involves the supplemental release of natural enemies. Relatively few natural

enemies may be released at a critical time of the season (inoculative release) or

millions may be released (inundative release) when insufficient reproduction of

released natural enemies is likely to occur and pest control will be achieved

exclusively by the released individuals themselves (Hoffmann and Frodsham, 1993;

Neuenschwander and Herren, 1988).

Another important method for pest control is chemical control. In most

cropping systems, insecticides are still the principal means of controlling pests once

the economic threshold (ET) has been reached. They can be relatively cheap and

are easy to apply, fast-acting, and in most instances can be relied on to control the

pests (Hoffmann and Frodsham, 1993). An ET is usually defined as the number of

insect pests in the field when control actions must be taken to prevent the

economic injury level from being reached and exceeded (Pedigo and Higley, 1992;

van Lenteren, 1995), as shown in Fig.1. However, only if all other IPM tactics

including biological and cultural control are unable to keep an insect pest

population below an ET, then use of an insecticide to control the pest and prevent

economic loss is justified. Even where pesticides are included as a last resort as
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part of an IPM strategy, the emphasis is on rational use involving suitable active

ingredient selection and careful timing of application with regard to pest

population levels.

Most importantly, chemical and biological methods have often proven

antagonistic pesticides limit populations of natural enemies in crops and reduce

their impact on pest populations. In extreme cases of such antagonism, often

called resurgence, pest populations may be increased by the application of

insecticides which kill both the pest and their natural enemies (Barclay, 1982;

Debach, 1974; Ruberson, 1998). So it is important to know how such antagonistic

pesticides affect the outcomes of pest control measures.

One approach to understanding the range of possible ecological interactions

between pest, natural enemy and pesticides is to construct and explore population

models. Barclay (1982), Barlow et al. (1996) and Barclay and van den Diressche

(1977) have developed continuous ODE models, with coupled predator and pest

populations, both of which are affected by insecticides. Carpenter (1981) has

developed a similar model for the interaction between pests, pathogens and

insecticides. Recently, continuous or discrete predator-prey models concerning

IPM strategies have been developed and investigated (Tang and Chen, 2004; Tang

and Cheke, 2005; Tang et al., 2005; Tang and Cheke, 2008; Tang et al., 2008).

However, one of the major assumptions in those publications was that all control

tactics are implemented at the same time, which means that the application of

pesticides can kill the released natural enemies instantly. There are three possible

methods implemented in practice to avoid such antagonism when biological and

chemical controls are combined: (i) spraying pesticides more frequently than

releasing natural enemies; (ii) spraying pesticides less frequently than releasing
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natural enemies; and (iii) releasing natural enemies frequently and spraying

pesticides only when pest densities reach the ET.

Based on the above practical control methods, we first propose impulsive

pest-natural enemy models with different frequencies of spraying pesticides and

releasing natural enemies. The threshold conditions which guarantee that the pest

dies out are derived, and several governing factors including application timing and

control tactics are investigated with regard to the extent of depression or

resurgence resulting from pulses of pesticide applications. Experimental

observations have shown that the initial densities of pest and natural enemy

populations can affect classical biological control (Burnett, 1960; Foster and Kelly,

1978; Jones, 1999). The numerical results obtained in the present paper also

indicate that the simplest pest-natural enemy models with impulsive control

tactics can lead to the coexistence of pests and natural enemies for a wide range of

parameters, but with quite different pest amplitudes. These results indicate that

the final stable states of pest-natural enemy populations depend on their initial

densities as well as on their ratios, and the results are confirmed by basins of

attraction of initial densities. Furthermore, the effects of random perturbations of

the instant killing rates of pesticides on pests and on natural enemies, release rates

and a release constant on the switch-like transitions among those attractors

confirm that varying dosages and frequencies of insecticide applications and the

numbers of natural enemies released are crucial.

One of the most important questions in IPM is how many natural enemies

should be released and what fraction of the pest population should be killed to

avoid economic damage and reduce the pesticide applications when the pest

population reaches or exceeds the ET level. In many cases, the most effective
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release rate or spraying rate has not been identified as it will vary depending on

crop type and target host density. To avoid antagonism and reduce the pesticide

applications, the pesticide is sprayed only when it is necessary, i.e. when the pest

population density reaches the ET. With this in mind we developed a new hybrid

impulsive dynamical model to involve a periodic releasing of natural enemies, while

chemical control is applied only when the densities of the pest population reach

the given ET. The results indicate that the pest outbreak period or frequency

largely depends on the initial densities and the control tactics. The results also

show that the selection of ET, selection of the pesticide and selection of the

releasing methods (inundative or inoculation release) may be crucial in prolonging

the pest outbreak period.

2 The model with periodic integrated pest

control strategies

In order to address the effects of integrated control tactics on the pest-natural

enemy dynamic model, we will extend the classical Lotka-Volterra model (Lotka,

1920; Volterra, 1931) by introducing an IPM strategy such as releasing of natural

enemies (Parker, 1971) or spraying pesticide at a critical time and examine the

consequences of population densities changing very rapidly. For instance, impulsive

reduction of the pest population is possible by trapping the pests and/or by

poisoning them with chemicals. An impulsive increase of the natural enemy

density can be achieved by laboratory-based breeding followed by releases into the

field (Tang and Chen, 2004; Tang and Cheke, 2005; Tang et al., 2005; Tang and

Cheke, 2008).
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The simplest case is to assume that at every period T a perturbation which

incorporates a proportional (denoted by p1) decrease of the insect pest and

proportional (denoted by p3) increase of the natural enemies and an introduction

constant σ for the natural enemies which does not depend on its population sizes

are considered. That is, we have the following impulsive differential equation with

a fixed moment⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt

= rx(t) [1− δx(t)]− bx(t)y(t),

dy(t)
dt

= y(t)(cx(t)− a),

⎫⎪⎪⎬
⎪⎪⎭ t �= nT,

x(nT+) = (1− p1)x(nT ),

y(nT+) = (1 + p3)y(nT ) + σ,

⎫⎪⎪⎬
⎪⎪⎭ t = nT,

(2.1)

where r, δ, b, c and a are positive constants, T is the period of the impulsive effect,

q1
�
= 1− p1 and q3

�
= 1 + p3 with 0 < q1 ≤ 1, q3 ≥ 1. The assumptions in the model

(2.1) without control strategies are: (i) The prey grows in a logistic way in the

absence of any predation. (ii) The effect of the predation is to reduce the prey’s

per capita growth rate by a term proportional to the prey and predator

populations. (iii) In the absence of any prey for sustenance the predator’s death

rate results in exponential decay. (iv) The prey’s contribution to the predator’s

growth rate is cxy; that is, it is proportional to the available prey as well as to the

size of the predator population.

The dynamical behavior and biological implications of the model (2.1) were

extensively studied, and if q3 exp(−aT ) < 1, then the complete expression of the

’pest-eradication’ periodic solution of system (2.1) over the n-th time interval

t0 = nT < t ≤ (n + 1)T can be described as follows

(0, y∗(t)) =

(
0,

σ exp(−a(t− nT ))

1− q3 exp(−aT )

)
, (2.2)

which is globally asymptotically stable provided that the following threshold
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condition

r <
1

T
ln

(
1

q1

)
+

bσ

Ta

1− exp(−aT )

1− q3 exp(−aT )
(2.3)

holds true. Equivalently, we can define the threshold condition

R0 = q1 exp

[
rT +

bσ

a

exp(−aT )− 1

1− q3 exp(−aT )

]
(2.4)

and if R0 < 1 then the pest eradication periodic solution is globally asymptotically

stable.

In particular, let q3 = 1 and σ = 0 (chemical control only), and the

pest-eradication periodic solution (2.2) is globally stable ((0, 0) in this case) if the

intrinsic growth rate of the pest population satisfies

r <
1

T
ln

(
1

q1

)

which means that if the intrinsic growth rate is less than the mean pest-killing rate

due to an insecticide application over period T , then the pest population

eventually goes to extinction.

Similarly, let q1 = 1 (biological control only), then the condition which

guarantees the global stability of the pest-eradication periodic solution becomes:

r <
bσ

Ta

1− exp(−aT )

1− q3 exp(−aT )

which means that if the intrinsic growth rate is less than the mean predation rate

over period T , then the pest population will become extinct eventually.

However, for an IPM strategy (q1 > 0, q3 ≥ 0 and σ > 0 here) inequality (2.3)

indicates that if the intrinsic growth rate of the pest population is less than the

summation of the mean killing rate and the mean predation rate over period T ,

then the pest population will tend to zero. Theoretically, this confirms that an

IPM strategy is more effective than any single control strategy. The complex
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dynamical behavior of model (2.1) has also been addressed by using numerical

investigations (Tang and Cheke, 2005; Tang et al., 2005).

3 Optimum timing and rates of pesticide

application and release of natural enemies

To take full advantage of existing biological control agents, it is important to

understand the impact of insecticides on valuable natural enemy species. In

general, pesticides tend to be harmful to most natural enemies (Ruberson, 1998),

which may be associated with acute toxicity. Understanding the acute toxicity of

insecticides to natural enemies is important and relevant to IPM. In fact, natural

enemies must search for their prey, they are generally very mobile and spend a

considerable time moving across plant tissue. This increases the likelihood that

they will contact the insecticide and indicates that natural enemies are generally

more adversely affected by chemical insecticides than the target pest, and even

worse pest populations may be induced by the application of insecticides which kill

both the pest and their natural enemies (Debach, 1974).

Undoubtedly, mathematical modelling is one of the key tools for understanding

the interactions among pest, natural enemies and pesticides (Barclay, 1982; Barlow

et al., 1996). Recently, continuous and discrete predator-prey models concerning

IPM strategies have been developed and investigated (Barclay, 1982; Barclay and

van den Diressche, 1977; Carpenter, 1981; Hassell, 1984; May, 1978; Tang and

Chen, 2004; Tang and Cheke, 2005, 2008). When insecticide timing also leads to

the death of parasitoids, discrete host-parasitoid models have been proposed and

four different cases have been investigated according to the timing of application
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(Beddington et al., 1978; Hassell, 1984; Hassell and May, 1973; May and Hassell,

1988; Waage and Hassell, 1982; Waage et al., 1985).

As noted in the introduction, all models (such as model (2.1)) developed before

assumed that all control tactics are applied simultaneously. In the present work,

let us take the simplest case where in each impulsive point τn there is an

insecticide application that kills a constant fraction (denoted by p1) of the pests

and which, in addition, can kill a proportion (denoted by p2) of natural enemies,

and in each impulsive point λm we release a proportional amount of the natural

enemies (denoted by p3) and there is an introduction constant σ for the natural

enemies which does not depend on the sizes of the populations. These

modifications result in the following model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt

= rx(t) [1− δx(t)]− bx(t)y(t),

dy(t)
dt

= y(t)(cx(t)− a),

⎫⎪⎪⎬
⎪⎪⎭ t �= τn, t �= λm,

x(τ+
n ) = (1− p1)x(τn),

y(τ+
n ) = (1− p2)y(τn),

⎫⎪⎪⎬
⎪⎪⎭ t = τn,

y(λ+
m) = (1 + p3)y(λm) + σ, t = λm

(3.1)

where τn(n = 1, 2, · · ·) and λm(m = 1, 2, · · ·) are impulsive point series at which the

chemical (or cultural) control tactics and biological control strategies are applied,

respectively. Denote q1 = 1− p1, q2 = 1− p2 and q3 = 1 + p3 throughout the paper

with 0 < q1, q2 ≤ 1, q3 ≥ 1 and σ ≥ 0. It is thus possible to rank the different

patterns of insecticide application in terms of their dynamic effects in relation to

the timing of natural enemy releases. From a practical point of view, we consider

several different cases as follows in terms of the timing of IPM applications.

Case 1 Pesticide applications more frequent than releases of natural enemies.

Assume λm+1 − λm ≡ TN for all m(m ∈ N ), where TN is the period of releasing
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natural enemies. For this case the model (3.1) is said to be a TN periodic system if

there exists a positive integer kP such that

τn+kP
= τn + TN .

This implies that in each period TN , kP pesticide applications are used.

Case 2 Natural enemy releases more frequent than pesticide applications.

Assume τn+1 − τn ≡ TP for all n(n ∈ N ), where TP is the period of pesticide

applications. For this case the model (3.1) is said to be a TP periodic system if

there exists a positive integer kN such that

λm+kN
= λm + TP .

This implies that in each period TP , kN natural enemy releases are applied.

Case 3 Chemical and biological control tactics applied with different periods.

Assume λm+1 − λm ≡ TN for all m, and τn+1 − τn ≡ TP for all n. In this case, TP

is the period of pesticide applications, TN is the period of natural enemy releases,

m, n ∈ N . Denote ρ = TP /TN , then ρ either is rational (i.e. TP and TN are

rational dependent) or is irrational (i.e. TP and TN are rational independent). If ρ

is rational, then ρ = p/q, p, q ∈ N and p, q are relatively prime. Let

T0 = pTN(= qTP ), then the model (3.1) is T0 periodic system. This means that if ρ

is rational, the model (3.1) can be investigated by using similar methods as Cases

1 and 2; If ρ is irrational, then the dynamical behavior of model (3.1) becomes

more complex. For this special case, it is quite difficult to investigate the

dynamical behavior theoretically, please see more details from the reference (Liu

and Chen , 2004).

The main purposes of the following are to focus on Cases 1 and 2, and

investigate the effects of timing of application of IPM tactics and rates of spraying
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or releasing on the pest management. We also study the effects of initial densities

of pest and natural enemies on the pest control and dynamical complexities.

4 Dynamical analysis of Case 1 and its biological

implications

For Case 1, there are kP pesticide applications during period TN . Denote

�i = τi+1 − τi, i = 0, 1, 2, · · · , kP , where �0 = τ1,�kP
= TN − τkP

. Firstly, the

basic properties of the following subsystem

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dy(t)
dt

= −ay(t), t �= λm

y(τ+
n ) = q2y(τn), t = τn,

y(λ+
m) = q3y(λm) + σ, t = λm

(4.1)

play a key role in analyzing the pest control.

It is shown in Appendix A, that there exists a globally stable periodic solution

yTN (t) for the subsystem (4.1) if the inequality

q3q
kp

2 exp(−aTN ) < 1 (4.2)

holds true. Therefore, the complete expression for the ’pest-eradication’ periodic

solution of system (3.1) over the h-th time interval hTN < t ≤ (h + 1)TN is given

by
(
0, yTN (t)

)
. Furthermore, if the following threshold condition

RN
0

�
= qkP

1 exp

⎡
⎣rTN +

b

a
Y ∗

kP∑
j=0

qj
2

(
e−a(

∑j

i=0
�i) − e−a(

∑j−1

i=0
�i)
)⎤⎦ < 1 (4.3)

is satisfied, then the pest-eradication periodic solution
(
0, yTN (t)

)
is globally

attractive, where Y ∗ = σ/
[
1− q3q

kP

2 exp(−aTN )
]
.
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In particular, if �i ≡ � for all i = 0, 1, 2, · · · , kP , then the above condition

becomes as follows:

RN
0 = qkP

1 exp

[
rTN +

b

a
Y ∗
(
e−a� − 1

) 1− qkP +1
2 e−(kP +1)a�

1− q2e−a�

]
< 1

i.e.

RN
0 = qkP

1 exp

[
rTN +

b

a
Y ∗
(
e−a� − 1

) 1− qkP +1
2 e−aTN

1− q2e−a�

]
< 1. (4.4)

Equivalently, the above inequality can become as follows

r <
1

TN

ln

(
1

qkP

1

)
+

b

aTN

Y ∗
(
1− e−a�

) 1− qkP +1
2 e−aTN

1− q2e−a�

which can be explained as for those examples shown in the section 2.

What we want to address in the following is how control tactics including killing

rates p1 and p2, release rate p3 and release constant σ, timing of pesticide

application τi (or kP ) and timing of release period TN affect the threshold

condition RN
0 .

In Fig.2(A-C), we fixed the release period TN and let the killing rate p2 vary.

The simulation results indicate that if the pesticide kills the natural enemies with

a relatively higher killing rate p2 (for example p2 = 0.07), the threshold value RN
0

is a monotonically increasing function with respect to the number of pesticide

applications kP (Fig.2(A)). This shows that if the pesticide has a strong effect on

the natural enemies, repeated use of the same pesticides can result in target pest

resurgence. If the killing rate p2 on the natural enemies is slightly reduced from

0.07 to 0.05, Fig.2(B) shows that the threshold value RN
0 is not monotonic with

respect to the number of pesticide applications kP . So in this case we must

carefully select the number of pesticide applications (two or three events in this

case). If the pesticides do not kill the natural enemies so much, Fig.2(C) clarifies

that the threshold value RN
0 is a monotonically decreasing function with respect to
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the number of pesticide applications kP . All these simulations show that for a

given releasing period, the number of application pesticide within this period and

the killing rate of this pesticide on natural enemies are crucial.

Biological controls can be supported by augmentation of natural predators (and

/ or parasites or parasitoids), which includes the introduction of naturally

occurring predators at either an inundative or inoculative level (Parker, 1971;

Udayagiri et al., 2000). Fig.3 provides the details on how different release

(augmentation) rates p3 affect the threshold value RN
0 . For the given killing rates

p1 and p2, release period TN , and if the number of pesticide applications is

relatively small, Fig.3 shows that slightly increasing the release rate p3 can

dramatically reduce the quantity of threshold parameter RN
0 . However, for a

relatively larger number of pesticide applications, different killing rates p1 and p2,

a different release period TN may result in target pest resurgence, as shown in

Figs.3 and 4.

Fig.4 shows the effects of different parameter sets on the quantity of the

threshold condition RN
0 . All simulation results shown in Fig.4 indicate that the RN

0

appear to be quite sensitive to small changes in killing rates p1 and p2, release

constant σ and releasing period TN . All these results clarify that the effect of

pesticide timing, effectiveness of natural enemies and pesticide selectivity are

crucial to pest depression and resurgence. This information may also help the field

operator to decide on the optimum timing for spray applications and optimum rate

for release.

Experimental observations have confirmed that the initial densities of pest and

natural enemy populations can affect the outcome of classical biological control

(Foster and Kelly, 1978; Jones, 1999). The results obtained for Case 1 indicate
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that the simplest Lotka-Volterra model with integrated control tactics has various

coexistence possibilities with a wide range of parameters, including several interior

attractors where the pest and natural enemy populations coexist, as shown in

Fig.5. The final stable states of pest and natural enemy populations depend on

their initial densities as well as on their ratios, and those results are confirmed by

basins of attraction of initial densities (Fig.6).

To avoid insecticide resistance, resistance strategies most often involve either

mixing and applying pesticides together or alternating the use of available

pesticides. But can such variations in doses and types of insecticides used and the

numbers of natural enemies introduced affect the dynamics? Different numbers of

natural enemies released and various dosages of pesticide applications or different

pesticide applications can be mathematically expressed in terms of four

parameters, q1, q2, q3 and σ in model (3.1). That is, random perturbations due to

variations in the dosages applied or releases (migration) of natural enemies can be

taken into account with these four additional parameters, i.e.

q1η = q1 + η1u, q2η = q2 + η2u, q3η = q3 + η3u, ση = σ + η4u and u is a random

variable uniformly distributed on [−1, 1] and ηi > 0 for i = 1, 2, 3, 4 to represent

the intensity of noise. One view of this noise is that it represents small random

events of spraying, augmentation, immigration and mortality.

In order to understand how these small random perturbations affect the final

state of the pest population, we numerically studied system (3.1) with respect to

the switch-like transitions among the attractors shown in Fig.5. That is, we asked

do these stable attractors switch from one attractor to another once small random

perturbations have been introduced? As an example, with all other parameter

values fixed as in Fig.5, it has been shown that there are three stable attractors
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which can coexist. If we choose the initial condition (x0, y0) = (0.6, 1.5) (or

(2.6, 1)), the stable attractor without random perturbation is an attractor at which

the pest population oscillates with a larger amplitude (see Fig.5). When small

random perturbations are introduced in one of the parameters q1, q2, q3, σ,

numerical simulations imply that this solution can switch to another attractor with

smaller amplitude at a random time (Figs.7 and 8). However, extensive numerical

simulations indicate that the attractors with a smaller amplitude are robust and

are not affected by these types of small random perturbations. These numerical

results confirm that different doses of pesticide application and natural enemy

releases can influence the dynamics of the classical pest-natural enemy system, and

small random perturbations on parameters q1, q2, q3, σ may play key roles in insect

pest control.

5 Dynamical analysis of Case 2 and its biological

implications

For Case 2 there are kN natural enemy releases during period TP . Denote

�i = λi+1 − λi, i = 0, 1, 2, · · · , kN , where �0 = λ1,�kN
= TP − λkP

.

It is shown in Appendix B, that there exists a globally stable periodic solution

yTP (t) for the subsystem (4.1) if the inequality

q2q
kN

3 exp(−aTP ) < 1 (5.1)

holds true. Therefore, the complete expression for the ’pest-eradication’ periodic

solution of system (3.1) over the h-th time interval hTP < t ≤ (h + 1)TP is given
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by
(
0, yTP (t)

)
. Furthermore, if the following threshold condition

RP
0

�
= q1 exp

[
rTP + b

a
Y ∗ (exp(−a�0)− 1)

+ b
a
[q3Y

∗ exp(−a�0) + σ] (exp(−a�1)− 1) + · · ·+

b
a

[
qkN

3 Y ∗ exp

(
−a

kN−1∑
i=0

�i

)
+ σ

kN−1∑
i=0

qi
3 exp

(
−a

kN−1∑
j=kN−i

�j

)]
·

(exp(−a�kN
)− 1)] < 1

(5.2)

is satisfied, then the pest-eradication periodic solution
(
0, yTP (t)

)
is globally

attractive, where Y ∗ is given in Appendix B. In particular, if �i ≡ � for all

i = 0, 1, 2, · · · , kP , then the above condition becomes as follows

RP
0 = q1e

⎡
⎣rTP + b

a(e−a�−1)

⎛
⎝Y ∗

(
1−q

kN +1
3

e
−aTP

)
1−q3e−a�

+σ

kN∑
i=1

(kN+1−i)qi−1
3 e−a(i−1)�

⎞
⎠
⎤
⎦

< 1. (5.3)

Since the release of natural enemies in this case is more frequent than spraying

pesticides, the side-effects of pesticides on the natural enemy population are

largely reduced. Moreover, the threshold condition RP
0 can be significantly affected

by the supplemental release of natural enemies. For example, if we fixed all

parameters as those in Fig.9 and chose different releasing constant σ and different

kN , the simulation results indicate that slight increases of the release constant σ

can significantly reduce the threshold value RP
0 (Fig.9), while increasing the

number of natural enemy releases as well. This clarifies that repeated releases of a

small number of natural enemies at a critical time of the season can successfully

suppress the pest population. In practice, an example of inoculative release occurs

in greenhouse production of several crops. Periodic releases of the parasitoid

Encarsia formosa are used to control greenhouse whitefly Trialeurodes

vaporariorum, and the predaceous mite, Phytoseiulus persimilis, is used for control

of the two-spotted spider mite Tetranychus vrticae (Parker, 1971).
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We can also employ the methods provided in Case 1 to investigate the effects of

all other parameters on the threshold value RP
0 . Furthermore, bifurcation analyses

also indicate that multiple attractors can coexist for a wide range of parameters for

this case. For example, the two attractors with quite different pest amplitudes that

can coexist (see Fig.10), and the switch-like transitions between the two attractors

shown in Fig.11. This further indicates that different dosages of pesticide applied

and numbers of natural enemies released are crucial for controlling pests.

6 Hybrid impulsive model with Economic

Threshold

As mentioned before, pesticides may kill or harm natural enemies following

exposure by contact, ingestion or, less commonly, by respiration. They may also

affect natural enemies indirectly by killing or contaminating their hosts or prey.

An understanding of the effectiveness of natural enemies is essential to avoid

applying pesticides when biological control is adequate, as shown in Cases 1 and 2.

Probably the best method for reducing the overall negative impact of chemicals on

natural enemies is to apply pesticides only when necessary. In practice, the

pesticides can only be applied when the density of the pest population reaches the

Economic Threshold (ET), and model (3.1) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt

= rx(t) [1− δx(t)]− bx(t)y(t), x(t) < ET,

dy(t)
dt

= y(t)(cx(t)− a), t �= λm,

x(t+) = (1− p1)x(t),

y(t+) = (1− p2)y(t),

⎫⎪⎪⎬
⎪⎪⎭ x(t) = ET,

y(λ+
m) = (1 + p3)y(λm) + σ, t = λm,

(6.1)
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where λm(m = 1, 2, · · ·) is an impulsive point series at which the natural enemies

are released. For simplification, we assume λm+1 − λm = T for all m, i.e. the

periodic releasing of natural enemies is applied.

From the biological point of view, the effective testing of natural enemy release

strategies and timing of insecticide applications require the use of replicated

treatments in independent greenhouses (Hoddle et al., 1997a,b) and the use of

experimental controls either in cages or separate greenhouses (Hoddle et al.,

1997a,b). Thus, experimental methods in combination with the model approaches

presented in this paper are the most cost effective method. However, the intrinsic

growth rate of pests, r, predator searching efficiency, b, instant killing rates q1 and

q2, releasing rate q3 and constant σ, and other factors (such as ET) can vary

amongst pest and natural enemy species. How do these factors affect the control

strategies? In particular, what we want to know is how do the ET and various

pest-natural enemy ratios affect the control strategies.

For a given ET, we suggest that successful control strategies largely depend on

the initial density and pest-natural enemy ratios. To show this, we fix all

parameter values as those in Fig.12. The results shown in Fig.12 provide some

examples of different possible cases. In Fig.12(A) the initial densities of

pest-natural enemy populations are (1.8,1.7) and the simulation result indicates

that the density of the pest population never reaches the given ET, which shows

that the solution initiating from (1.8,1.7) is free from pesticide applications. If we

set the initial densities as (0.6,1), Fig.12(B) indicates that the system is free from

chemical control after one pesticide application. If we set the initial densities as

(1.2, 0.8) or (2.1,0.5) or (2.7, 0.4), Fig.12(C-E) indicates that the system is free

from chemical control after two, four or five pesticide applications. If we further
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increase the pest-natural enemy ratio and set the initial densities as (1.8, 0.2), the

pest outbreak frequency is significantly increased, as shown in Fig.12(F).

We have conducted many other numerical simulations (not shown here) on

model (6.1) with different initial densities and different pest-natural enemy ratios,

and found that there are only three possible control cases that model (6.1) has: (a)

infinite repeats of chemical control tactics such as in periodic control strategies; (b)

finite numbers of chemical control tactics; (c) no chemical control required. These

results clarify that the models proposed here can help us to understand

pest-natural enemy interactions, help us to design appropriate control strategies

and to make management decisions in insect pest control.

Consequently, we denote the time points at which the solution reaches ET as

tn(n = 1, 2, · · ·). If mod(tn, T ) ≡ 0, a chemical control is applied at tn and after

that a biological control is also applied at the same time. If mod(tn, T ) �= 0, only a

chemical control programme is applied. Further, denote

Tn = tn − tn−1 (6.2)

with t0 = 0 as pest-outbreak duration (or period), where n may be finite or infinite

which depends on the solutions of the models.

The effect of control tactics (here parameters T, ET, q1, q2, q3 and σ) on pest

mean outbreak period (or outbreak frequency) can be calculated from the model

(6.1) and formula (6.2) numerically (Fig.13). Mean pest outbreak period is an

average over several pest outbreaks (here outbreaks indicate that the densities of

the pest reach the given ET) or pest cycle periods. Model (6.1) predicts that the

densities of the pest do not reach the ET if the natural enemies are released

frequently enough (here smaller T , Fig.13(A)), and the mean outbreak period is

decreasing as the release period T or survival rate of the pest on pesticide
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application q1 increases (Fig.13(A) and (C)). Conversely, model (6.1) predicts that

the larger ET, or survival rate (here q2) of the natural enemy on the pesticide

application, or releasing rate (here q3) and or release constant (here σ) is, the

longer is the mean outbreak period (Fig.13(B), (D), (E) and (F)). Note that the

mean outbreak period can suddenly jump from a small value to a larger value at

some critical points of ET, q3 and σ, which indicates that the selection of ET and

releasing methods (inundative or inoculation release) may be crucial in prolonging

the pest outbreak period. Moreover, the different ET, or different values of the

release rate q3 and or different values of the release constant σ may have the same

mean outbreak period (Fig.13(B), (E) and (F)). Finally, we emphasize here that

the effects of the other parameters r, b, c, d on the mean outbreak period can be

investigated similarly.

7 Discussion

Natural enemies are usually more susceptible to the effects of pesticides than

plant-feeding hosts or prey owing to their searching habits, usually less-developed

enzyme-based detoxification systems and preening behavior. Usually, target pest

resurgence can occur when natural enemies are destroyed. Thus, when using

integrated pest management as an approach to control insect pests one must be

committed to a long term strategy. If it is decided that spraying must occur, it is

best to make sure that it is carried out at a time of the day or even season when

there is the lowest chance of adversely affecting natural enemies. Apart from

selecting pesticides that are likely to be less harmful to natural enemies and other

non-target organisms such as pollinators, further selectivity can be gained by
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judicious pesticide application involving minimization of the pesticide

concentration and appropriate timing of pesticide applications.

Due to the antagonism between chemical and biological methods, understanding

the range of possible ecological interactions among pest, natural enemy and

pesticides is quite important for successful pest control. Here we have extended the

classical continuous pest-natural enemy models to include an IPM control strategy

in order to (a) understand why different release methods result in different pest

control outcomes; (b) to estimate and predict the timing of a pesticide application

and the instantaneous killing rates of insecticide applications on pest and natural

enemy, and (c) to investigate the effects of initial densities of pest-natural enemy

populations on insect pest control.

Two possible cases are investigated firstly according to the relations between

spraying frequency of pesticides and release frequency of natural enemies.

Whatever releases taken place more or less frequently than the sprays, the

threshold conditions which guarantee the existence and stability of the pest

eradication periodic solution are provided. Moreover, the effects of times of

spraying pesticides (or releasing natural enemies) and control tactics on the

threshold condition were carefully investigated. In particular, the effects of the

releasing rate and releasing constant, instantaneous killing rates of pesticides for

pest and natural enemy populations, releasing and spraying period on the stability

of the pest-eradication periodic solution were discussed with regard to the extent

of depression or resurgence resulting from pulse pesticide applications. The results

imply that the modelling methods described can help in the design of appropriate

control strategies and assist management decision-making.

If the integrated control methods can not completely eradicate the pest
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population, i.e. the threshold condition does not hold true any more, the pest

population can have outbreaks at different scales. By extensive numerical

bifurcation investigations, we found that when choosing different parameter spaces,

multiple attractors from which the pest population oscillates with different

amplitudes can coexist for a wide range of parameters. The results indicate that

the dynamic behavior of a population may be affected dramatically by small

changes in the values of initial densities of the pest and natural enemy

populations, and the switch-like transitions among these attractors showing that

varying dosages and frequencies of insecticide applications and the numbers of

natural enemies released are crucial for pest control. Meanwhile, the stable pest

outbreak solutions with large amplitudes can switch to the stable pest outbreak

solution with relatively small amplitude at a random time while the stable pest

outbreak solutions with a smaller amplitude are robust to random perturbation.

These results confirm that varying dosages of pesticide applications and numbers

of natural enemies released are important for pest control and pesticide resistance.

In practice, a good pest control programme should reduce pest populations to

levels acceptable (here ET level) to the public rather than eradication. Our second

type of model is proposed based on this ideal. To reduce the pesticide application

and avoid the antagonism, we assumed that the pesticides are released only when

the densities of the pest population reach the ET and periodic repeated releases of

natural enemies are applied. The factors which affect the pest outbreak frequency

and mean outbreak period are discussed. The simulation results indicate that the

pest outbreak period or frequency largely depends on the initial densities, control

tactics and given ET.

We must emphasize here that proper identification of insect pests, natural
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enemies and a basic knowledge of economic thresholds are essential for an IPM

programme to be successful, which can help us to determine parameters p1, p2, p3

and ET. Therefore, in order to keep track of both pest and natural enemy

populations, regular field monitoring are necessary, and these data are quite

important for making management decisions. However, regular field monitoring

needs lots of manpower and time, and consequently increases the costs. Further,

the ET is dynamic and depends on many factors, see more details on how to

determine the ET from the literature (Tang and Cheke, 2005).

The majority of this work is based on deterministic models of the pest-natural

enemy interaction with pulse perturbations and ET. This raises the interesting

question of how robust the models are to various forms of environmental and

demographic stochasticity, as it is well known that stochasticity can significantly

affect the persistence and dynamics of populations (Bonsall and Hastings, 2004;

Tang and Heron, 2008). The switch-like behavior in response to small random

perturbations confirms that environmental stochasticity has little effect on the

coexistence of attractors. However, demographic noise may affect the population

dynamics more broadly, and is most influential in small populations. Stochastic

fluctuations at small population sizes tend to be amplified by the dynamics to

cause massive population variability, i.e. demographic stochasticity has a

destabilizing effect. How do environmental and demographic stochasticity affect

the rich dynamic behaviors described in this paper and influence the IPM strategy,

including coexistence and the structure of the basin attractors? The introduction

of stochasticity also allows us to investigate the interesting question of whether

stochasticity is beneficial to IPM strategies or not, a question for future research

directions.
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This work focused entirely on the simplest pest-natural enemy model with

impulsive effects and the temporal interactions of an insect pest and its natural

enemy. A number of stabilizing factors such as spatial heterogeneity, density

dependent growth of the pest and functional responses of the predator will be

considered in future and will be reported elsewhere.
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Appendix A

In any given time interval (hTN , (h + 1)TN ], where h is a positive integer, we

investigate the dynamical behavior of model (4.1). In fact, integrating the first

equation of model (4.1) from hTN to τ1 + hTN yields

y(t) = y(hT+
N ) exp[−a(t − hTN )], t ∈ (hTN , τ1 + hTN ].

At time τ1 + hTN , one pesticide application occurs and

y((τ1 + hTN)+) = q2y(hT+
N ) exp[−aτ1] = q2y(hT+

N ) exp[−a�0].

Again, integrating the first equation of model (4.1) from τ1 + hTN to τ2 + hTN

yields

y(t) = y((τ1 + hTN )+) exp[−a(t − τ1 − hTN)], t ∈ (τ1 + hTN , τ2 + hTN ].

At time τ2 + hTN , one time pesticide application occurs and

y((τ2 + hTN )+) = q2y((τ1 + hTN )+) exp[−a�1] = q2
2y(hT+

N ) exp[−a(�0 +�1)].

By induction, we can see that

y(t) = qkP

2 y(hT+
N ) exp[−a(�0 +�1 + · · ·+�kP−1)] exp[−a(t− τkP

− hTN)], (A.1)

for all t ∈ (τkP
+ hTN , (h + 1)TN ]. At time (h + 1)TN , release of natural enemies

occurs once and

y((h + 1)T+
N ) = q3q

kP

2 y(hT+
N ) exp[−aTN ] + σ. (A.2)

Denote Yh = y(hT+
N ), then we have the following difference equation

Yh+1 = q3q
kP

2 exp[−aTN ]Yh + σ,
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which has a unique steady state

Y ∗ =
σ

1− q3q
kP

2 exp[−aTN ]
. (A.3)

Therefore if q3q
kP

2 exp[−aTN ] < 1, then the model (4.1) has a globally stable TN

periodic solution (denoted by yTN (t)), which can be calculated as follows

yTN (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y ∗ exp[−a(t− hTN)], t ∈ (hTN , τ1 + hTN ],

q2Y
∗ exp[−a�0] exp[−a(t− τ1 − hTN )], t ∈ (τ1 + hTN , τ2 + hTN ],

...

qkP

2 Y ∗ exp

[
−a

kP−1∑
i=0

�i

]
e[−a(t−τkP

−hTN )], t ∈ (τkP
+ hTN , (h + 1)TN ].

(A.4)

Furthermore, we obtain the complete expression for the ’pest-eradication’

periodic solution,
(
0, yTN (t)

)
, of system (3.1) over the h-th time interval

hTN < t ≤ (h + 1)TN .

It follows from system (3.1) that we have y(t) > yTN (t)− ε for t large enough

and ε small enough. For simplification we may assume y(t) > yTN (t)− ε holds for

all t ≥ 0. Thus we have

⎧⎪⎪⎨
⎪⎪⎩

dx(t)
dt
≤ rx(t)− bx(t)[yTN (t)− ε], t �= τn,

x(τ+
n ) = q1x(τn), t = τn.

(A.5)

Again from the comparison theorem on impulsive differential equations we get

x(τ1 + hTN) ≤ x(hTN ) exp
[∫ τ1+hTN

hTN

(
r − b(yTN (t)− ε)

)
dt
]
,

x(τ2 + hTN) ≤ x((τ1 + hTN)+) exp
[∫ τ2+hTN

τ1+hTN

(
r − b(yTN (t)− ε)

)
dt
]

= q1x(τ1 + hTN) exp
[∫ τ2+hTN

τ1+hTN

(
r − b(yTN (t)− ε)

)
dt
]
,

...

x((h + 1)TN) ≤ x((τkP
+ hTN )+) exp

[∫ (h+1)TN

τkP
+hTN

(
r − b(yTN (t)− ε)

)
dt
]

= q1x(τkP
+ hTN ) exp

[∫ (h+1)TN

τkP
+hTN

(
r − b(yTN (t)− ε)

)
dt
]
,

(A.6)
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which indicates that

x((h + 1)TN) ≤ qkP

1 x(hTN) exp
[∫ τ1+hTN

hTN

(
r − b(yTN (t)− ε)

)
dt

+
kP−1∑
j=1

∫ τj+1+hTN

τj+hTN

(
r − b(yTN (t)− ε)

)
dt

+
∫ (h+1)TN

τkP
+hTN

(
r − b(yTN (t)− ε)

)
dt
]

= qkP

1 x(hTN) exp

⎡
⎢⎣(r + bε)TN + b

a
Y ∗

⎛
⎜⎝e−a�0 − 1 + q2

⎛
⎜⎝e

−a
1∑

i=0

�i

− e−a�0

⎞
⎟⎠

+q2
2

⎛
⎜⎝e

−a
2∑

i=0

�i

− e
−a

1∑
i=0

�i

⎞
⎟⎠+ q3

2

⎛
⎜⎝e

−a
3∑

i=0

�i

− e
−a

2∑
i=0

�i

⎞
⎟⎠

+ · · ·+ qkP

2

⎛
⎜⎜⎝e

−a

(
kP∑
i=0

�i

)
− e

−a

(
kP−1∑
i=0

�i

)⎞
⎟⎟⎠
⎞
⎟⎟⎠
⎤
⎥⎥⎦

= qkP

1 x(hTN)e

⎡
⎢⎣(r+bε)TN+ b

a
Y ∗

kP∑
j=0

q
j
2

⎛
⎜⎝e

−a

(
j∑

i=0

�i

)
−e

−a

(
j−1∑
i=0

�i

)⎞
⎟⎠
⎤
⎥⎦

�
= x(hTN )RN

ε

(A.7)

where
∑−1

i=0�i = 0 and

RN
ε = qkP

1 exp

⎡
⎣(r + bε)TN +

b

a
Y ∗

kP∑
j=0

qj
2

(
e−a(

∑j

i=0
�i) − e−a(

∑j−1

i=0
�i)
)⎤⎦ .

Therefore, if RN
0 < 1 then x(hT ) ≤ x(0+)(RN

0 )h and x(hT ) → 0 as h →∞.

Consequently, x(t) → 0 as t →∞. Similarly, we can prove y(t)→ yTN (t) as

t →∞. This indicates that if RN
0 < 1 then the pest eradication periodic solution(

0, yTN (t)
)

is globally attractive.

Appendix B

In any given time interval (hTP , (h + 1)TP ], where h is a positive integer, we

investigate the dynamical behavior of model (4.1). Integrating the first equation of
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model (4.1) from hTP to λ1 + hTP yields

y(t) = y(hT+
P ) exp[−a(t− hTP )], t ∈ (hTP , λ1 + hTP ].

At time λ1 + hTP , one release of natural enemies occurs and

y((λ1 + hTP )+) = q3y(hT+
P ) exp[−aλ1] + σ = q3y(hT+

P ) exp[−a�0] + σ.

Again, integrating the first equation of model (4.1) from λ1 + hTP to λ2 + hTP

yields

y(t) = y((λ1 + hTP )+) exp[−a(t − λ1 − hTP )], t ∈ (λ1 + hTP , λ2 + hTP ].

At time λ2 + hTP , one release of natural enemies occurs and

y((λ2 + hTP )+) = q3y((λ1 + hTP )+) exp[−a�1] + σ

= q2
3y(hT+

P ) exp[−a(�0 +�1)] + q3σ exp[−a�1] + σ.

Similarly, we have

y((λ3 + hTP )+) = q3y((λ2 + hTP )+) exp[−a�2] + σ

= q3
3y(hT+

P ) exp[−a(�0 +�1 +�2)]

+q2
3σ exp[−a(�1 +�2)] + q3σ exp[−a�2] + σ

= q3
3y(hT+

P ) exp[−a(�0 +�1 +�2)] + σ
2∑

i=0
qi
3 exp

[
−a

2∑
j=3−i

�j

]
.

By induction, we can see that

y
(
(λkN

+ hTP )+
)

= qkN

3 y(hT+
P ) exp

⎡
⎣−a

kN−1∑
i=0

�i

⎤
⎦+ σ

kN−1∑
i=0

qi
3 exp

⎡
⎣−a

kN−1∑
j=kN−i

�j

⎤
⎦

and

y(t) = y
(
(λkN

+ hTP )+
)

exp[−a(t−λkN
−hTP )], t ∈ (λkN

+hTP , (h+1)TP ], (B.1)

At time (h + 1)TP , one pesticide application occurs and

y((h + 1)T+
P ) = q2y

(
(λkN

+ hTP )+
)

exp[−a(TP − λkN
)]

= q2q
kN

3 y(hT+
P ) exp

[
−a

kN∑
i=0
�i

]
+ q2σ

kN−1∑
i=0

qi
3 exp

[
−a

kN∑
j=kN−i

�j

]
.

(B.2)
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Denote Yh = y(hT+
P ), then we have the following difference equation

Yh+1 = q2q
kN

3 exp

[
−a

kN∑
i=0
�i

]
Yh + q2σ

kN−1∑
i=0

qi
3 exp

[
−a

kN∑
j=kN−i

�j

]

= q2q
kN

3 exp [−aTP ] Yh + q2σ
kN−1∑
i=0

qi
3 exp

[
−a

kN∑
j=kN−i

�j

]

�
= φYh + ψ

which has a unique steady state

Y ∗ =
ψ

1− φ
. (B.3)

Therefore if q2q
kN

3 exp [−aTP ] < 1, then model (4.1) has a globally stable TP

periodic solution (denoted by yTP (t)), which can be calculated as follows

yTP (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y ∗ exp[−a(t − hTP )], t ∈ (hTP , λ1 + hTP ],

[q3Y
∗ exp(−a�0) + σ] exp[−a(t− λ1 − hTP )], t ∈ (λ1 + hTP , λ2 + hTP ],

...{
qkN

3 Y ∗ exp

[
−a

kN−1∑
i=0

�i

]
+ σ

kN−1∑
i=0

qi
3 exp

[
−a

kN−1∑
j=kN−i

�j

]}
e[−a(t−λkN

−hTP ),

t ∈ (λkN
+ hTP , (h + 1)TP ].

(B.4)

Once again for Case 2, we obtain the complete expression for the

’pest-eradication’ periodic solution,
(
0, yTP (t)

)
, of system (3.1) over the h-th time

interval hTP < t ≤ (h + 1)TP .

It follows from system (3.1) that we have y(t) > yTP (t)− ε for t large enough

and ε small enough. For simplification we may assume y(t) > yTP (t)− ε holds for

all t ≥ 0. Thus we have

⎧⎪⎪⎨
⎪⎪⎩

dx(t)
dt
≤ rx(t)− bx(t)[yTP (t)− ε], t �= τn,

x(τ+
n ) = q1x(τn), t = τn.

(B.5)
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Again from the comparison theorem on impulsive differential equations we get

x((h + 1)TP ) ≤ x(hT+
P ) exp

[∫ (h+1)TP

hTP

(
r − b(yTP (t)− ε)

)
dt
]

= x(hT+
P ) exp

[∫ λ1+hTP

hTP

(
r − b(yTP (t)− ε)

)
dt

+
kN−1∑
j=1

∫ λj+1+hTP

λj+hTP

(
r − b(yTP (t)− ε)

)
dt

+
∫ (h+1)TP

λkN
+hTP

(
r − b(yTP (t)− ε)

)
dt
]

= x(hT+
P ) exp

[
(r + bε)TP + b

a
Y ∗ (exp(−a�0)− 1)

+ b
a
[q3Y

∗ exp(−a�0) + σ] (exp(−a�1)− 1) + · · ·+

b
a

[
qkN

3 Y ∗ exp

(
−a

kN−1∑
i=0

�i

)
+ σ

kN−1∑
i=0

qi
3 exp

(
−a

kN−1∑
j=kN−i

�j

)]
·

(exp(−a�kN
)− 1)]

�
= x(hT+

P )ΘP
ε ,

(B.6)

which indicates that

x((h + 1)T+
P ) ≤ q1x(hT+

P )ΘP
ε

�
= x(hT+

P )RP
ε

(B.7)

where
∑−1

i=0�i = 0.

Therefore, if RP
0 < 1 then x(hT+

P ) ≤ x(0+)(RP
0 )h and x(hT+

P ) → 0 as h →∞.

Consequently, x(t) → 0 as t →∞. Similarly, we can prove y(t)→ yTP (t) as

t →∞. This indicates that if RP
0 < 1 then the pest eradication periodic solution(

0, yTP (t)
)

is globally attractive.

In particular, if �i ≡ � for all i = 0, 1, 2, · · · , kN , then the condition RP
0 < 1

becomes as follows:

RP
0 = q1 exp

[
rTP + b

a

(
e(−a�) − 1

) [
Y ∗ + q3Y

∗e(−a�) + · · ·+ qkN

3 Y ∗e(−akN�)

+σ + · · ·+ σ
kN−1∑
i=0

qi
3 exp

(
−a

kN−1∑
j=kN−i

�j

)]]

= q1e

⎡
⎣rTP + b

a(e−a�−1)

⎛
⎝Y ∗

(
1−q

kN +1
3

e−aTP

)
1−q3e−a�

+σ

kN∑
i=1

(kN+1−i)qi−1
3 e−a(i−1)�

⎞
⎠
⎤
⎦

(B.8)
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and

Y ∗ =
ψ

1− φ
(B.9)

with φ = q2q
kN

3 exp [−aTP ] and

ψ = q2σ
kN−1∑
i=0

qi
3 exp

[
−a

kN∑
j=kN−i

�

]
= q2σ

kN−1∑
i=0

qi
3 exp [−a(i + 1)�]

= q2σ

(
exp(−a�)−q

kN
3 exp(−aTP )

)
1−q3 exp(−a�)

.
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Figure Legends

Figure 1: Economic Injury Level (EIL) = lowest population density that will cause

economic damage. Economic Threshold (ET) = population density at which control

measures should be introduced to prevent an increasing pest population from reach-

ing the economic injury level. The arrows indicate points when pest levels exceed

the economic threshold and an IPM strategy would be applied.

Figure 2: The effects of number of pesticide applications and release period TN on

the threshold level RN
0 . The parameter values are as follows: r = 1.1755, b = 1, a =

0.307, q1 = 0.85, q3 = 1.0, σ = 5.1, and kp = 1, 2, 3, · · · , 12 with �i ≡ �.

Figure 3: The effects of the number of pesticide applications and release rate q3 on

the threshold level RN
0 . The parameter values are as follows: r = 1.3, b = 1, a =

0.42, σ = 0.5, and kp = 1, 2, 3, · · · , 12 with �i ≡ �. (A) q1 = 0.45, q2 = 0.94, TN =

4.2; (B) q1 = 0.65, q2 = 0.94, TN = 4.2; (C) q1 = 0.45, q2 = 0.94, TN = 4; (D)

q1 = 0.65, q2 = 0.98, TN = 4.2.
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Figure 4: The effects of times of spraying pesticides and parameter sets on the

threshold level RN
0 . The parameter values are as follows: r = 1.2, b = 1, a =

0.307, q3 = 1.0, and kp = 1, 2, 3, · · · , 12 with �i ≡ �. (A) q2 = 0.95, σ = 5, TN = 14;

(B) q1 = 0.65, σ = 5, TN = 14; (C) q1 = 0.75, q2 = 0.95, TN = 14; (D) q1 = 0.75, q2 =

0.95, σ = 5.

Figure 5: Three coexisting attractors of system (3.1) with parameters as follows:

r = 1.5, b = 1, a = 0.6, q1 = 0.85, q2 = 0.95, q3 = 4.12, σ = 0.5, δ = 0, c = 0.3, kN =

2, TN = 4. The initial conditions are: (A-B) (2.6, 2); (C-D) (2.6, 1); (E-F) (0.6, 1.5).

Figure 6: Basins of attraction of the three attractors shown in Fig.5 with the param-

eters identical to those in Figure 5. The white, green and red points are attracted

to the attractors shown in Fig.5 from top to bottom, respectively.

Figure 7: Attractors’ switch-like behavior of system (3.1) with small random per-

turbation on parameters q2 and σ, i.e. η2 = 0.05, η4 = 0.05 and η1 = η3 = 0. The

other parameters are identical to those in Fig.5.

Figure 8: Attractors’ switch-like behavior of system (3.1) with small random per-

turbation on parameters q1 and q3, i.e. η3 = 0.1, η1 = 0.05 and η2 = η4 = 0. The

other parameters are identical to those in Fig.5.

Figure 9: The effects of times of releasing natural enemies and releasing constant σ

on the threshold level RN
0 . The parameter values are as follows: r = 0.8, b = 1, a =

0.2, TP = 5, q1 = 0.75, q2 = 0.9, q3 = 1.1 with �i ≡ �.

Figure 10: Two coexisting attractors of system (3.1) with parameters as follows:

r = 3, b = 1, a = 0.2, q1 = 0.65, q2 = 0.98, q3 = 1.2, σ = 0.5, δ = 0, c = 0.3, TP =

8.22, kN = 2. The initial conditions are: (A-B) (0.6, 1); (C-D) (0.6, 0.7).
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Figure 11: Attractors’ switch-like behavior of system (3.1) with small random per-

turbation on parameters q1 and q3, i.e. η3 = 0.1, η1 = 0.05 and η2 = η4 = 0. The

other parameters are identical to those in Fig.10.

Figure 12: Illustrating the effects of ET and initial densities of pest and natural

enemy populations of model (6.1) on the control strategies. The parameters are

fixed as follows: r = 3, b = 1, a = 0.3, q1 = 0.65, q2 = 0.95, q3 = 1.2, σ = 1, δ = 0, c =

0.3, T = 4. Initial densities in (A) is (1.8, 1.7), in (B) is (0.6,1), in (C) is (1.2, 0.8),

in (D) is (2.1,0.5), in (E) is (2.7, 0.4), and in (F) is (1.8, 0.2).

Figure 13: The mean outbreak period of model (6.1), as a function of T in (A), as

a function of ET in (B), as a function of q1 in (C), as a function of q2 in (D), as a

function of q3 in (E), and as a function of σ in (F). The basic parameter set is fixed

as follows: r = 2, b = 1, a = 0.6, q1 = 0.65, q2 = 0.95, q3 = 1.2, σ = 1, δ = 0, c =

0.1, T = 4, ET = 5. Initial densities are (H0, P0) = (1, 1). Simulations were run for

100 × T to rule out transients, and then run for 50 × T to get Tn which allows us

determine the average outbreak period.
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